#include "PlaceholderParser.hpp" #include #include #include #include #ifdef _MSC_VER #include // provides **_environ #else #include // provides **environ #endif #ifdef __APPLE__ #include #undef environ #define environ (*_NSGetEnviron()) #else #ifdef _MSC_VER #define environ _environ #else extern char **environ; #endif #endif #include // Spirit v2.5 allows you to suppress automatic generation // of predefined terminals to speed up complation. With // BOOST_SPIRIT_NO_PREDEFINED_TERMINALS defined, you are // responsible in creating instances of the terminals that // you need (e.g. see qi::uint_type uint_ below). //#define BOOST_SPIRIT_NO_PREDEFINED_TERMINALS #define BOOST_RESULT_OF_USE_DECLTYPE #define BOOST_SPIRIT_USE_PHOENIX_V3 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Slic3r { PlaceholderParser::PlaceholderParser() { this->set("version", SLIC3R_VERSION); this->apply_env_variables(); this->update_timestamp(); } void PlaceholderParser::update_timestamp() { time_t rawtime; time(&rawtime); struct tm* timeinfo = localtime(&rawtime); { std::ostringstream ss; ss << (1900 + timeinfo->tm_year); ss << std::setw(2) << std::setfill('0') << (1 + timeinfo->tm_mon); ss << std::setw(2) << std::setfill('0') << timeinfo->tm_mday; ss << "-"; ss << std::setw(2) << std::setfill('0') << timeinfo->tm_hour; ss << std::setw(2) << std::setfill('0') << timeinfo->tm_min; ss << std::setw(2) << std::setfill('0') << timeinfo->tm_sec; this->set("timestamp", ss.str()); } this->set("year", 1900 + timeinfo->tm_year); this->set("month", 1 + timeinfo->tm_mon); this->set("day", timeinfo->tm_mday); this->set("hour", timeinfo->tm_hour); this->set("minute", timeinfo->tm_min); this->set("second", timeinfo->tm_sec); } // Scalar configuration values are stored into m_single, // vector configuration values are stored into m_multiple. // All vector configuration values stored into the PlaceholderParser // are expected to be addressed by the extruder ID, therefore // if a vector configuration value is addressed without an index, // a current extruder ID is used. void PlaceholderParser::apply_config(const DynamicPrintConfig &rhs) { const ConfigDef *def = rhs.def(); for (const t_config_option_key &opt_key : rhs.keys()) { const ConfigOptionDef *opt_def = def->get(opt_key); if ((opt_def->multiline && boost::ends_with(opt_key, "_gcode")) || opt_key == "post_process") continue; const ConfigOption *opt = rhs.option(opt_key); // Store a copy of the config option. // Convert FloatOrPercent values to floats first. //FIXME there are some ratio_over chains, which end with empty ratio_with. // For example, XXX_extrusion_width parameters are not handled by get_abs_value correctly. this->set(opt_key, (opt->type() == coFloatOrPercent) ? new ConfigOptionFloat(rhs.get_abs_value(opt_key)) : opt->clone()); } } void PlaceholderParser::apply_env_variables() { for (char** env = environ; *env; ++ env) { if (strncmp(*env, "SLIC3R_", 7) == 0) { std::stringstream ss(*env); std::string key, value; std::getline(ss, key, '='); ss >> value; this->set(key, value); } } } namespace spirit = boost::spirit; namespace qi = boost::spirit::qi; namespace px = boost::phoenix; namespace client { template struct OptWithPos { OptWithPos() {} OptWithPos(ConfigOptionConstPtr opt, boost::iterator_range it_range) : opt(opt), it_range(it_range) {} ConfigOptionConstPtr opt = nullptr; boost::iterator_range it_range; }; template std::ostream& operator<<(std::ostream& os, OptWithPos const& opt) { os << std::string(opt.it_range.begin(), opt.it_range.end()); return os; } template struct expr { expr() { this->reset(); } explicit expr(bool b) : type(TYPE_BOOL) { data.b = b; } explicit expr(bool b, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_BOOL), it_range(it_begin, it_end) { data.b = b; } explicit expr(int i) : type(TYPE_INT) { data.i = i; } explicit expr(int i, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_INT), it_range(it_begin, it_end) { data.i = i; } explicit expr(double d) : type(TYPE_DOUBLE) { data.d = d; } explicit expr(double d, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_DOUBLE), it_range(it_begin, it_end) { data.d = d; } explicit expr(const char *s) : type(TYPE_STRING) { data.s = new std::string(s); } explicit expr(const std::string &s) : type(TYPE_STRING) { data.s = new std::string(s); } explicit expr(const std::string &s, const Iterator &it_begin, const Iterator &it_end) : type(TYPE_STRING), it_range(it_begin, it_end) { data.s = new std::string(s); } expr(const expr &rhs) : type(rhs.type), it_range(rhs.it_range) { if (rhs.type == TYPE_STRING) data.s = new std::string(*rhs.data.s); else data.set(rhs.data); } explicit expr(expr &&rhs) : type(rhs.type), it_range(rhs.it_range) { data.set(rhs.data); rhs.type = TYPE_EMPTY; } explicit expr(expr &&rhs, const Iterator &it_begin, const Iterator &it_end) : type(rhs.type), it_range(it_begin, it_end) { data.set(rhs.data); rhs.type = TYPE_EMPTY; } ~expr() { this->reset(); } expr &operator=(const expr &rhs) { this->type = rhs.type; this->it_range = rhs.it_range; if (rhs.type == TYPE_STRING) this->data.s = new std::string(*rhs.data.s); else this->data.set(rhs.data); return *this; } expr &operator=(expr &&rhs) { type = rhs.type; this->it_range = rhs.it_range; data.set(rhs.data); rhs.type = TYPE_EMPTY; return *this; } void reset() { if (this->type == TYPE_STRING) delete data.s; memset(data.raw, 0, sizeof(data.raw)); this->type = TYPE_EMPTY; } bool& b() { return data.b; } bool b() const { return data.b; } void set_b(bool v) { this->reset(); this->data.b = v; this->type = TYPE_BOOL; } int& i() { return data.i; } int i() const { return data.i; } void set_i(int v) { this->reset(); this->data.i = v; this->type = TYPE_INT; } int as_i() const { return (this->type == TYPE_INT) ? this->i() : int(this->d()); } double& d() { return data.d; } double d() const { return data.d; } void set_d(double v) { this->reset(); this->data.d = v; this->type = TYPE_DOUBLE; } double as_d() const { return (this->type == TYPE_DOUBLE) ? this->d() : double(this->i()); } std::string& s() { return *data.s; } const std::string& s() const { return *data.s; } void set_s(const std::string &s) { this->reset(); this->data.s = new std::string(s); this->type = TYPE_STRING; } void set_s(std::string &&s) { this->reset(); this->data.s = new std::string(std::move(s)); this->type = TYPE_STRING; } std::string to_string() const { std::string out; switch (type) { case TYPE_BOOL: out = boost::to_string(data.b); break; case TYPE_INT: out = boost::to_string(data.i); break; case TYPE_DOUBLE: out = boost::to_string(data.d); break; case TYPE_STRING: out = *data.s; break; default: break; } return out; } union Data { // Raw image of the other data members. // The C++ compiler will consider a possible aliasing of char* with any other union member, // therefore copying the raw data is safe. char raw[8]; bool b; int i; double d; std::string *s; // Copy the largest member variable through char*, which will alias with all other union members by default. void set(const Data &rhs) { memcpy(this->raw, rhs.raw, sizeof(rhs.raw)); } } data; enum Type { TYPE_EMPTY = 0, TYPE_BOOL, TYPE_INT, TYPE_DOUBLE, TYPE_STRING, }; Type type; // Range of input iterators covering this expression. // Used for throwing parse exceptions. boost::iterator_range it_range; expr unary_minus(const Iterator start_pos) const { switch (this->type) { case TYPE_INT : return expr(- this->i(), start_pos, this->it_range.end()); case TYPE_DOUBLE: return expr(- this->d(), start_pos, this->it_range.end()); default: this->throw_exception("Cannot apply unary minus operator."); } assert(false); // Suppress compiler warnings. return expr(); } expr unary_not(const Iterator start_pos) const { switch (this->type) { case TYPE_BOOL : return expr(! this->b(), start_pos, this->it_range.end()); default: this->throw_exception("Cannot apply a not operator."); } assert(false); // Suppress compiler warnings. return expr(); } expr &operator+=(const expr &rhs) { const char *err_msg = "Cannot multiply with non-numeric type."; this->throw_if_not_numeric(err_msg); rhs.throw_if_not_numeric(err_msg); if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) { double d = this->as_d() + rhs.as_d(); this->data.d = d; this->type = TYPE_DOUBLE; } else this->data.i += rhs.i(); this->it_range = boost::iterator_range(this->it_range.begin(), rhs.it_range.end()); return *this; } expr &operator-=(const expr &rhs) { const char *err_msg = "Cannot multiply with non-numeric type."; this->throw_if_not_numeric(err_msg); rhs.throw_if_not_numeric(err_msg); if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) { double d = this->as_d() - rhs.as_d(); this->data.d = d; this->type = TYPE_DOUBLE; } else this->data.i -= rhs.i(); this->it_range = boost::iterator_range(this->it_range.begin(), rhs.it_range.end()); return *this; } expr &operator*=(const expr &rhs) { const char *err_msg = "Cannot multiply with non-numeric type."; this->throw_if_not_numeric(err_msg); rhs.throw_if_not_numeric(err_msg); if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) { double d = this->as_d() * rhs.as_d(); this->data.d = d; this->type = TYPE_DOUBLE; } else this->data.i *= rhs.i(); this->it_range = boost::iterator_range(this->it_range.begin(), rhs.it_range.end()); return *this; } expr &operator/=(const expr &rhs) { this->throw_if_not_numeric("Cannot divide a non-numeric type."); rhs.throw_if_not_numeric("Cannot divide with a non-numeric type."); if ((this->type == TYPE_INT) ? (rhs.i() == 0) : (rhs.d() == 0.)) rhs.throw_exception("Division by zero"); if (this->type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) { double d = this->as_d() / rhs.as_d(); this->data.d = d; this->type = TYPE_DOUBLE; } else this->data.i /= rhs.i(); this->it_range = boost::iterator_range(this->it_range.begin(), rhs.it_range.end()); return *this; } static void to_string2(expr &self, std::string &out) { out = self.to_string(); } static void evaluate_boolean(expr &self, bool &out) { if (self.type != TYPE_BOOL) self.throw_exception("Not a boolean expression"); out = self.b(); } // Is lhs==rhs? Store the result into lhs. static void compare_op(expr &lhs, expr &rhs, char op) { bool value = false; if ((lhs.type == TYPE_INT || lhs.type == TYPE_DOUBLE) && (rhs.type == TYPE_INT || rhs.type == TYPE_DOUBLE)) { // Both types are numeric. value = (lhs.type == TYPE_DOUBLE || rhs.type == TYPE_DOUBLE) ? (lhs.as_d() == rhs.as_d()) : (lhs.i() == rhs.i()); } else if (lhs.type == TYPE_BOOL && rhs.type == TYPE_BOOL) { // Both type are bool. value = lhs.b() == rhs.b(); } else if (lhs.type == TYPE_STRING || rhs.type == TYPE_STRING) { // One type is string, the other could be converted to string. value = lhs.to_string() == rhs.to_string(); } else { boost::throw_exception(qi::expectation_failure( lhs.it_range.begin(), rhs.it_range.end(), spirit::info("Cannot compare the types."))); } lhs.type = TYPE_BOOL; lhs.data.b = (op == '=') ? value : !value; } static void equal(expr &lhs, expr &rhs) { compare_op(lhs, rhs, '='); } static void not_equal(expr &lhs, expr &rhs) { compare_op(lhs, rhs, '!'); } static void set_if(bool &cond, bool ¬_yet_consumed, std::string &str_in, std::string &str_out) { if (cond && not_yet_consumed) { str_out = str_in; not_yet_consumed = false; } } void throw_exception(const char *message) const { boost::throw_exception(qi::expectation_failure( this->it_range.begin(), this->it_range.end(), spirit::info(message))); } void throw_if_not_numeric(const char *message) const { if (this->type != TYPE_INT && this->type != TYPE_DOUBLE) this->throw_exception(message); } }; template std::ostream& operator<<(std::ostream &os, const expr &expression) { typedef expr Expr; os << std::string(expression.it_range.begin(), expression.it_range.end()) << " - "; switch (expression.type) { case Expr::TYPE_EMPTY: os << "empty"; break; case Expr::TYPE_BOOL: os << "bool (" << expression.b() << ")"; break; case Expr::TYPE_INT: os << "int (" << expression.i() << ")"; break; case Expr::TYPE_DOUBLE: os << "double (" << expression.d() << ")"; break; case Expr::TYPE_STRING: os << "string (" << expression.s() << ")"; break; default: os << "unknown"; }; return os; } struct MyContext { const PlaceholderParser *pp = nullptr; const DynamicConfig *config_override = nullptr; const size_t current_extruder_id = 0; const ConfigOption* resolve_symbol(const std::string &opt_key) const { const ConfigOption *opt = nullptr; if (config_override != nullptr) opt = config_override->option(opt_key); if (opt == nullptr) opt = pp->option(opt_key); return opt; } template static void legacy_variable_expansion( const MyContext *ctx, boost::iterator_range &opt_key, std::string &output) { std::string opt_key_str(opt_key.begin(), opt_key.end()); const ConfigOption *opt = ctx->resolve_symbol(opt_key_str); size_t idx = ctx->current_extruder_id; if (opt == nullptr) { // Check whether this is a legacy vector indexing. idx = opt_key_str.rfind('_'); if (idx != std::string::npos) { opt = ctx->resolve_symbol(opt_key_str.substr(0, idx)); if (opt != nullptr) { if (! opt->is_vector()) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Trying to index a scalar variable"))); char *endptr = nullptr; idx = strtol(opt_key_str.c_str() + idx + 1, &endptr, 10); if (endptr == nullptr || *endptr != 0) boost::throw_exception(qi::expectation_failure( opt_key.begin() + idx + 1, opt_key.end(), spirit::info("Invalid vector index"))); } } } if (opt == nullptr) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Variable does not exist"))); if (opt->is_scalar()) output = opt->serialize(); else { const ConfigOptionVectorBase *vec = static_cast(opt); if (vec->empty()) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Indexing an empty vector variable"))); output = vec->vserialize()[(idx >= vec->size()) ? 0 : idx]; } } template static void legacy_variable_expansion2( const MyContext *ctx, boost::iterator_range &opt_key, boost::iterator_range &opt_vector_index, std::string &output) { std::string opt_key_str(opt_key.begin(), opt_key.end()); const ConfigOption *opt = ctx->resolve_symbol(opt_key_str); if (opt == nullptr) { // Check whether the opt_key ends with '_'. if (opt_key_str.back() == '_') opt_key_str.resize(opt_key_str.size() - 1); opt = ctx->resolve_symbol(opt_key_str); } if (! opt->is_vector()) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Trying to index a scalar variable"))); const ConfigOptionVectorBase *vec = static_cast(opt); if (vec->empty()) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Indexing an empty vector variable"))); const ConfigOption *opt_index = ctx->resolve_symbol(std::string(opt_vector_index.begin(), opt_vector_index.end())); if (opt_index == nullptr) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Variable does not exist"))); if (opt_index->type() != coInt) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Indexing variable has to be integer"))); int idx = opt_index->getInt(); if (idx < 0) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Negative vector index"))); output = vec->vserialize()[(idx >= (int)vec->size()) ? 0 : idx]; } template static void resolve_variable( const MyContext *ctx, boost::iterator_range &opt_key, OptWithPos &output) { const ConfigOption *opt = ctx->resolve_symbol(std::string(opt_key.begin(), opt_key.end())); if (opt == nullptr) boost::throw_exception(qi::expectation_failure( opt_key.begin(), opt_key.end(), spirit::info("Not a variable name"))); output.opt = opt; output.it_range = opt_key; } template static void scalar_variable_reference( const MyContext *ctx, OptWithPos &opt, expr &output) { if (opt.opt->is_vector()) boost::throw_exception(qi::expectation_failure( opt.it_range.begin(), opt.it_range.end(), spirit::info("Referencing a scalar variable in a vector context"))); switch (opt.opt->type()) { case coFloat: output.set_d(opt.opt->getFloat()); break; case coInt: output.set_i(opt.opt->getInt()); break; case coString: output.set_s(static_cast(opt.opt)->value); break; case coPercent: output.set_d(opt.opt->getFloat()); break; case coPoint: output.set_s(opt.opt->serialize()); break; case coBool: output.set_b(opt.opt->getBool()); break; case coFloatOrPercent: boost::throw_exception(qi::expectation_failure( opt.it_range.begin(), opt.it_range.end(), spirit::info("FloatOrPercent variables are not supported"))); default: boost::throw_exception(qi::expectation_failure( opt.it_range.begin(), opt.it_range.end(), spirit::info("Unknown scalar variable type"))); } output.it_range = opt.it_range; } template static void vector_variable_reference( const MyContext *ctx, OptWithPos &opt, int &index, Iterator it_end, expr &output) { if (opt.opt->is_scalar()) boost::throw_exception(qi::expectation_failure( opt.it_range.begin(), opt.it_range.end(), spirit::info("Referencing a vector variable in a scalar context"))); const ConfigOptionVectorBase *vec = static_cast(opt.opt); if (vec->empty()) boost::throw_exception(qi::expectation_failure( opt.it_range.begin(), opt.it_range.end(), spirit::info("Indexing an empty vector variable"))); size_t idx = (index < 0) ? 0 : (index >= int(vec->size())) ? 0 : size_t(index); switch (opt.opt->type()) { case coFloats: output.set_d(static_cast(opt.opt)->values[idx]); break; case coInts: output.set_i(static_cast(opt.opt)->values[idx]); break; case coStrings: output.set_s(static_cast(opt.opt)->values[idx]); break; case coPercents: output.set_d(static_cast(opt.opt)->values[idx]); break; case coPoints: output.set_s(static_cast(opt.opt)->values[idx].dump_perl()); break; case coBools: output.set_b(static_cast(opt.opt)->values[idx] != 0); break; default: boost::throw_exception(qi::expectation_failure( opt.it_range.begin(), opt.it_range.end(), spirit::info("Unknown vector variable type"))); } output.it_range = boost::iterator_range(opt.it_range.begin(), it_end); } // Verify that the expression returns an integer, which may be used // to address a vector. template static void evaluate_index(expr &expr_index, int &output) { if (expr_index.type != expr::TYPE_INT) expr_index.throw_exception("Non-integer index is not allowed to address a vector variable."); output = expr_index.i(); } }; // For debugging the boost::spirit parsers. Print out the string enclosed in it_range. template std::ostream& operator<<(std::ostream& os, const boost::iterator_range &it_range) { os << std::string(it_range.begin(), it_range.end()); return os; } // Disable parsing int numbers (without decimals) and Inf/NaN symbols by the double parser. struct strict_real_policies_without_nan_inf : public qi::strict_real_policies { template static bool parse_nan(It&, It const&, Attr&) { return false; } template static bool parse_inf(It&, It const&, Attr&) { return false; } }; /////////////////////////////////////////////////////////////////////////// // Our calculator grammar /////////////////////////////////////////////////////////////////////////// // Inspired by the C grammar rules https://www.lysator.liu.se/c/ANSI-C-grammar-y.html template struct calculator : qi::grammar { calculator() : calculator::base_type(start) { using namespace qi::labels; qi::alpha_type alpha; qi::alnum_type alnum; qi::eps_type eps; qi::raw_type raw; qi::lit_type lit; qi::lexeme_type lexeme; qi::no_skip_type no_skip; qi::real_parser strict_double; spirit::ascii::char_type char_; spirit::bool_type bool_; spirit::int_type int_; spirit::double_type double_; spirit::ascii::string_type string; spirit::repository::qi::iter_pos_type iter_pos; auto kw = spirit::repository::qi::distinct(qi::copy(alnum | '_')); qi::_val_type _val; qi::_1_type _1; qi::_2_type _2; qi::_a_type _a; qi::_b_type _b; qi::_r1_type _r1; // Starting symbol of the grammer. // The leading eps is required by the "expectation point" operator ">". // Without it, some of the errors would not trigger the error handler. start = eps > text_block(_r1); start.name("start"); text_block = *( text [_val+=_1] // Allow back tracking after '{' in case of a text_block embedded inside a condition. // In that case the inner-most {else} wins and the {if}/{elsif}/{else} shall be paired. // {elsif}/{else} without an {if} will be allowed to back track from the embedded text_block. | (lit('{') >> macro(_r1) [_val+=_1] > '}') | (lit('[') > legacy_variable_expansion(_r1) [_val+=_1] > ']') ); text_block.name("text_block"); // Free-form text up to a first brace, including spaces and newlines. // The free-form text will be inserted into the processed text without a modification. text = no_skip[raw[+(char_ - '[' - '{')]]; text.name("text"); // New style of macro expansion. // The macro expansion may contain numeric or string expressions, ifs and cases. macro = (kw["if"] > if_else_output(_r1) [_val = _1]) | (kw["switch"] > switch_output(_r1) [_val = _1]) | additive_expression(_r1) [ px::bind(&expr::to_string2, _1, _val) ]; macro.name("macro"); // An if expression enclosed in {} (the outmost {} are already parsed by the caller). if_else_output = eps[_b=true] > bool_expr_eval(_r1)[_a=_1] > '}' > text_block(_r1)[px::bind(&expr::set_if, _a, _b, _1, _val)] > '{' > *(kw["elsif"] > bool_expr_eval(_r1)[_a=_1] > '}' > text_block(_r1)[px::bind(&expr::set_if, _a, _b, _1, _val)] > '{') > -(kw["else"] > lit('}') > text_block(_r1)[px::bind(&expr::set_if, _b, _b, _1, _val)] > '{') > kw["endif"]; if_else_output.name("if_else_output"); // A switch expression enclosed in {} (the outmost {} are already parsed by the caller). /* switch_output = eps[_b=true] > omit[expr(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr::set_if_equal, _a, _b, _1, _val)] > '{' > *("elsif" > omit[bool_expr_eval(_r1)[_a=_1]] > '}' > text_block(_r1)[px::bind(&expr::set_if, _a, _b, _1, _val)]) >> -("else" > '}' >> text_block(_r1)[px::bind(&expr::set_if, _b, _b, _1, _val)]) > "endif"; */ // Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index]. legacy_variable_expansion = (identifier >> &lit(']')) [ px::bind(&MyContext::legacy_variable_expansion, _r1, _1, _val) ] | (identifier > lit('[') > identifier > ']') [ px::bind(&MyContext::legacy_variable_expansion2, _r1, _1, _2, _val) ] ; legacy_variable_expansion.name("legacy_variable_expansion"); identifier = ! kw[keywords] >> raw[lexeme[(alpha | '_') >> *(alnum | '_')]]; identifier.name("identifier"); bool_expr = additive_expression(_r1) [_val = _1] >> *( ("==" > additive_expression(_r1) ) [px::bind(&expr::equal, _val, _1)] | ("!=" > additive_expression(_r1) ) [px::bind(&expr::not_equal, _val, _1)] | ("<>" > additive_expression(_r1) ) [px::bind(&expr::not_equal, _val, _1)] ); bool_expr.name("bool expression"); // Evaluate a boolean expression stored as expr into a boolean value. // Throw if the bool_expr does not produce a expr of boolean type. bool_expr_eval = bool_expr(_r1) [ px::bind(&expr::evaluate_boolean, _1, _val) ]; bool_expr_eval.name("bool_expr_eval"); additive_expression = term(_r1) [_val = _1] >> *( (lit('+') > term(_r1) ) [_val += _1] | (lit('-') > term(_r1) ) [_val -= _1] ); additive_expression.name("additive_expression"); term = factor(_r1) [_val = _1] >> *( (lit('*') > factor(_r1) ) [_val *= _1] | (lit('/') > factor(_r1) ) [_val /= _1] ); term.name("term"); struct FactorActions { static void set_start_pos(Iterator &start_pos, expr &out) { out.it_range = boost::iterator_range(start_pos, start_pos); } static void int_(int &value, Iterator &end_pos, expr &out) { out = expr(value, out.it_range.begin(), end_pos); } static void double_(double &value, Iterator &end_pos, expr &out) { out = expr(value, out.it_range.begin(), end_pos); } static void bool_(bool &value, Iterator &end_pos, expr &out) { out = expr(value, out.it_range.begin(), end_pos); } static void string_(boost::iterator_range &it_range, expr &out) { out = expr(std::string(it_range.begin() + 1, it_range.end() - 1), it_range.begin(), it_range.end()); } static void expr_(expr &value, Iterator &end_pos, expr &out) { out = expr(std::move(value), out.it_range.begin(), end_pos); } static void minus_(expr &value, expr &out) { out = value.unary_minus(out.it_range.begin()); } static void not_(expr &value, expr &out) { out = value.unary_not(out.it_range.begin()); } }; factor = iter_pos[px::bind(&FactorActions::set_start_pos, _1, _val)] >> ( scalar_variable_reference(_r1) [ _val = _1 ] | (lit('(') > additive_expression(_r1) > ')' > iter_pos) [ px::bind(&FactorActions::expr_, _1, _2, _val) ] | (lit('-') > factor(_r1) ) [ px::bind(&FactorActions::minus_, _1, _val) ] | (lit('+') > factor(_r1) > iter_pos) [ px::bind(&FactorActions::expr_, _1, _2, _val) ] | ((kw["not"] | '!') > factor(_r1) > iter_pos) [ px::bind(&FactorActions::not_, _1, _val) ] | (strict_double > iter_pos) [ px::bind(&FactorActions::double_, _1, _2, _val) ] | (int_ > iter_pos) [ px::bind(&FactorActions::int_, _1, _2, _val) ] | (kw[bool_] > iter_pos) [ px::bind(&FactorActions::bool_, _1, _2, _val) ] | raw[lexeme['"' > *((char_ - char_('\\') - char_('"')) | ('\\' > char_)) > '"']] [ px::bind(&FactorActions::string_, _1, _val) ] ); factor.name("factor"); scalar_variable_reference = variable_reference(_r1)[_a=_1] >> ( ('[' > additive_expression(_r1)[px::bind(&MyContext::evaluate_index, _1, _b)] > ']' > iter_pos[px::bind(&MyContext::vector_variable_reference, _r1, _a, _b, _1, _val)]) | eps[px::bind(&MyContext::scalar_variable_reference, _r1, _a, _val)] ); scalar_variable_reference.name("scalar variable reference"); variable_reference = identifier [ px::bind(&MyContext::resolve_variable, _r1, _1, _val) ]; variable_reference.name("variable reference"); /* qi::on_error(start, phx::ref(std::cout) << "Error! Expecting " << qi::_4 << " here: '" << px::construct(qi::_3, qi::_2) << "'\n" ); */ keywords.add ("and") ("if") //("inf") ("else") ("elsif") ("endif") ("false") ("not") ("or") ("true"); if (0) { debug(start); debug(text); debug(text_block); debug(macro); debug(if_else_output); debug(switch_output); debug(legacy_variable_expansion); debug(identifier); debug(bool_expr); debug(bool_expr_eval); debug(additive_expression); debug(term); debug(factor); debug(scalar_variable_reference); debug(variable_reference); } } // The start of the grammar. qi::rule start; // A free-form text. qi::rule text; // A free-form text, possibly empty, possibly containing macro expansions. qi::rule text_block; // Statements enclosed in curely braces {} qi::rule macro; // Legacy variable expansion of the original Slic3r, in the form of [scalar_variable] or [vector_variable_index]. qi::rule legacy_variable_expansion; // Parsed identifier name. qi::rule(), spirit::ascii::space_type> identifier; // Math expression consisting of +- operators over terms. qi::rule(const MyContext*), spirit::ascii::space_type> additive_expression; // Boolean expressions over expressions. qi::rule(const MyContext*), spirit::ascii::space_type> bool_expr; // Evaluate boolean expression into bool. qi::rule bool_expr_eval; // Math expression consisting of */ operators over factors. qi::rule(const MyContext*), spirit::ascii::space_type> term; // Number literals, functions, braced expressions, variable references, variable indexing references. qi::rule(const MyContext*), spirit::ascii::space_type> factor; // Reference of a scalar variable, or reference to a field of a vector variable. qi::rule(const MyContext*), qi::locals, int>, spirit::ascii::space_type> scalar_variable_reference; // Rule to translate an identifier to a ConfigOption, or to fail. qi::rule(const MyContext*), spirit::ascii::space_type> variable_reference; qi::rule, spirit::ascii::space_type> if_else_output; qi::rule, bool, std::string>, spirit::ascii::space_type> switch_output; qi::symbols keywords; }; } struct printer { typedef spirit::utf8_string string; void element(string const& tag, string const& value, int depth) const { for (int i = 0; i < (depth*4); ++i) // indent to depth std::cout << ' '; std::cout << "tag: " << tag; if (value != "") std::cout << ", value: " << value; std::cout << std::endl; } }; void print_info(spirit::info const& what) { using spirit::basic_info_walker; printer pr; basic_info_walker walker(pr, what.tag, 0); boost::apply_visitor(walker, what.value); } std::string PlaceholderParser::process(const std::string &templ, unsigned int current_extruder_id, const DynamicConfig *config_override) const { typedef std::string::const_iterator iterator_type; typedef client::calculator calculator; spirit::ascii::space_type space; // Our skipper calculator calc; // Our grammar std::string::const_iterator iter = templ.begin(); std::string::const_iterator end = templ.end(); //std::string result; std::string result; bool r = false; try { client::MyContext context; context.pp = this; context.config_override = config_override; r = phrase_parse(iter, end, calc(&context), space, result); } catch (qi::expectation_failure const& x) { std::cout << "expected: "; print_info(x.what_); std::cout << "got: \"" << std::string(x.first, x.last) << '"' << std::endl; } if (r && iter == end) { // std::cout << "-------------------------\n"; // std::cout << "Parsing succeeded\n"; // std::cout << "result = " << result << std::endl; // std::cout << "-------------------------\n"; } else { std::string rest(iter, end); std::cout << "-------------------------\n"; std::cout << "Parsing failed\n"; std::cout << "stopped at: \" " << rest << "\"\n"; std::cout << "source: \n" << templ; std::cout << "-------------------------\n"; } return result; } }