#include "SLAPrint.hpp" #include "SLA/SLASupportTree.hpp" #include //#include //#include "tbb/mutex.h" #include "I18N.hpp" //! macro used to mark string used at localization, //! return same string #define L(s) Slic3r::I18N::translate(s) namespace Slic3r { using SlicedModel = SlicedSupports; using SupportTreePtr = std::unique_ptr; class SLAPrintObject::SupportData { public: sla::EigenMesh3D emesh; // index-triangle representation sla::PointSet support_points; // all the support points (manual/auto) SupportTreePtr support_tree_ptr; // the supports SlicedSupports support_slices; // sliced supports }; namespace { const std::array OBJ_STEP_LEVELS = { 20, 30, 50, 70, 80, 100 }; const std::array OBJ_STEP_LABELS = { L("Slicing model"), // slaposObjectSlice, L("Generating islands"), // slaposSupportIslands, L("Scanning model structure"), // slaposSupportPoints, L("Generating support tree"), // slaposSupportTree, L("Generating base pool"), // slaposBasePool, L("Slicing supports") // slaposSliceSupports, }; const std::array PRINT_STEP_LEVELS = { 50, // slapsRasterize 100, // slapsValidate }; const std::array PRINT_STEP_LABELS = { L("Rasterizing layers"), // slapsRasterize L("Validating"), // slapsValidate }; } void SLAPrint::clear() { tbb::mutex::scoped_lock lock(this->cancel_mutex()); // The following call should stop background processing if it is running. this->invalidate_all_steps(); for (SLAPrintObject *object : m_objects) delete object; m_objects.clear(); } SLAPrint::ApplyStatus SLAPrint::apply(const Model &model, const DynamicPrintConfig &config) { // if (m_objects.empty()) // return APPLY_STATUS_UNCHANGED; // Grab the lock for the Print / PrintObject milestones. tbb::mutex::scoped_lock lock(this->cancel_mutex()); if(m_objects.empty() && model.objects.empty()) return APPLY_STATUS_UNCHANGED; // Temporary quick fix, just invalidate everything. { for (SLAPrintObject *print_object : m_objects) { print_object->invalidate_all_steps(); delete print_object; } m_objects.clear(); this->invalidate_all_steps(); // Copy the model by value (deep copy), // keep the Model / ModelObject / ModelInstance / ModelVolume IDs. m_model.assign_copy(model); // Generate new SLAPrintObjects. for (ModelObject *model_object : m_model.objects) { auto po = new SLAPrintObject(this, model_object); m_objects.emplace_back(po); for(ModelInstance *oinst : model_object->instances) { Point tr = Point::new_scale(oinst->get_offset()(X), oinst->get_offset()(Y)); auto rotZ = float(oinst->get_rotation()(Z)); po->m_instances.emplace_back(tr, rotZ); } } } return APPLY_STATUS_INVALIDATED; } void SLAPrint::process() { using namespace sla; std::cout << "SLA Processing triggered" << std::endl; // Assumption: at this point the print objects should be populated only with // the model objects we have to process and the instances are also filtered // shortcut to initial layer height auto ilh = float(m_material_config.initial_layer_height.getFloat()); // Slicing the model object. This method is oversimplified and needs to // be compared with the fff slicing algorithm for verification auto slice_model = [ilh](SLAPrintObject& po) { auto lh = float(po.m_config.layer_height.getFloat()); ModelObject *o = po.m_model_object; TriangleMesh&& mesh = o->raw_mesh(); TriangleMeshSlicer slicer(&mesh); auto bb3d = mesh.bounding_box(); auto H = bb3d.max(Z) - bb3d.min(Z); std::vector heights = {ilh}; for(float h = ilh; h < H; h += lh) heights.emplace_back(h); auto& layers = po.m_model_slices; slicer.slice(heights, &layers, [](){}); }; auto support_points = [](SLAPrintObject&) { // for(SLAPrintObject *po : pobjects) { // TODO: calculate automatic support points // po->m_supportdata->slice_cache contains the slices at this point //} }; // In this step we create the supports auto support_tree = [this](SLAPrintObject& po) { auto& emesh = po.m_supportdata->emesh; auto& pts = po.m_supportdata->support_points; // nowhere filled yet auto& supportd = *po.m_supportdata; try { SupportConfig scfg; // TODO fill or replace with po.m_config sla::Controller ctl; ctl.statuscb = [this](unsigned st, const std::string& msg) { unsigned stinit = OBJ_STEP_LEVELS[slaposSupportTree]; double d = (OBJ_STEP_LEVELS[slaposBasePool] - stinit) / 100.0; set_status(unsigned(stinit + st*d), msg); }; ctl.stopcondition = [this](){ return canceled(); }; supportd.support_tree_ptr.reset( new SLASupportTree(pts, emesh, scfg, ctl)); } catch(sla::SLASupportsStoppedException&) { // no need to rethrow // throw_if_canceled(); } }; // This step generates the sla base pad auto base_pool = [](SLAPrintObject&) { }; // Slicing the support geometries similarly to the model slicing procedure auto slice_supports = [](SLAPrintObject&) { }; // Rasterizing the model objects, and their supports auto rasterize = [this, ilh]() { using Layer = ExPolygons; using LayerCopies = std::vector; struct LayerRef { std::reference_wrapper lref; std::reference_wrapper copies; LayerRef(const Layer& lyr, const LayerCopies& cp) : lref(std::cref(lyr)), copies(std::cref(cp)) {} }; using LayerRefs = std::vector; // layers according to quantized height levels std::map levels; // For all print objects, go through its initial layers and place them // into the layers hash long long initlyridx = static_cast(scale_(ilh)); for(SLAPrintObject *o : m_objects) { auto& oslices = o->m_model_slices; auto& firstlyr = oslices.front(); auto& initlevel = levels[initlyridx]; initlevel.emplace_back(firstlyr, o->m_instances); // now push the support slices as well // TODO double lh = o->m_config.layer_height.getFloat(); size_t li = 1; for(auto lit = std::next(oslices.begin()); lit != oslices.end(); ++lit) { double h = ilh + li++ * lh; long long lyridx = static_cast(scale_(h)); auto& lyrs = levels[lyridx]; lyrs.emplace_back(*lit, o->m_instances); } } // collect all the keys std::vector keys; keys.reserve(levels.size()); for(auto& e : levels) keys.emplace_back(e.first); { // create a raster printer for the current print parameters // I don't know any better auto& ocfg = m_objects.front()->m_config; auto& matcfg = m_material_config; auto& printcfg = m_printer_config; double w = printcfg.display_width.getFloat(); double h = printcfg.display_height.getFloat(); unsigned pw = printcfg.display_pixels_x.getInt(); unsigned ph = printcfg.display_pixels_y.getInt(); double lh = ocfg.layer_height.getFloat(); double exp_t = matcfg.exposure_time.getFloat(); double iexp_t = matcfg.initial_exposure_time.getFloat(); m_printer.reset(new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t)); } // Allocate space for all the layers SLAPrinter& printer = *m_printer; printer.layers(unsigned(levels.size())); // procedure to process one height level. This will run in parallel auto process_level = [&keys, &levels, &printer](unsigned level_id) { LayerRefs& lrange = levels[keys[level_id]]; for(auto& lyrref : lrange) { // for all layers in the current level const Layer& l = lyrref.lref; // get the layer reference const LayerCopies& copies = lyrref.copies; ExPolygonCollection sl = l; // Switch to the appropriate layer in the printer printer.begin_layer(level_id); // Draw all the polygons in the slice to the actual layer. for(auto& cp : copies) { for(ExPolygon slice : sl.expolygons) { slice.translate(cp.shift(X), cp.shift(Y)); slice.rotate(cp.rotation); printer.draw_polygon(slice, level_id); } } // Finish the layer for later saving it. printer.finish_layer(level_id); } }; // Sequential version (for testing) // for(unsigned l = 0; l < levels.size(); ++l) process_level(l); // Print all the layers in parallel tbb::parallel_for(0, levels.size(), process_level); }; using slaposFn = std::function; using slapsFn = std::function; std::array objectsteps = { slaposObjectSlice, slaposSupportIslands, slaposSupportPoints, slaposSupportTree, slaposBasePool, slaposSliceSupports }; std::array pobj_program = { slice_model, [](SLAPrintObject&){}, // slaposSupportIslands now empty support_points, support_tree, base_pool, slice_supports }; std::array print_program = { rasterize, [](){} // validate }; for(SLAPrintObject * po : m_objects) { for(size_t s = 0; s < pobj_program.size(); ++s) { auto currentstep = objectsteps[s]; // Cancellation checking. Each step will check for cancellation // on its own and return earlier gracefully. Just after it returns // execution gets to this point and throws the canceled signal. throw_if_canceled(); if(po->m_stepmask[s] && !po->is_step_done(currentstep)) { set_status(OBJ_STEP_LEVELS[currentstep], OBJ_STEP_LABELS[currentstep]); po->set_started(currentstep); pobj_program[s](*po); po->set_done(currentstep); } } } std::array printsteps = { slapsRasterize, slapsValidate }; for(size_t s = 0; s < print_program.size(); ++s) { auto currentstep = printsteps[s]; throw_if_canceled(); if(m_stepmask[s] && !is_step_done(currentstep)) { set_status(PRINT_STEP_LEVELS[currentstep], PRINT_STEP_LABELS[currentstep]); set_started(currentstep); print_program[s](); set_done(currentstep); } } // If everything vent well set_status(100, L("Slicing done")); } void SLAPrint::render_supports(SLASupportRenderer &renderer) { std::cout << "Would show the SLA supports" << std::endl; } SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object): Inherited(print), m_model_object(model_object), m_supportdata(new SupportData()), m_stepmask(slaposCount, true) { m_supportdata->emesh = sla::to_eigenmesh(*m_model_object); m_supportdata->support_points = sla::support_points(*m_model_object); std::cout << "support points copied " << m_supportdata->support_points.rows() << std::endl; } SLAPrintObject::~SLAPrintObject() {} TriangleMesh SLAPrintObject::support_mesh() const { return make_cube(10., 10., 10.); } TriangleMesh SLAPrintObject::pad_mesh() const { return make_cube(10., 10., 10.); } } // namespace Slic3r