#include #include #include #include "sla_test_utils.hpp" namespace { const char *const BELOW_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", }; const char *const AROUND_PAD_TEST_OBJECTS[] = { "20mm_cube.obj", "V.obj", "frog_legs.obj", "cube_with_concave_hole_enlarged.obj", }; const char *const SUPPORT_TEST_MODELS[] = { "cube_with_concave_hole_enlarged_standing.obj", "A_upsidedown.obj", "extruder_idler.obj" }; } // namespace TEST_CASE("Pillar pairhash should be unique", "[SLASupportGeneration]") { test_pairhash(); test_pairhash(); test_pairhash(); test_pairhash(); } TEST_CASE("Support point generator should be deterministic if seeded", "[SLASupportGeneration], [SLAPointGen]") { TriangleMesh mesh = load_model("A_upsidedown.obj"); sla::EigenMesh3D emesh{mesh}; sla::SupportConfig supportcfg; sla::SupportPointGenerator::Config autogencfg; autogencfg.head_diameter = float(2 * supportcfg.head_front_radius_mm); sla::SupportPointGenerator point_gen{emesh, autogencfg, [] {}, [](int) {}}; TriangleMeshSlicer slicer{&mesh}; auto bb = mesh.bounding_box(); double zmin = bb.min.z(); double zmax = bb.max.z(); double gnd = zmin - supportcfg.object_elevation_mm; auto layer_h = 0.05f; auto slicegrid = grid(float(gnd), float(zmax), layer_h); std::vector slices; slicer.slice(slicegrid, SlicingMode::Regular, CLOSING_RADIUS, &slices, []{}); point_gen.seed(0); point_gen.execute(slices, slicegrid); auto get_chksum = [](const std::vector &pts){ long long chksum = 0; for (auto &pt : pts) { auto p = scaled(pt.pos); chksum += p.x() + p.y() + p.z(); } return chksum; }; long long checksum = get_chksum(point_gen.output()); size_t ptnum = point_gen.output().size(); REQUIRE(point_gen.output().size() > 0); for (int i = 0; i < 20; ++i) { point_gen.output().clear(); point_gen.seed(0); point_gen.execute(slices, slicegrid); REQUIRE(point_gen.output().size() == ptnum); REQUIRE(checksum == get_chksum(point_gen.output())); } } TEST_CASE("Flat pad geometry is valid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Disable wings padcfg.wall_height_mm = .0; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("WingedPadGeometryIsValid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; for (auto &fname : BELOW_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("FlatPadAroundObjectIsValid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 0.; // padcfg.embed_object.stick_stride_mm = 0.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("WingedPadAroundObjectIsValid", "[SLASupportGeneration]") { sla::PadConfig padcfg; // Add some wings to the pad to test the cavity padcfg.wall_height_mm = 1.; padcfg.embed_object.enabled = true; padcfg.embed_object.everywhere = true; for (auto &fname : AROUND_PAD_TEST_OBJECTS) test_pad(fname, padcfg); } TEST_CASE("ElevatedSupportGeometryIsValid", "[SLASupportGeneration]") { sla::SupportConfig supportcfg; supportcfg.object_elevation_mm = 5.; for (auto fname : SUPPORT_TEST_MODELS) test_supports(fname); } TEST_CASE("FloorSupportGeometryIsValid", "[SLASupportGeneration]") { sla::SupportConfig supportcfg; supportcfg.object_elevation_mm = 0; for (auto &fname: SUPPORT_TEST_MODELS) test_supports(fname, supportcfg); } TEST_CASE("ElevatedSupportsDoNotPierceModel", "[SLASupportGeneration]") { sla::SupportConfig supportcfg; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } TEST_CASE("FloorSupportsDoNotPierceModel", "[SLASupportGeneration]") { sla::SupportConfig supportcfg; supportcfg.object_elevation_mm = 0; for (auto fname : SUPPORT_TEST_MODELS) test_support_model_collision(fname, supportcfg); } TEST_CASE("DefaultRasterShouldBeEmpty", "[SLARasterOutput]") { sla::Raster raster; REQUIRE(raster.empty()); } TEST_CASE("InitializedRasterShouldBeNONEmpty", "[SLARasterOutput]") { // Default Prusa SL1 display parameters sla::Raster::Resolution res{2560, 1440}; sla::Raster::PixelDim pixdim{120. / res.width_px, 68. / res.height_px}; sla::Raster raster; raster.reset(res, pixdim); REQUIRE_FALSE(raster.empty()); REQUIRE(raster.resolution().width_px == res.width_px); REQUIRE(raster.resolution().height_px == res.height_px); REQUIRE(raster.pixel_dimensions().w_mm == Approx(pixdim.w_mm)); REQUIRE(raster.pixel_dimensions().h_mm == Approx(pixdim.h_mm)); } TEST_CASE("MirroringShouldBeCorrect", "[SLARasterOutput]") { sla::Raster::TMirroring mirrorings[] = {sla::Raster::NoMirror, sla::Raster::MirrorX, sla::Raster::MirrorY, sla::Raster::MirrorXY}; sla::Raster::Orientation orientations[] = {sla::Raster::roLandscape, sla::Raster::roPortrait}; for (auto orientation : orientations) for (auto &mirror : mirrorings) check_raster_transformations(orientation, mirror); } TEST_CASE("RasterizedPolygonAreaShouldMatch", "[SLARasterOutput]") { double disp_w = 120., disp_h = 68.; sla::Raster::Resolution res{2560, 1440}; sla::Raster::PixelDim pixdim{disp_w / res.width_px, disp_h / res.height_px}; sla::Raster raster{res, pixdim}; auto bb = BoundingBox({0, 0}, {scaled(disp_w), scaled(disp_h)}); ExPolygon poly = square_with_hole(10.); poly.translate(bb.center().x(), bb.center().y()); raster.draw(poly); double a = poly.area() / (scaled(1.) * scaled(1.)); double ra = raster_white_area(raster); double diff = std::abs(a - ra); REQUIRE(diff <= predict_error(poly, pixdim)); raster.clear(); poly = square_with_hole(60.); poly.translate(bb.center().x(), bb.center().y()); raster.draw(poly); a = poly.area() / (scaled(1.) * scaled(1.)); ra = raster_white_area(raster); diff = std::abs(a - ra); REQUIRE(diff <= predict_error(poly, pixdim)); } TEST_CASE("Triangle mesh conversions should be correct", "[SLAConversions]") { sla::Contour3D cntr; { std::fstream infile{"extruder_idler_quads.obj", std::ios::in}; cntr.from_obj(infile); } }