# Implements pure perl packages # # Slic3r::GUI::3DScene::Base; # Slic3r::GUI::3DScene; # # Slic3r::GUI::Plater::3D derives from Slic3r::GUI::3DScene, # Slic3r::GUI::Plater::3DPreview, Slic3r::GUI::Plater::3DToolpaths, # Slic3r::GUI::Plater::ObjectCutDialog and Slic3r::GUI::Plater::ObjectPartsPanel # own $self->{canvas} of the Slic3r::GUI::3DScene type. # # Therefore the 3DScene supports renderng of STLs, extrusions and cutting planes, # and camera manipulation. package Slic3r::GUI::3DScene::Base; use strict; use warnings; use Wx qw(:timer :bitmap :icon :dialog); use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS EVT_TIMER); # must load OpenGL *before* Wx::GLCanvas use OpenGL qw(:glconstants :glfunctions :glufunctions :gluconstants); use base qw(Wx::GLCanvas Class::Accessor); use Math::Trig qw(asin tan); use List::Util qw(reduce min max first); use Slic3r::Geometry qw(X Y Z MIN MAX triangle_normal normalize deg2rad tan scale unscale scaled_epsilon); use Slic3r::Geometry::Clipper qw(offset_ex intersection_pl); use Wx::GLCanvas qw(:all); use Slic3r::Geometry qw(PI); # _dirty: boolean flag indicating, that the screen has to be redrawn on EVT_IDLE. # volumes: reference to vector of Slic3r::GUI::3DScene::Volume. # _camera_type: 'perspective' or 'ortho' __PACKAGE__->mk_accessors( qw(_quat _dirty init enable_picking enable_moving use_plain_shader on_viewport_changed on_hover on_select on_double_click on_right_click on_move on_model_update volumes _sphi _stheta cutting_plane_z cut_lines_vertices bed_shape bed_triangles bed_grid_lines bed_polygon background origin _mouse_pos _hover_volume_idx _drag_volume_idx _drag_start_pos _drag_volume_center_offset _drag_start_xy _dragged _layer_height_edited _camera_type _camera_target _camera_distance _zoom ) ); use constant TRACKBALLSIZE => 0.8; use constant TURNTABLE_MODE => 1; use constant GROUND_Z => -0.02; # For mesh selection: Not selected - bright yellow. use constant DEFAULT_COLOR => [1,1,0]; # For mesh selection: Selected - bright green. use constant SELECTED_COLOR => [0,1,0,1]; # For mesh selection: Mouse hovers over the object, but object not selected yet - dark green. use constant HOVER_COLOR => [0.4,0.9,0,1]; # phi / theta angles to orient the camera. use constant VIEW_DEFAULT => [45.0,45.0]; use constant VIEW_LEFT => [90.0,90.0]; use constant VIEW_RIGHT => [-90.0,90.0]; use constant VIEW_TOP => [0.0,0.0]; use constant VIEW_BOTTOM => [0.0,180.0]; use constant VIEW_FRONT => [0.0,90.0]; use constant VIEW_REAR => [180.0,90.0]; use constant MANIPULATION_IDLE => 0; use constant MANIPULATION_DRAGGING => 1; use constant MANIPULATION_LAYER_HEIGHT => 2; use constant GIMBALL_LOCK_THETA_MAX => 170; use constant VARIABLE_LAYER_THICKNESS_BAR_WIDTH => 70; use constant VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT => 22; # make OpenGL::Array thread-safe { no warnings 'redefine'; *OpenGL::Array::CLONE_SKIP = sub { 1 }; } sub new { my ($class, $parent) = @_; # We can only enable multi sample anti aliasing wih wxWidgets 3.0.3 and with a hacked Wx::GLCanvas, # which exports some new WX_GL_XXX constants, namely WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES. my $can_multisample = Wx::wxVERSION >= 3.000003 && defined Wx::GLCanvas->can('WX_GL_SAMPLE_BUFFERS') && defined Wx::GLCanvas->can('WX_GL_SAMPLES'); my $attrib = [WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 24]; if ($can_multisample) { # Request a window with multi sampled anti aliasing. This is a new feature in Wx 3.0.3 (backported from 3.1.0). # Use eval to avoid compilation, if the subs WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES are missing. eval 'push(@$attrib, (WX_GL_SAMPLE_BUFFERS, 1, WX_GL_SAMPLES, 4));'; } # wxWidgets expect the attrib list to be ended by zero. push(@$attrib, 0); # we request a depth buffer explicitely because it looks like it's not created by # default on Linux, causing transparency issues my $self = $class->SUPER::new($parent, -1, Wx::wxDefaultPosition, Wx::wxDefaultSize, 0, "", $attrib); if (Wx::wxVERSION >= 3.000003) { # Wx 3.0.3 contains an ugly hack to support some advanced OpenGL attributes through the attribute list. # The attribute list is transferred between the wxGLCanvas and wxGLContext constructors using a single static array s_wglContextAttribs. # Immediatelly force creation of the OpenGL context to consume the static variable s_wglContextAttribs. $self->GetContext(); } $self->background(1); $self->_quat((0, 0, 0, 1)); $self->_stheta(45); $self->_sphi(45); $self->_zoom(1); $self->use_plain_shader(0); # Collection of GLVolume objects $self->volumes(Slic3r::GUI::_3DScene::GLVolume::Collection->new); # 3D point in model space $self->_camera_type('ortho'); # $self->_camera_type('perspective'); $self->_camera_target(Slic3r::Pointf3->new(0,0,0)); $self->_camera_distance(0.); $self->layer_editing_enabled(0); $self->{layer_height_edit_band_width} = 2.; $self->{layer_height_edit_strength} = 0.005; $self->{layer_height_edit_last_object_id} = -1; $self->{layer_height_edit_last_z} = 0.; $self->{layer_height_edit_last_action} = 0; $self->reset_objects; EVT_PAINT($self, sub { my $dc = Wx::PaintDC->new($self); $self->Render($dc); }); EVT_SIZE($self, sub { $self->_dirty(1) }); EVT_IDLE($self, sub { return unless $self->_dirty; return if !$self->IsShownOnScreen; $self->Resize( $self->GetSizeWH ); $self->Refresh; }); EVT_MOUSEWHEEL($self, \&mouse_wheel_event); EVT_MOUSE_EVENTS($self, \&mouse_event); $self->{layer_height_edit_timer_id} = &Wx::NewId(); $self->{layer_height_edit_timer} = Wx::Timer->new($self, $self->{layer_height_edit_timer_id}); EVT_TIMER($self, $self->{layer_height_edit_timer_id}, sub { my ($self, $event) = @_; return if $self->_layer_height_edited != 1; return if $self->{layer_height_edit_last_object_id} == -1; $self->_variable_layer_thickness_action(undef); }); return $self; } sub Destroy { my ($self) = @_; $self->{layer_height_edit_timer}->Stop; $self->DestroyGL; return $self->SUPER::Destroy; } sub layer_editing_enabled { my ($self, $value) = @_; if (@_ == 2) { $self->{layer_editing_enabled} = $value; if ($value) { if (! $self->{layer_editing_initialized}) { # Enabling the layer editing for the first time. This triggers compilation of the necessary OpenGL shaders. # If compilation fails, a message box is shown with the error codes. $self->SetCurrent($self->GetContext); my $shader = new Slic3r::GUI::_3DScene::GLShader; my $error_message; if (! $shader->load($self->_fragment_shader_variable_layer_height, $self->_vertex_shader_variable_layer_height)) { # Compilation or linking of the shaders failed. $error_message = "Cannot compile an OpenGL Shader, therefore the Variable Layer Editing will be disabled.\n\n" . $shader->last_error; $shader = undef; } else { $self->{layer_height_edit_shader} = $shader; ($self->{layer_preview_z_texture_id}) = glGenTextures_p(1); glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id}); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); glBindTexture(GL_TEXTURE_2D, 0); } if (defined($error_message)) { # Don't enable the layer editing tool. $self->{layer_editing_enabled} = 0; # 2 means failed $self->{layer_editing_initialized} = 2; # Show the error message. Wx::MessageBox($error_message, "Slic3r Error", wxOK | wxICON_EXCLAMATION, $self); } else { $self->{layer_editing_initialized} = 1; } } elsif ($self->{layer_editing_initialized} == 2) { # Initilization failed before. Don't try to initialize and disable layer editing. $self->{layer_editing_enabled} = 0; } } } return $self->{layer_editing_enabled}; } sub layer_editing_allowed { my ($self) = @_; # Allow layer editing if either the shaders were not initialized yet and we don't know # whether it will be possible to initialize them, # or if the initialization was done already and it failed. return ! (defined($self->{layer_editing_initialized}) && $self->{layer_editing_initialized} == 2); } sub _first_selected_object_id_for_variable_layer_height_editing { my ($self) = @_; for my $i (0..$#{$self->volumes}) { if ($self->volumes->[$i]->selected) { my $object_id = int($self->volumes->[$i]->select_group_id / 1000000); # Objects with object_id >= 1000 have a specific meaning, for example the wipe tower proxy. return $object_id if $object_id < 10000; } } return -1; } # Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen. sub _variable_layer_thickness_bar_rect_screen { my ($self) = @_; my ($cw, $ch) = $self->GetSizeWH; return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0, $cw, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT); } sub _variable_layer_thickness_bar_rect_viewport { my ($self) = @_; my ($cw, $ch) = $self->GetSizeWH; return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom, $cw/(2*$self->_zoom), $ch/(2*$self->_zoom)); } # Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen. sub _variable_layer_thickness_reset_rect_screen { my ($self) = @_; my ($cw, $ch) = $self->GetSizeWH; return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, $cw, $ch); } sub _variable_layer_thickness_reset_rect_viewport { my ($self) = @_; my ($cw, $ch) = $self->GetSizeWH; return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, -$ch/(2*$self->_zoom), $cw/(2*$self->_zoom), (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom); } sub _variable_layer_thickness_bar_rect_mouse_inside { my ($self, $mouse_evt) = @_; my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen; return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom; } sub _variable_layer_thickness_reset_rect_mouse_inside { my ($self, $mouse_evt) = @_; my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_reset_rect_screen; return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom; } sub _variable_layer_thickness_bar_mouse_cursor_z { my ($self, $object_idx, $mouse_evt) = @_; my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen; return unscale($self->{print}->get_object($object_idx)->size->z) * ($bar_bottom - $mouse_evt->GetY - 1.) / ($bar_bottom - $bar_top); } sub _variable_layer_thickness_bar_mouse_cursor_z_relative { my ($self) = @_; my $mouse_pos = $self->ScreenToClientPoint(Wx::GetMousePosition()); my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen; return ($mouse_pos->x >= $bar_left && $mouse_pos->x <= $bar_right && $mouse_pos->y >= $bar_top && $mouse_pos->y <= $bar_bottom) ? # Inside the bar. ($bar_bottom - $mouse_pos->y - 1.) / ($bar_bottom - $bar_top - 1) : # Outside the bar. -1000.; } sub _variable_layer_thickness_action { my ($self, $mouse_event, $do_modification) = @_; # A volume is selected. Test, whether hovering over a layer thickness bar. if (defined($mouse_event)) { $self->{layer_height_edit_last_z} = $self->_variable_layer_thickness_bar_mouse_cursor_z($self->{layer_height_edit_last_object_id}, $mouse_event); $self->{layer_height_edit_last_action} = $mouse_event->ShiftDown ? ($mouse_event->RightIsDown ? 3 : 2) : ($mouse_event->RightIsDown ? 0 : 1); } if ($self->{layer_height_edit_last_object_id} != -1) { # Mark the volume as modified, so Print will pick its layer height profile? Where to mark it? # Start a timer to refresh the print? schedule_background_process() ? $self->{print}->get_object($self->{layer_height_edit_last_object_id})->adjust_layer_height_profile( $self->{layer_height_edit_last_z}, $self->{layer_height_edit_strength}, $self->{layer_height_edit_band_width}, $self->{layer_height_edit_last_action}); $self->volumes->[$self->{layer_height_edit_last_object_id}]->generate_layer_height_texture( $self->{print}->get_object($self->{layer_height_edit_last_object_id}), 1); $self->Refresh; # Automatic action on mouse down with the same coordinate. $self->{layer_height_edit_timer}->Start(100, wxTIMER_CONTINUOUS); } } sub mouse_event { my ($self, $e) = @_; my $pos = Slic3r::Pointf->new($e->GetPositionXY); my $object_idx_selected = $self->{layer_height_edit_last_object_id} = ($self->layer_editing_enabled && $self->{print}) ? $self->_first_selected_object_id_for_variable_layer_height_editing : -1; if ($e->Entering && &Wx::wxMSW) { # wxMSW needs focus in order to catch mouse wheel events $self->SetFocus; $self->_drag_start_xy(undef); } elsif ($e->LeftDClick) { if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) { } elsif ($self->on_double_click) { $self->on_double_click->(); } } elsif ($e->LeftDown || $e->RightDown) { # If user pressed left or right button we first check whether this happened # on a volume or not. my $volume_idx = $self->_hover_volume_idx // -1; $self->_layer_height_edited(0); if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) { # A volume is selected and the mouse is hovering over a layer thickness bar. # Start editing the layer height. $self->_layer_height_edited(1); $self->_variable_layer_thickness_action($e); } elsif ($object_idx_selected != -1 && $self->_variable_layer_thickness_reset_rect_mouse_inside($e)) { $self->{print}->get_object($self->{layer_height_edit_last_object_id})->reset_layer_height_profile; # Index 2 means no editing, just wait for mouse up event. $self->_layer_height_edited(2); $self->Refresh; $self->Update; } else { # Select volume in this 3D canvas. # Don't deselect a volume if layer editing is enabled. We want the object to stay selected # during the scene manipulation. if ($self->enable_picking && ($volume_idx != -1 || ! $self->layer_editing_enabled)) { $self->deselect_volumes; $self->select_volume($volume_idx); if ($volume_idx != -1) { my $group_id = $self->volumes->[$volume_idx]->select_group_id; my @volumes; if ($group_id != -1) { $self->select_volume($_) for grep $self->volumes->[$_]->select_group_id == $group_id, 0..$#{$self->volumes}; } } $self->Refresh; $self->Update; } # propagate event through callback $self->on_select->($volume_idx) if $self->on_select; if ($volume_idx != -1) { if ($e->LeftDown && $self->enable_moving) { # The mouse_to_3d gets the Z coordinate from the Z buffer at the screen coordinate $pos->x,y, # an converts the screen space coordinate to unscaled object space. my $pos3d = $self->mouse_to_3d(@$pos); # Only accept the initial position, if it is inside the volume bounding box. my $volume_bbox = $self->volumes->[$volume_idx]->transformed_bounding_box; $volume_bbox->offset(0.01); if ($volume_bbox->contains_point($pos3d)) { # The dragging operation is initiated. $self->_drag_volume_idx($volume_idx); $self->_drag_start_pos($pos3d); # Remember the shift to to the object center. The object center will later be used # to limit the object placement close to the bed. $self->_drag_volume_center_offset($pos3d->vector_to($volume_bbox->center)); } } elsif ($e->RightDown) { # if right clicking on volume, propagate event through callback $self->on_right_click->($e->GetPosition) if $self->on_right_click; } } } } elsif ($e->Dragging && $e->LeftIsDown && ! $self->_layer_height_edited && defined($self->_drag_volume_idx)) { # Get new position at the same Z of the initial click point. my $cur_pos = Slic3r::Linef3->new( $self->mouse_to_3d($e->GetX, $e->GetY, 0), $self->mouse_to_3d($e->GetX, $e->GetY, 1)) ->intersect_plane($self->_drag_start_pos->z); # Clip the new position, so the object center remains close to the bed. { $cur_pos->translate(@{$self->_drag_volume_center_offset}); my $cur_pos2 = Slic3r::Point->new(scale($cur_pos->x), scale($cur_pos->y)); if (! $self->bed_polygon->contains_point($cur_pos2)) { my $ip = $self->bed_polygon->point_projection($cur_pos2); $cur_pos->set_x(unscale($ip->x)); $cur_pos->set_y(unscale($ip->y)); } $cur_pos->translate(@{$self->_drag_volume_center_offset->negative}); } # Calculate the translation vector. my $vector = $self->_drag_start_pos->vector_to($cur_pos); # Get the volume being dragged. my $volume = $self->volumes->[$self->_drag_volume_idx]; # Get all volumes belonging to the same group, if any. my @volumes = ($volume->drag_group_id == -1) ? ($volume) : grep $_->drag_group_id == $volume->drag_group_id, @{$self->volumes}; # Apply new temporary volume origin and ignore Z. $_->translate($vector->x, $vector->y, 0) for @volumes; $self->_drag_start_pos($cur_pos); $self->_dragged(1); $self->Refresh; $self->Update; } elsif ($e->Dragging) { if ($self->_layer_height_edited && $object_idx_selected != -1) { $self->_variable_layer_thickness_action($e) if ($self->_layer_height_edited == 1); } elsif ($e->LeftIsDown) { # if dragging over blank area with left button, rotate if (defined $self->_drag_start_pos) { my $orig = $self->_drag_start_pos; if (TURNTABLE_MODE) { # Turntable mode is enabled by default. $self->_sphi($self->_sphi + ($pos->x - $orig->x) * TRACKBALLSIZE); $self->_stheta($self->_stheta - ($pos->y - $orig->y) * TRACKBALLSIZE); #- $self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX; $self->_stheta(0) if $self->_stheta < 0; } else { my $size = $self->GetClientSize; my @quat = trackball( $orig->x / ($size->width / 2) - 1, 1 - $orig->y / ($size->height / 2), #/ $pos->x / ($size->width / 2) - 1, 1 - $pos->y / ($size->height / 2), #/ ); $self->_quat(mulquats($self->_quat, \@quat)); } $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; $self->Update; } $self->_drag_start_pos($pos); } elsif ($e->MiddleIsDown || $e->RightIsDown) { # If dragging over blank area with right button, pan. if (defined $self->_drag_start_xy) { # get point in model space at Z = 0 my $cur_pos = $self->mouse_to_3d($e->GetX, $e->GetY, 0); my $orig = $self->mouse_to_3d($self->_drag_start_xy->x, $self->_drag_start_xy->y, 0); $self->_camera_target->translate(@{$orig->vector_to($cur_pos)->negative}); $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; $self->Update; } $self->_drag_start_xy($pos); } } elsif ($e->LeftUp || $e->MiddleUp || $e->RightUp) { if ($self->_layer_height_edited) { $self->_layer_height_edited(undef); $self->{layer_height_edit_timer}->Stop; $self->on_model_update->() if ($object_idx_selected != -1 && $self->on_model_update); } elsif ($self->on_move && defined($self->_drag_volume_idx) && $self->_dragged) { # get all volumes belonging to the same group, if any my @volume_idxs; my $group_id = $self->volumes->[$self->_drag_volume_idx]->drag_group_id; if ($group_id == -1) { @volume_idxs = ($self->_drag_volume_idx); } else { @volume_idxs = grep $self->volumes->[$_]->drag_group_id == $group_id, 0..$#{$self->volumes}; } $self->on_move->(@volume_idxs); } $self->_drag_volume_idx(undef); $self->_drag_start_pos(undef); $self->_drag_start_xy(undef); $self->_dragged(undef); } elsif ($e->Moving) { $self->_mouse_pos($pos); # Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor # hovers over. if ($self->enable_picking) { $self->Update; $self->Refresh; } } else { $e->Skip(); } } sub mouse_wheel_event { my ($self, $e) = @_; if ($self->layer_editing_enabled && $self->{print}) { my $object_idx_selected = $self->_first_selected_object_id_for_variable_layer_height_editing; if ($object_idx_selected != -1) { # A volume is selected. Test, whether hovering over a layer thickness bar. if ($self->_variable_layer_thickness_bar_rect_mouse_inside($e)) { # Adjust the width of the selection. $self->{layer_height_edit_band_width} = max(min($self->{layer_height_edit_band_width} * (1 + 0.1 * $e->GetWheelRotation() / $e->GetWheelDelta()), 10.), 1.5); $self->Refresh; return; } } } # Calculate the zoom delta and apply it to the current zoom factor my $zoom = $e->GetWheelRotation() / $e->GetWheelDelta(); $zoom = max(min($zoom, 4), -4); $zoom /= 10; $self->_zoom($self->_zoom / (1-$zoom)); # In order to zoom around the mouse point we need to translate # the camera target my $size = Slic3r::Pointf->new($self->GetSizeWH); my $pos = Slic3r::Pointf->new($e->GetX, $size->y - $e->GetY); #- $self->_camera_target->translate( # ($pos - $size/2) represents the vector from the viewport center # to the mouse point. By multiplying it by $zoom we get the new, # transformed, length of such vector. # Since we want that point to stay fixed, we move our camera target # in the opposite direction by the delta of the length of such vector # ($zoom - 1). We then scale everything by 1/$self->_zoom since # $self->_camera_target is expressed in terms of model units. -($pos->x - $size->x/2) * ($zoom) / $self->_zoom, -($pos->y - $size->y/2) * ($zoom) / $self->_zoom, 0, ) if 0; $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Resize($self->GetSizeWH) if $self->IsShownOnScreen; $self->Refresh; } # Reset selection. sub reset_objects { my ($self) = @_; if ($self->GetContext) { $self->SetCurrent($self->GetContext); $self->volumes->release_geometry; } $self->volumes->erase; $self->_dirty(1); } # Setup camera to view all objects. sub set_viewport_from_scene { my ($self, $scene) = @_; $self->_sphi($scene->_sphi); $self->_stheta($scene->_stheta); $self->_camera_target($scene->_camera_target); $self->_zoom($scene->_zoom); $self->_quat($scene->_quat); $self->_dirty(1); } # Set the camera to a default orientation, # zoom to volumes. sub select_view { my ($self, $direction) = @_; my $dirvec; if (ref($direction)) { $dirvec = $direction; } else { if ($direction eq 'iso') { $dirvec = VIEW_DEFAULT; } elsif ($direction eq 'left') { $dirvec = VIEW_LEFT; } elsif ($direction eq 'right') { $dirvec = VIEW_RIGHT; } elsif ($direction eq 'top') { $dirvec = VIEW_TOP; } elsif ($direction eq 'bottom') { $dirvec = VIEW_BOTTOM; } elsif ($direction eq 'front') { $dirvec = VIEW_FRONT; } elsif ($direction eq 'rear') { $dirvec = VIEW_REAR; } } my $bb = $self->volumes_bounding_box; if (! $bb->empty) { $self->_sphi($dirvec->[0]); $self->_stheta($dirvec->[1]); # Avoid gimball lock. $self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX; $self->_stheta(0) if $self->_stheta < 0; # View everything. $self->zoom_to_bounding_box($bb); $self->on_viewport_changed->() if $self->on_viewport_changed; $self->Refresh; } } sub zoom_to_bounding_box { my ($self, $bb) = @_; return if ($bb->empty); # calculate the zoom factor needed to adjust viewport to # bounding box my $max_size = max(@{$bb->size}) * 2; my $min_viewport_size = min($self->GetSizeWH); # only re-zoom if we have a valid bounding box, avoid a divide by 0 error. $self->_zoom($min_viewport_size / $max_size) if ($max_size != 0); # center view around bounding box center $self->_camera_target($bb->center); $self->on_viewport_changed->() if $self->on_viewport_changed; } sub zoom_to_bed { my ($self) = @_; if ($self->bed_shape) { $self->zoom_to_bounding_box($self->bed_bounding_box); } } sub zoom_to_volume { my ($self, $volume_idx) = @_; my $volume = $self->volumes->[$volume_idx]; my $bb = $volume->transformed_bounding_box; $self->zoom_to_bounding_box($bb); } sub zoom_to_volumes { my ($self) = @_; $self->zoom_to_bounding_box($self->volumes_bounding_box); } sub volumes_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; $bb->merge($_->transformed_bounding_box) for @{$self->volumes}; return $bb; } sub bed_bounding_box { my ($self) = @_; my $bb = Slic3r::Geometry::BoundingBoxf3->new; if ($self->bed_shape) { $bb->merge_point(Slic3r::Pointf3->new(@$_, 0)) for @{$self->bed_shape}; } return $bb; } sub max_bounding_box { my ($self) = @_; my $bb = $self->bed_bounding_box; $bb->merge($self->volumes_bounding_box); return $bb; } # Used by ObjectCutDialog and ObjectPartsPanel to generate a rectangular ground plane # to support the scene objects. sub set_auto_bed_shape { my ($self, $bed_shape) = @_; # draw a default square bed around object center my $max_size = max(@{ $self->volumes_bounding_box->size }); my $center = $self->volumes_bounding_box->center; $self->set_bed_shape([ [ $center->x - $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y - $max_size ], #-- [ $center->x + $max_size, $center->y + $max_size ], #++ [ $center->x - $max_size, $center->y + $max_size ], #++ ]); # Set the origin for painting of the coordinate system axes. $self->origin(Slic3r::Pointf->new(@$center[X,Y])); } # Set the bed shape to a single closed 2D polygon (array of two element arrays), # triangulate the bed and store the triangles into $self->bed_triangles, # fills the $self->bed_grid_lines and sets $self->origin. # Sets $self->bed_polygon to limit the object placement. sub set_bed_shape { my ($self, $bed_shape) = @_; $self->bed_shape($bed_shape); # triangulate bed my $expolygon = Slic3r::ExPolygon->new([ map [map scale($_), @$_], @$bed_shape ]); my $bed_bb = $expolygon->bounding_box; { my @points = (); foreach my $triangle (@{ $expolygon->triangulate }) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$triangle; } $self->bed_triangles(OpenGL::Array->new_list(GL_FLOAT, @points)); } { my @polylines = (); for (my $x = $bed_bb->x_min; $x <= $bed_bb->x_max; $x += scale 10) { push @polylines, Slic3r::Polyline->new([$x,$bed_bb->y_min], [$x,$bed_bb->y_max]); } for (my $y = $bed_bb->y_min; $y <= $bed_bb->y_max; $y += scale 10) { push @polylines, Slic3r::Polyline->new([$bed_bb->x_min,$y], [$bed_bb->x_max,$y]); } # clip with a slightly grown expolygon because our lines lay on the contours and # may get erroneously clipped my @lines = map Slic3r::Line->new(@$_[0,-1]), @{intersection_pl(\@polylines, [ @{$expolygon->offset(+scaled_epsilon)} ])}; # append bed contours push @lines, map @{$_->lines}, @$expolygon; my @points = (); foreach my $line (@lines) { push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$line; #)) } $self->bed_grid_lines(OpenGL::Array->new_list(GL_FLOAT, @points)); } # Set the origin for painting of the coordinate system axes. $self->origin(Slic3r::Pointf->new(0,0)); $self->bed_polygon(offset_ex([$expolygon->contour], $bed_bb->radius * 1.7)->[0]->contour->clone); } sub deselect_volumes { my ($self) = @_; $_->set_selected(0) for @{$self->volumes}; } sub select_volume { my ($self, $volume_idx) = @_; $self->volumes->[$volume_idx]->set_selected(1) if $volume_idx != -1; } sub SetCuttingPlane { my ($self, $z, $expolygons) = @_; $self->cutting_plane_z($z); # grow slices in order to display them better $expolygons = offset_ex([ map @$_, @$expolygons ], scale 0.1); my @verts = (); foreach my $line (map @{$_->lines}, map @$_, @$expolygons) { push @verts, ( unscale($line->a->x), unscale($line->a->y), $z, #)) unscale($line->b->x), unscale($line->b->y), $z, #)) ); } $self->cut_lines_vertices(OpenGL::Array->new_list(GL_FLOAT, @verts)); } # Given an axis and angle, compute quaternion. sub axis_to_quat { my ($ax, $phi) = @_; my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax)); my @q = map { $_ * (1 / $lena) } @$ax; @q = map { $_ * sin($phi / 2.0) } @q; $q[$#q + 1] = cos($phi / 2.0); return @q; } # Project a point on the virtual trackball. # If it is inside the sphere, map it to the sphere, if it outside map it # to a hyperbola. sub project_to_sphere { my ($r, $x, $y) = @_; my $d = sqrt($x * $x + $y * $y); if ($d < $r * 0.70710678118654752440) { # Inside sphere return sqrt($r * $r - $d * $d); } else { # On hyperbola my $t = $r / 1.41421356237309504880; return $t * $t / $d; } } sub cross { my ($v1, $v2) = @_; return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1], @$v1[2] * @$v2[0] - @$v1[0] * @$v2[2], @$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]); } # Simulate a track-ball. Project the points onto the virtual trackball, # then figure out the axis of rotation, which is the cross product of # P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a # deformed trackball-- is a trackball in the center, but is deformed # into a hyperbolic sheet of rotation away from the center. # It is assumed that the arguments to this routine are in the range # (-1.0 ... 1.0). sub trackball { my ($p1x, $p1y, $p2x, $p2y) = @_; if ($p1x == $p2x && $p1y == $p2y) { # zero rotation return (0.0, 0.0, 0.0, 1.0); } # First, figure out z-coordinates for projection of P1 and P2 to # deformed sphere my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y)); my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y)); # axis of rotation (cross product of P1 and P2) my @a = cross(\@p2, \@p1); # Figure out how much to rotate around that axis. my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1); my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE); # Avoid problems with out-of-control values... $t = 1.0 if ($t > 1.0); $t = -1.0 if ($t < -1.0); my $phi = 2.0 * asin($t); return axis_to_quat(\@a, $phi); } # Build a rotation matrix, given a quaternion rotation. sub quat_to_rotmatrix { my ($q) = @_; my @m = (); $m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]); $m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]); $m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]); $m[3] = 0.0; $m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]); $m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]); $m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]); $m[7] = 0.0; $m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]); $m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]); $m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]); $m[11] = 0.0; $m[12] = 0.0; $m[13] = 0.0; $m[14] = 0.0; $m[15] = 1.0; return @m; } sub mulquats { my ($q1, $rq) = @_; return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1], @$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2], @$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0], @$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2]) } # Convert the screen space coordinate to an object space coordinate. # If the Z screen space coordinate is not provided, a depth buffer value is substituted. sub mouse_to_3d { my ($self, $x, $y, $z) = @_; my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items $y = $viewport[3] - $y; $z //= glReadPixels_p($x, $y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT); my @projected = gluUnProject_p($x, $y, $z, @mview, @proj, @viewport); return Slic3r::Pointf3->new(@projected); } sub GetContext { my ($self) = @_; if (Wx::wxVERSION >= 2.009) { return $self->{context} ||= Wx::GLContext->new($self); } else { return $self->SUPER::GetContext; } } sub SetCurrent { my ($self, $context) = @_; if (Wx::wxVERSION >= 2.009) { return $self->SUPER::SetCurrent($context); } else { return $self->SUPER::SetCurrent; } } sub UseVBOs { my ($self) = @_; if (! defined ($self->{use_VBOs})) { # This is a special path for wxWidgets on GTK, where an OpenGL context is initialized # first when an OpenGL widget is shown for the first time. How ugly. return 0 if (! $self->init && $^O eq 'linux'); # Don't use VBOs if anything fails. $self->{use_VBOs} = 0; if ($self->GetContext) { $self->SetCurrent($self->GetContext); Slic3r::GUI::_3DScene::_glew_init; my @gl_version = split(/\./, glGetString(GL_VERSION)); $self->{use_VBOs} = int($gl_version[0]) >= 2; # print "UseVBOs $self OpenGL major: $gl_version[0], minor: $gl_version[1]. Use VBOs: ", $self->{use_VBOs}, "\n"; } } return $self->{use_VBOs}; } sub Resize { my ($self, $x, $y) = @_; return unless $self->GetContext; $self->_dirty(0); $self->SetCurrent($self->GetContext); glViewport(0, 0, $x, $y); $x /= $self->_zoom; $y /= $self->_zoom; glMatrixMode(GL_PROJECTION); glLoadIdentity(); if ($self->_camera_type eq 'ortho') { #FIXME setting the size of the box 10x larger than necessary # is only a workaround for an incorrectly set camera. # This workaround harms Z-buffer accuracy! # my $depth = 1.05 * $self->max_bounding_box->radius(); my $depth = 10.0 * $self->max_bounding_box->radius(); glOrtho( -$x/2, $x/2, -$y/2, $y/2, -$depth, $depth, ); } else { die "Invalid camera type: ", $self->_camera_type, "\n" if ($self->_camera_type ne 'perspective'); my $bbox_r = $self->max_bounding_box->radius(); my $fov = PI * 45. / 180.; my $fov_tan = tan(0.5 * $fov); my $cam_distance = 0.5 * $bbox_r / $fov_tan; $self->_camera_distance($cam_distance); my $nr = $cam_distance - $bbox_r * 1.1; my $fr = $cam_distance + $bbox_r * 1.1; $nr = 1 if ($nr < 1); $fr = $nr + 1 if ($fr < $nr + 1); my $h2 = $fov_tan * $nr; my $w2 = $h2 * $x / $y; glFrustum(-$w2, $w2, -$h2, $h2, $nr, $fr); } glMatrixMode(GL_MODELVIEW); } sub InitGL { my $self = shift; return if $self->init; return unless $self->GetContext; $self->init(1); # This is a special path for wxWidgets on GTK, where an OpenGL context is initialized # first when an OpenGL widget is shown for the first time. How ugly. # In that case the volumes are wainting to be moved to Vertex Buffer Objects # after the OpenGL context is being initialized. $self->volumes->finalize_geometry(1) if ($^O eq 'linux' && $self->UseVBOs); glClearColor(0, 0, 0, 1); glColor3f(1, 0, 0); glEnable(GL_DEPTH_TEST); glClearDepth(1.0); glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); # Set antialiasing/multisampling glDisable(GL_LINE_SMOOTH); glDisable(GL_POLYGON_SMOOTH); glEnable(GL_MULTISAMPLE); # glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST); # ambient lighting glLightModelfv_p(GL_LIGHT_MODEL_AMBIENT, 0.3, 0.3, 0.3, 1); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_LIGHT1); # light from camera glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0); glLightfv_p(GL_LIGHT1, GL_SPECULAR, 0.3, 0.3, 0.3, 1); glLightfv_p(GL_LIGHT1, GL_DIFFUSE, 0.2, 0.2, 0.2, 1); # Enables Smooth Color Shading; try GL_FLAT for (lack of) fun. glShadeModel(GL_SMOOTH); # glMaterialfv_p(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, 0.5, 0.3, 0.3, 1); # glMaterialfv_p(GL_FRONT_AND_BACK, GL_SPECULAR, 1, 1, 1, 1); # glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50); # glMaterialfv_p(GL_FRONT_AND_BACK, GL_EMISSION, 0.1, 0, 0, 0.9); # A handy trick -- have surface material mirror the color. glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE); glEnable(GL_COLOR_MATERIAL); glEnable(GL_MULTISAMPLE); if ($self->UseVBOs) { my $shader = new Slic3r::GUI::_3DScene::GLShader; if (! $shader->load($self->_fragment_shader_Gouraud, $self->_vertex_shader_Gouraud)) { # if (! $shader->load($self->_fragment_shader_Phong, $self->_vertex_shader_Phong)) { print "Compilaton of path shader failed: \n" . $shader->last_error . "\n"; $shader = undef; } else { $self->{plain_shader} = $shader; } } } sub DestroyGL { my $self = shift; if ($self->GetContext) { $self->SetCurrent($self->GetContext); if ($self->{plain_shader}) { $self->{plain_shader}->release; delete $self->{plain_shader}; } if ($self->{layer_height_edit_shader}) { $self->{layer_height_edit_shader}->release; delete $self->{layer_height_edit_shader}; } $self->volumes->release_geometry; } } sub Render { my ($self, $dc) = @_; # prevent calling SetCurrent() when window is not shown yet return unless $self->IsShownOnScreen; return unless my $context = $self->GetContext; $self->SetCurrent($context); $self->InitGL; glClearColor(1, 1, 1, 1); glClearDepth(1); glDepthFunc(GL_LESS); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); { # Shift the perspective camera. my $camera_pos = Slic3r::Pointf3->new(0,0,-$self->_camera_distance); glTranslatef(@$camera_pos); } if (TURNTABLE_MODE) { # Turntable mode is enabled by default. glRotatef(-$self->_stheta, 1, 0, 0); # pitch glRotatef($self->_sphi, 0, 0, 1); # yaw } else { my @rotmat = quat_to_rotmatrix($self->quat); glMultMatrixd_p(@rotmat[0..15]); } glTranslatef(@{ $self->_camera_target->negative }); # light from above glLightfv_p(GL_LIGHT0, GL_POSITION, -0.5, -0.5, 1, 0); glLightfv_p(GL_LIGHT0, GL_SPECULAR, 0.2, 0.2, 0.2, 1); glLightfv_p(GL_LIGHT0, GL_DIFFUSE, 0.5, 0.5, 0.5, 1); # Head light glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0); if ($self->enable_picking) { # Render the object for picking. # FIXME This cannot possibly work in a multi-sampled context as the color gets mangled by the anti-aliasing. # Better to use software ray-casting on a bounding-box hierarchy. glDisable(GL_MULTISAMPLE); glDisable(GL_LIGHTING); $self->draw_volumes(1); glFlush(); glFinish(); if (my $pos = $self->_mouse_pos) { my $col = [ glReadPixels_p($pos->x, $self->GetSize->GetHeight - $pos->y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE) ]; my $volume_idx = $col->[0] + $col->[1]*256 + $col->[2]*256*256; $self->_hover_volume_idx(undef); $_->set_hover(0) for @{$self->volumes}; if ($volume_idx <= $#{$self->volumes}) { $self->_hover_volume_idx($volume_idx); $self->volumes->[$volume_idx]->set_hover(1); my $group_id = $self->volumes->[$volume_idx]->select_group_id; if ($group_id != -1) { $_->set_hover(1) for grep { $_->select_group_id == $group_id } @{$self->volumes}; } $self->on_hover->($volume_idx) if $self->on_hover; } } glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glFlush(); glFinish(); glEnable(GL_LIGHTING); glEnable(GL_MULTISAMPLE); } # draw fixed background if ($self->background) { glDisable(GL_LIGHTING); glPushMatrix(); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glPushMatrix(); glLoadIdentity(); # Draws a bluish bottom to top gradient over the complete screen. glDisable(GL_DEPTH_TEST); glBegin(GL_QUADS); glColor3f(0.0,0.0,0.0); glVertex3f(-1.0,-1.0, 1.0); glVertex3f( 1.0,-1.0, 1.0); glColor3f(10/255,98/255,144/255); glVertex3f( 1.0, 1.0, 1.0); glVertex3f(-1.0, 1.0, 1.0); glEnd(); glPopMatrix(); glEnable(GL_DEPTH_TEST); glMatrixMode(GL_MODELVIEW); glPopMatrix(); glEnable(GL_LIGHTING); } # draw ground and axes glDisable(GL_LIGHTING); # draw ground my $ground_z = GROUND_Z; if ($self->bed_triangles) { glDisable(GL_DEPTH_TEST); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glColor4f(0.8, 0.6, 0.5, 0.4); glNormal3d(0,0,1); glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_triangles->ptr()); glDrawArrays(GL_TRIANGLES, 0, $self->bed_triangles->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); # we need depth test for grid, otherwise it would disappear when looking # the object from below glEnable(GL_DEPTH_TEST); # draw grid glLineWidth(3); glColor4f(0.2, 0.2, 0.2, 0.4); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_grid_lines->ptr()); glDrawArrays(GL_LINES, 0, $self->bed_grid_lines->elements / 3); glDisableClientState(GL_VERTEX_ARRAY); glDisable(GL_BLEND); } my $volumes_bb = $self->volumes_bounding_box; { # draw axes # disable depth testing so that axes are not covered by ground glDisable(GL_DEPTH_TEST); my $origin = $self->origin; my $axis_len = max( 0.3 * max(@{ $self->bed_bounding_box->size }), 2 * max(@{ $volumes_bb->size }), ); glLineWidth(2); glBegin(GL_LINES); # draw line for x axis glColor3f(1, 0, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x + $axis_len, $origin->y, $ground_z); #,, # draw line for y axis glColor3f(0, 1, 0); glVertex3f(@$origin, $ground_z); glVertex3f($origin->x, $origin->y + $axis_len, $ground_z); #++ glEnd(); # draw line for Z axis # (re-enable depth test so that axis is correctly shown when objects are behind it) glEnable(GL_DEPTH_TEST); glBegin(GL_LINES); glColor3f(0, 0, 1); glVertex3f(@$origin, $ground_z); glVertex3f(@$origin, $ground_z+$axis_len); glEnd(); } glEnable(GL_LIGHTING); # draw objects if (! $self->use_plain_shader) { $self->draw_volumes; } elsif ($self->UseVBOs) { $self->{plain_shader}->enable if $self->{plain_shader}; $self->volumes->render_VBOs; $self->{plain_shader}->disable; } else { $self->volumes->render_legacy; } # draw cutting plane if (defined $self->cutting_plane_z) { my $plane_z = $self->cutting_plane_z; my $bb = $volumes_bb; glDisable(GL_CULL_FACE); glDisable(GL_LIGHTING); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glBegin(GL_QUADS); glColor4f(0.8, 0.8, 0.8, 0.5); glVertex3f($bb->x_min-20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_min-20, $plane_z); glVertex3f($bb->x_max+20, $bb->y_max+20, $plane_z); glVertex3f($bb->x_min-20, $bb->y_max+20, $plane_z); glEnd(); glEnable(GL_CULL_FACE); glDisable(GL_BLEND); } $self->draw_active_object_annotations; $self->SwapBuffers(); # Calling glFinish has a performance penalty, but it seems to fix some OpenGL driver hang-up with extremely large scenes. # glFinish(); } sub draw_volumes { # $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking. my ($self, $fakecolor) = @_; glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_NORMAL_ARRAY); my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative; foreach my $volume_idx (0..$#{$self->volumes}) { my $volume = $self->volumes->[$volume_idx]; my $shader_active = 0; if ($self->layer_editing_enabled && ! $fakecolor && $volume->selected && $self->{layer_height_edit_shader} && $volume->has_layer_height_texture) { # Update the height texture if the ModelObject::layer_height_texture is invalid. $volume->generate_layer_height_texture( $self->{print}->get_object(int($volume->select_group_id / 1000000)), 0); $self->{layer_height_edit_shader}->enable; $self->{layer_height_edit_shader}->set_uniform('z_to_texture_row', $volume->layer_height_texture_z_to_row_id); $self->{layer_height_edit_shader}->set_uniform('z_texture_row_to_normalized', 1. / $volume->layer_height_texture_height); $self->{layer_height_edit_shader}->set_uniform('z_cursor', $volume->bounding_box->z_max * $z_cursor_relative); $self->{layer_height_edit_shader}->set_uniform('z_cursor_band_width', $self->{layer_height_edit_band_width}); glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id}); # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_LEVEL, 0); # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $volume->layer_height_texture_width, $volume->layer_height_texture_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); # glPixelStorei(GL_UNPACK_ALIGNMENT, 1); # glPixelStorei(GL_UNPACK_ROW_LENGTH, $self->{layer_preview_z_texture_width}); glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $volume->layer_height_texture_width, $volume->layer_height_texture_height, GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level0); glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2, GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level1); $shader_active = 1; } elsif ($fakecolor) { # Object picking mode. Render the object with a color encoding the object index. my $r = ($volume_idx & 0x000000FF) >> 0; my $g = ($volume_idx & 0x0000FF00) >> 8; my $b = ($volume_idx & 0x00FF0000) >> 16; glColor4f($r/255.0, $g/255.0, $b/255.0, 1); } elsif ($volume->selected) { glColor4f(@{ &SELECTED_COLOR }); } elsif ($volume->hover) { glColor4f(@{ &HOVER_COLOR }); } else { glColor4f(@{ $volume->color }); } $volume->render; if ($shader_active) { glBindTexture(GL_TEXTURE_2D, 0); $self->{layer_height_edit_shader}->disable; } } glDisableClientState(GL_NORMAL_ARRAY); glDisable(GL_BLEND); if (defined $self->cutting_plane_z) { glLineWidth(2); glColor3f(0, 0, 0); glVertexPointer_c(3, GL_FLOAT, 0, $self->cut_lines_vertices->ptr()); glDrawArrays(GL_LINES, 0, $self->cut_lines_vertices->elements / 3); glVertexPointer_c(3, GL_FLOAT, 0, 0); } glDisableClientState(GL_VERTEX_ARRAY); } sub _load_image_set_texture { my ($self, $file_name) = @_; # Load a PNG with an alpha channel. my $img = Wx::Image->new; $img->LoadFile($Slic3r::var->($file_name), wxBITMAP_TYPE_PNG); # Get RGB & alpha raw data from wxImage, interleave them into a Perl array. my @rgb = unpack 'C*', $img->GetData(); my @alpha = $img->HasAlpha ? unpack 'C*', $img->GetAlpha() : (255) x (int(@rgb) / 3); my $n_pixels = int(@alpha); my @data = (0)x($n_pixels * 4); for (my $i = 0; $i < $n_pixels; $i += 1) { $data[$i*4 ] = $rgb[$i*3]; $data[$i*4+1] = $rgb[$i*3+1]; $data[$i*4+2] = $rgb[$i*3+2]; $data[$i*4+3] = $alpha[$i]; } # Initialize a raw bitmap data. my $params = { loaded => 1, valid => $n_pixels > 0, width => $img->GetWidth, height => $img->GetHeight, data => OpenGL::Array->new_list(GL_UNSIGNED_BYTE, @data), texture_id => glGenTextures_p(1) }; # Create and initialize a texture with the raw data. glBindTexture(GL_TEXTURE_2D, $params->{texture_id}); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $params->{width}, $params->{height}, 0, GL_RGBA, GL_UNSIGNED_BYTE, $params->{data}->ptr); glBindTexture(GL_TEXTURE_2D, 0); return $params; } sub _variable_layer_thickness_load_overlay_image { my ($self) = @_; $self->{layer_preview_annotation} = $self->_load_image_set_texture('variable_layer_height_tooltip.png') if (! $self->{layer_preview_annotation}->{loaded}); return $self->{layer_preview_annotation}->{valid}; } sub _variable_layer_thickness_load_reset_image { my ($self) = @_; $self->{layer_preview_reset_image} = $self->_load_image_set_texture('variable_layer_height_reset.png') if (! $self->{layer_preview_reset_image}->{loaded}); return $self->{layer_preview_reset_image}->{valid}; } # Paint the tooltip. sub _render_image { my ($self, $image, $l, $r, $b, $t) = @_; glColor4f(1.,1.,1.,1.); glDisable(GL_LIGHTING); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, $image->{texture_id}); glBegin(GL_QUADS); glTexCoord2d(0.,1.); glVertex3f($l, $b, 0); glTexCoord2d(1.,1.); glVertex3f($r, $b, 0); glTexCoord2d(1.,0.); glVertex3f($r, $t, 0); glTexCoord2d(0.,0.); glVertex3f($l, $t, 0); glEnd(); glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_2D); glDisable(GL_BLEND); glEnable(GL_LIGHTING); } sub draw_active_object_annotations { # $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking. my ($self) = @_; return if (! $self->{layer_height_edit_shader} || ! $self->layer_editing_enabled); my $volume; foreach my $volume_idx (0..$#{$self->volumes}) { my $v = $self->volumes->[$volume_idx]; if ($v->selected && $v->has_layer_height_texture) { $volume = $v; last; } } return if (! $volume); # The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth), # where x, y is the window size divided by $self->_zoom. my ($bar_left, $bar_bottom, $bar_right, $bar_top) = $self->_variable_layer_thickness_bar_rect_viewport; my ($reset_left, $reset_bottom, $reset_right, $reset_top) = $self->_variable_layer_thickness_reset_rect_viewport; my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative; $self->{layer_height_edit_shader}->enable; $self->{layer_height_edit_shader}->set_uniform('z_to_texture_row', $volume->layer_height_texture_z_to_row_id); $self->{layer_height_edit_shader}->set_uniform('z_texture_row_to_normalized', 1. / $volume->layer_height_texture_height); $self->{layer_height_edit_shader}->set_uniform('z_cursor', $volume->bounding_box->z_max * $z_cursor_relative); $self->{layer_height_edit_shader}->set_uniform('z_cursor_band_width', $self->{layer_height_edit_band_width}); glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id}); glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $volume->layer_height_texture_width, $volume->layer_height_texture_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, 0); glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $volume->layer_height_texture_width, $volume->layer_height_texture_height, GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level0); glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2, GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level1); # Render the color bar. glDisable(GL_DEPTH_TEST); # The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth), # where x, y is the window size divided by $self->_zoom. glPushMatrix(); glLoadIdentity(); # Paint the overlay. glBegin(GL_QUADS); glVertex3f($bar_left, $bar_bottom, 0); glVertex3f($bar_right, $bar_bottom, 0); glVertex3f($bar_right, $bar_top, $volume->bounding_box->z_max); glVertex3f($bar_left, $bar_top, $volume->bounding_box->z_max); glEnd(); glBindTexture(GL_TEXTURE_2D, 0); $self->{layer_height_edit_shader}->disable; # Paint the tooltip. if ($self->_variable_layer_thickness_load_overlay_image) { my $gap = 10/$self->_zoom; my ($l, $r, $b, $t) = ($bar_left - $self->{layer_preview_annotation}->{width}/$self->_zoom - $gap, $bar_left - $gap, $reset_bottom + $self->{layer_preview_annotation}->{height}/$self->_zoom + $gap, $reset_bottom + $gap); $self->_render_image($self->{layer_preview_annotation}, $l, $r, $t, $b); } # Paint the reset button. if ($self->_variable_layer_thickness_load_reset_image) { $self->_render_image($self->{layer_preview_reset_image}, $reset_left, $reset_right, $reset_bottom, $reset_top); } # Paint the graph. #FIXME use the min / maximum layer height #FIXME show some kind of legend. my $object_idx = int($volume->select_group_id / 1000000); my $print_object = $self->{print}->get_object($object_idx); my $max_z = unscale($print_object->size->z); my $profile = $print_object->model_object->layer_height_profile; my $layer_height = $print_object->config->get('layer_height'); my $layer_height_max = 10000000000.; { # Get a maximum layer height value. #FIXME This is a duplicate code of Slicing.cpp. my $nozzle_diameters = $print_object->print->config->get('nozzle_diameter'); my $layer_heights_min = $print_object->print->config->get('min_layer_height'); my $layer_heights_max = $print_object->print->config->get('max_layer_height'); for (my $i = 0; $i < scalar(@{$nozzle_diameters}); $i += 1) { my $lh_min = ($layer_heights_min->[$i] == 0.) ? 0.07 : max(0.01, $layer_heights_min->[$i]); my $lh_max = ($layer_heights_max->[$i] == 0.) ? (0.75 * $nozzle_diameters->[$i]) : $layer_heights_max->[$i]; $layer_height_max = min($layer_height_max, max($lh_min, $lh_max)); } } # Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region. $layer_height_max *= 1.12; # Baseline glColor3f(0., 0., 0.); glBegin(GL_LINE_STRIP); glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / $layer_height_max, $bar_bottom); glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / $layer_height_max, $bar_top); glEnd(); # Curve glColor3f(0., 0., 1.); glBegin(GL_LINE_STRIP); for (my $i = 0; $i < int(@{$profile}); $i += 2) { my $z = $profile->[$i]; my $h = $profile->[$i+1]; glVertex3f($bar_left + $h * ($bar_right - $bar_left) / $layer_height_max, $bar_bottom + $z * ($bar_top - $bar_bottom) / $max_z, $z); } glEnd(); # Revert the matrices. glPopMatrix(); glEnable(GL_DEPTH_TEST); } sub opengl_info { my ($self, %params) = @_; my %tag = Slic3r::tags($params{format}); my $gl_version = glGetString(GL_VERSION); my $gl_vendor = glGetString(GL_VENDOR); my $gl_renderer = glGetString(GL_RENDERER); my $glsl_version = glGetString(GL_SHADING_LANGUAGE_VERSION); my $out = ''; $out .= "$tag{h2start}OpenGL installation$tag{h2end}$tag{eol}"; $out .= " $tag{bstart}Using POGL$tag{bend} v$OpenGL::BUILD_VERSION$tag{eol}"; $out .= " $tag{bstart}GL version: $tag{bend}${gl_version}$tag{eol}"; $out .= " $tag{bstart}vendor: $tag{bend}${gl_vendor}$tag{eol}"; $out .= " $tag{bstart}renderer: $tag{bend}${gl_renderer}$tag{eol}"; $out .= " $tag{bstart}GLSL version: $tag{bend}${glsl_version}$tag{eol}"; # Check for other OpenGL extensions $out .= "$tag{h2start}Installed extensions (* implemented in the module):$tag{h2end}$tag{eol}"; my $extensions = glGetString(GL_EXTENSIONS); my @extensions = split(' ',$extensions); foreach my $ext (sort @extensions) { my $stat = glpCheckExtension($ext); $out .= sprintf("%s ${ext}$tag{eol}", $stat?' ':'*'); $out .= sprintf(" ${stat}$tag{eol}") if ($stat && $stat !~ m|^$ext |); } return $out; } sub _report_opengl_state { my ($self, $comment) = @_; my $err = glGetError(); return 0 if ($err == 0); # gluErrorString() hangs. Don't use it. # my $errorstr = gluErrorString(); my $errorstr = ''; if ($err == 0x0500) { $errorstr = 'GL_INVALID_ENUM'; } elsif ($err == GL_INVALID_VALUE) { $errorstr = 'GL_INVALID_VALUE'; } elsif ($err == GL_INVALID_OPERATION) { $errorstr = 'GL_INVALID_OPERATION'; } elsif ($err == GL_STACK_OVERFLOW) { $errorstr = 'GL_STACK_OVERFLOW'; } elsif ($err == GL_OUT_OF_MEMORY) { $errorstr = 'GL_OUT_OF_MEMORY'; } else { $errorstr = 'unknown'; } if (defined($comment)) { printf("OpenGL error at %s, nr %d (0x%x): %s\n", $comment, $err, $err, $errorstr); } else { printf("OpenGL error nr %d (0x%x): %s\n", $err, $err, $errorstr); } } sub _vertex_shader_Gouraud { return <<'VERTEX'; #version 110 #define INTENSITY_CORRECTION 0.7 #define LIGHT_TOP_DIR -0.6/1.31, 0.6/1.31, 1./1.31 #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.5 * INTENSITY_CORRECTION) #define LIGHT_TOP_SHININESS 50. #define LIGHT_FRONT_DIR 1./1.43, 0.2/1.43, 1./1.43 #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) #define LIGHT_FRONT_SHININESS 50. #define INTENSITY_AMBIENT 0.3 varying float intensity_specular; varying float intensity_tainted; void main() { vec3 eye, normal, lightDir, viewVector, halfVector; float NdotL, NdotHV; eye = vec3(0., 0., 1.); // First transform the normal into eye space and normalize the result. normal = normalize(gl_NormalMatrix * gl_Normal); // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. // Also since we're talking about a directional light, the position field is actually direction. lightDir = vec3(LIGHT_TOP_DIR); halfVector = normalize(lightDir + eye); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. NdotL = max(dot(normal, lightDir), 0.0); intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity_specular = 0.; if (NdotL > 0.0) intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source. lightDir = vec3(LIGHT_FRONT_DIR); // halfVector = normalize(lightDir + eye); NdotL = max(dot(normal, lightDir), 0.0); intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE; // compute the specular term if NdotL is larger than zero // if (NdotL > 0.0) // intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_FRONT_SHININESS); gl_Position = ftransform(); } VERTEX } sub _fragment_shader_Gouraud { return <<'FRAGMENT'; #version 110 varying float intensity_specular; varying float intensity_tainted; uniform vec4 uniform_color; void main() { gl_FragColor = vec4(intensity_specular, intensity_specular, intensity_specular, 0.) + uniform_color * intensity_tainted; gl_FragColor.a = uniform_color.a; } FRAGMENT } sub _vertex_shader_Phong { return <<'VERTEX'; #version 110 varying vec3 normal; varying vec3 eye; void main(void) { eye = normalize(vec3(gl_ModelViewMatrix * gl_Vertex)); normal = normalize(gl_NormalMatrix * gl_Normal); gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } VERTEX } sub _fragment_shader_Phong { return <<'FRAGMENT'; #version 110 #define INTENSITY_CORRECTION 0.7 #define LIGHT_TOP_DIR -0.6/1.31, 0.6/1.31, 1./1.31 #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.5 * INTENSITY_CORRECTION) //#define LIGHT_TOP_SHININESS 50. #define LIGHT_TOP_SHININESS 10. #define LIGHT_FRONT_DIR 1./1.43, 0.2/1.43, 1./1.43 #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION) #define LIGHT_FRONT_SHININESS 50. #define INTENSITY_AMBIENT 0.0 varying vec3 normal; varying vec3 eye; uniform vec4 uniform_color; void main() { float intensity_specular = 0.; float intensity_tainted = 0.; float intensity = max(dot(normal,vec3(LIGHT_TOP_DIR)), 0.0); // if the vertex is lit compute the specular color if (intensity > 0.0) { intensity_tainted = LIGHT_TOP_DIFFUSE * intensity; // compute the half vector vec3 h = normalize(vec3(LIGHT_TOP_DIR) + eye); // compute the specular term into spec intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(h, normal), 0.0), LIGHT_TOP_SHININESS); } intensity = max(dot(normal,vec3(LIGHT_FRONT_DIR)), 0.0); // if the vertex is lit compute the specular color if (intensity > 0.0) { intensity_tainted += LIGHT_FRONT_DIFFUSE * intensity; // compute the half vector // vec3 h = normalize(vec3(LIGHT_FRONT_DIR) + eye); // compute the specular term into spec // intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(h,normal), 0.0), LIGHT_FRONT_SHININESS); } gl_FragColor = max( vec4(intensity_specular, intensity_specular, intensity_specular, 0.) + uniform_color * intensity_tainted, INTENSITY_AMBIENT * uniform_color); gl_FragColor.a = uniform_color.a; } FRAGMENT } sub _vertex_shader_variable_layer_height { return <<'VERTEX'; #version 110 #define LIGHT_TOP_DIR 0., 1., 0. #define LIGHT_TOP_DIFFUSE 0.2 #define LIGHT_TOP_SPECULAR 0.3 #define LIGHT_TOP_SHININESS 50. #define LIGHT_FRONT_DIR 0., 0., 1. #define LIGHT_FRONT_DIFFUSE 0.5 #define LIGHT_FRONT_SPECULAR 0.3 #define LIGHT_FRONT_SHININESS 50. #define INTENSITY_AMBIENT 0.1 uniform float z_to_texture_row; varying float intensity_specular; varying float intensity_tainted; varying float object_z; void main() { vec3 eye, normal, lightDir, viewVector, halfVector; float NdotL, NdotHV; // eye = gl_ModelViewMatrixInverse[3].xyz; eye = vec3(0., 0., 1.); // First transform the normal into eye space and normalize the result. normal = normalize(gl_NormalMatrix * gl_Normal); // Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space. // Also since we're talking about a directional light, the position field is actually direction. lightDir = vec3(LIGHT_TOP_DIR); halfVector = normalize(lightDir + eye); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. NdotL = max(dot(normal, lightDir), 0.0); intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; intensity_specular = 0.; // if (NdotL > 0.0) // intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source. lightDir = vec3(LIGHT_FRONT_DIR); halfVector = normalize(lightDir + eye); NdotL = max(dot(normal, lightDir), 0.0); intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE; // compute the specular term if NdotL is larger than zero if (NdotL > 0.0) intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_FRONT_SHININESS); // Scaled to widths of the Z texture. object_z = gl_Vertex.z / gl_Vertex.w; gl_Position = ftransform(); } VERTEX } sub _fragment_shader_variable_layer_height { return <<'FRAGMENT'; #version 110 #define M_PI 3.1415926535897932384626433832795 // 2D texture (1D texture split by the rows) of color along the object Z axis. uniform sampler2D z_texture; // Scaling from the Z texture rows coordinate to the normalized texture row coordinate. uniform float z_to_texture_row; uniform float z_texture_row_to_normalized; varying float intensity_specular; varying float intensity_tainted; varying float object_z; uniform float z_cursor; uniform float z_cursor_band_width; void main() { float object_z_row = z_to_texture_row * object_z; // Index of the row in the texture. float z_texture_row = floor(object_z_row); // Normalized coordinate from 0. to 1. float z_texture_col = object_z_row - z_texture_row; float z_blend = 0.25 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) * 1.8 / z_cursor_band_width))) + 0.25; // Calculate level of detail from the object Z coordinate. // This makes the slowly sloping surfaces to be show with high detail (with stripes), // and the vertical surfaces to be shown with low detail (no stripes) float z_in_cells = object_z_row * 190.; // Gradient of Z projected on the screen. float dx_vtc = dFdx(z_in_cells); float dy_vtc = dFdy(z_in_cells); float lod = clamp(0.5 * log2(max(dx_vtc*dx_vtc, dy_vtc*dy_vtc)), 0., 1.); // Sample the Z texture. Texture coordinates are normalized to <0, 1>. vec4 color = (1. - lod) * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5 )), -10000.) + lod * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row * 2. + 1.)), 10000.); // Mix the final color. gl_FragColor = vec4(intensity_specular, intensity_specular, intensity_specular, 1.) + (1. - z_blend) * intensity_tainted * color + z_blend * vec4(1., 1., 0., 0.); // and reset the transparency. gl_FragColor.a = 1.; } FRAGMENT } # The 3D canvas to display objects and tool paths. package Slic3r::GUI::3DScene; use base qw(Slic3r::GUI::3DScene::Base); use OpenGL qw(:glconstants :gluconstants :glufunctions); use List::Util qw(first min max); use Slic3r::Geometry qw(scale unscale epsilon); use Slic3r::Print::State ':steps'; __PACKAGE__->mk_accessors(qw( color_by select_by drag_by )); sub new { my $class = shift; my $self = $class->SUPER::new(@_); $self->color_by('volume'); # object | volume $self->select_by('object'); # object | volume | instance $self->drag_by('instance'); # object | instance return $self; } sub load_object { my ($self, $model, $print, $obj_idx, $instance_idxs) = @_; $self->SetCurrent($self->GetContext) if $self->UseVBOs; my $model_object; if ($model->isa('Slic3r::Model::Object')) { $model_object = $model; $model = $model_object->model; $obj_idx = 0; } else { $model_object = $model->get_object($obj_idx); } $instance_idxs ||= [0..$#{$model_object->instances}]; my $volume_indices = $self->volumes->load_object( $model_object, $obj_idx, $instance_idxs, $self->color_by, $self->select_by, $self->drag_by, $self->UseVBOs); return @{$volume_indices}; } # Create 3D thick extrusion lines for a skirt and brim. # Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes. sub load_print_toolpaths { my ($self, $print, $colors) = @_; $self->SetCurrent($self->GetContext) if $self->UseVBOs; Slic3r::GUI::_3DScene::_load_print_toolpaths($print, $self->volumes, $colors, $self->UseVBOs) if ($print->step_done(STEP_SKIRT) && $print->step_done(STEP_BRIM)); } # Create 3D thick extrusion lines for object forming extrusions. # Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes, # one for perimeters, one for infill and one for supports. sub load_print_object_toolpaths { my ($self, $object, $colors) = @_; $self->SetCurrent($self->GetContext) if $self->UseVBOs; Slic3r::GUI::_3DScene::_load_print_object_toolpaths($object, $self->volumes, $colors, $self->UseVBOs); } # Create 3D thick extrusion lines for wipe tower extrusions. sub load_wipe_tower_toolpaths { my ($self, $print, $colors) = @_; $self->SetCurrent($self->GetContext) if $self->UseVBOs; Slic3r::GUI::_3DScene::_load_wipe_tower_toolpaths($print, $self->volumes, $colors, $self->UseVBOs) if ($print->step_done(STEP_WIPE_TOWER)); } sub set_toolpaths_range { my ($self, $min_z, $max_z) = @_; $self->volumes->set_range($min_z, $max_z); } 1;