#version 110 #define INTENSITY_CORRECTION 0.6 // normalized values for (-0.6/1.31, 0.6/1.31, 1./1.31) const vec3 LIGHT_TOP_DIR = vec3(-0.4574957, 0.4574957, 0.7624929); #define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION) #define LIGHT_TOP_SPECULAR (0.125 * INTENSITY_CORRECTION) #define LIGHT_TOP_SHININESS 20.0 // normalized values for (1./1.43, 0.2/1.43, 1./1.43) const vec3 LIGHT_FRONT_DIR = vec3(0.6985074, 0.1397015, 0.6985074); #define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION) #define INTENSITY_AMBIENT 0.3 // vertex attributes attribute vec3 v_position; attribute vec3 v_normal; // instance attributes attribute vec3 i_offset; attribute vec2 i_scales; uniform mat4 view_model_matrix; uniform mat4 projection_matrix; uniform mat3 normal_matrix; // x = tainted, y = specular; varying vec2 intensity; void main() { // First transform the normal into camera space and normalize the result. vec3 eye_normal = normalize(normal_matrix * v_normal); // Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex. // Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range. float NdotL = max(dot(eye_normal, LIGHT_TOP_DIR), 0.0); intensity.x = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE; vec4 world_position = vec4(v_position * vec3(vec2(1.5 * i_scales.x), 1.5 * i_scales.y) + i_offset - vec3(0.0, 0.0, 0.5 * i_scales.y), 1.0); vec4 eye_position = view_model_matrix * world_position; intensity.y = LIGHT_TOP_SPECULAR * pow(max(dot(-normalize(eye_position.xyz), reflect(-LIGHT_TOP_DIR, eye_normal)), 0.0), LIGHT_TOP_SHININESS); // Perform the same lighting calculation for the 2nd light source (no specular applied). NdotL = max(dot(eye_normal, LIGHT_FRONT_DIR), 0.0); intensity.x += NdotL * LIGHT_FRONT_DIFFUSE; gl_Position = projection_matrix * eye_position; }