package Slic3r::Geometry; use strict; use warnings; require Exporter; our @ISA = qw(Exporter); # Exported by this module. The last section starting with convex_hull is exported by Geometry.xsp our @EXPORT_OK = qw( PI epsilon angle3points collinear dot line_intersection normalize point_in_segment polyline_lines polygon_is_convex polygon_segment_having_point scale unscale scaled_epsilon size_2D X Y Z convex_hull chained_path_from deg2rad rad2deg rad2deg_dir ); use constant PI => 4 * atan2(1, 1); use constant A => 0; use constant B => 1; use constant X1 => 0; use constant Y1 => 1; use constant X2 => 2; use constant Y2 => 3; sub epsilon () { 1E-4 } sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR } sub scale ($) { $_[0] / &Slic3r::SCALING_FACTOR } sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR } # used by geometry.t, polygon_segment_having_point sub point_in_segment { my ($point, $line) = @_; my ($x, $y) = @$point; my $line_p = $line->pp; my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X]; my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y]; # check whether the point is in the segment bounding box return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon) && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon); # if line is vertical, check whether point's X is the same as the line if ($line_p->[A][X] == $line_p->[B][X]) { return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0; } # calculate the Y in line at X of the point my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y]) * ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]); return abs($y3 - $y) < epsilon ? 1 : 0; } # used by geometry.t sub polyline_lines { my ($polyline) = @_; my @points = @$polyline; return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1; } # given a $polygon, return the (first) segment having $point # used by geometry.t sub polygon_segment_having_point { my ($polygon, $point) = @_; foreach my $line (@{ $polygon->lines }) { return $line if point_in_segment($point, $line); } return undef; } # polygon must be simple (non complex) and ccw sub polygon_is_convex { my ($points) = @_; for (my $i = 0; $i <= $#$points; $i++) { my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]); return 0 if $angle < PI; } return 1; } sub normalize { my ($line) = @_; my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) ) or return [0, 0, 0]; # to avoid illegal division by zero return [ map $_ / $len, @$line ]; } # 2D dot product # used by 3DScene.pm sub dot { my ($u, $v) = @_; return $u->[X] * $v->[X] + $u->[Y] * $v->[Y]; } sub line_intersection { my ($line1, $line2, $require_crossing) = @_; $require_crossing ||= 0; my $intersection = _line_intersection(map @$_, @$line1, @$line2); return (ref $intersection && $intersection->[1] == $require_crossing) ? $intersection->[0] : undef; } # Used by test cases. sub collinear { my ($line1, $line2, $require_overlapping) = @_; my $intersection = _line_intersection(map @$_, @$line1, @$line2); return 0 unless !ref($intersection) && ($intersection eq 'parallel collinear' || ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon)); if ($require_overlapping) { my @box_a = bounding_box([ $line1->[0], $line1->[1] ]); my @box_b = bounding_box([ $line2->[0], $line2->[1] ]); return 0 unless bounding_box_intersect( 2, @box_a, @box_b ); } return 1; } sub _line_intersection { my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_; my ($x, $y); # The as-yet-undetermined intersection point. my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences my $dx10 = $x1 - $x0; # between the points P and Q. my $dy32 = $y3 - $y2; my $dx32 = $x3 - $x2; my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"? my $dx10z = abs( $dx10 ) < epsilon; my $dy32z = abs( $dy32 ) < epsilon; my $dx32z = abs( $dx32 ) < epsilon; my $dyx10; # The slopes. my $dyx32; $dyx10 = $dy10 / $dx10 unless $dx10z; $dyx32 = $dy32 / $dx32 unless $dx32z; # Now we know all differences and the slopes; # we can detect horizontal/vertical special cases. # E.g., slope = 0 means a horizontal line. unless ( defined $dyx10 or defined $dyx32 ) { return "parallel vertical"; } elsif ( $dy10z and not $dy32z ) { # First line horizontal. $y = $y0; $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32; } elsif ( not $dy10z and $dy32z ) { # Second line horizontal. $y = $y2; $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10; } elsif ( $dx10z and not $dx32z ) { # First line vertical. $x = $x0; $y = $y2 + $dyx32 * ( $x - $x2 ); } elsif ( not $dx10z and $dx32z ) { # Second line vertical. $x = $x2; $y = $y0 + $dyx10 * ( $x - $x0 ); } elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) { # The slopes are suspiciously close to each other. # Either we have parallel collinear or just parallel lines. # The bounding box checks have already weeded the cases # "parallel horizontal" and "parallel vertical" away. my $ya = $y0 - $dyx10 * $x0; my $yb = $y2 - $dyx32 * $x2; return "parallel collinear" if abs( $ya - $yb ) < epsilon; return "parallel"; } else { # None of the special cases matched. # We have a "honest" line intersection. $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32); $y = $y0 + $dyx10 * ($x - $x0); } my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1); my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1); return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1]; } # 2D sub bounding_box { my ($points) = @_; my @x = map $_->x, @$points; my @y = map $_->y, @$points; #,, my @bb = (undef, undef, undef, undef); for (0..$#x) { $bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1]; $bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2]; $bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1]; $bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2]; } return @bb[X1,Y1,X2,Y2]; } # used by ExPolygon::size sub size_2D { my @bounding_box = bounding_box(@_); return ( ($bounding_box[X2] - $bounding_box[X1]), ($bounding_box[Y2] - $bounding_box[Y1]), ); } # Used by sub collinear, which is used by test cases. # bounding_box_intersect($d, @a, @b) # Return true if the given bounding boxes @a and @b intersect # in $d dimensions. Used by sub collinear. sub bounding_box_intersect { my ( $d, @bb ) = @_; # Number of dimensions and box coordinates. my @aa = splice( @bb, 0, 2 * $d ); # The first box. # (@bb is the second one.) # Must intersect in all dimensions. for ( my $i_min = 0; $i_min < $d; $i_min++ ) { my $i_max = $i_min + $d; # The index for the maximum. return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ]; return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ]; } return 1; } # Used by test cases. # this assumes a CCW rotation from $p2 to $p3 around $p1 sub angle3points { my ($p1, $p2, $p3) = @_; # p1 is the center my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y]) - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]); # we only want to return only positive angles return $angle <= 0 ? $angle + 2*PI() : $angle; } 1;