#include "Model.hpp" #include "libslic3r.h" #include "BuildVolume.hpp" #include "Exception.hpp" #include "Model.hpp" #include "ModelArrange.hpp" #include "Geometry/ConvexHull.hpp" #include "MTUtils.hpp" #include "TriangleMeshSlicer.hpp" #include "TriangleSelector.hpp" #include "Format/AMF.hpp" #include "Format/OBJ.hpp" #include "Format/STL.hpp" #include "Format/3mf.hpp" #include #include #include #include #include #include #include "SVG.hpp" #include #include "GCodeWriter.hpp" namespace Slic3r { Model& Model::assign_copy(const Model &rhs) { this->copy_id(rhs); // copy materials this->clear_materials(); this->materials = rhs.materials; for (std::pair &m : this->materials) { // Copy including the ID and m_model. m.second = new ModelMaterial(*m.second); m.second->set_model(this); } // copy objects this->clear_objects(); this->objects.reserve(rhs.objects.size()); for (const ModelObject *model_object : rhs.objects) { // Copy including the ID, leave ID set to invalid (zero). auto mo = ModelObject::new_copy(*model_object); mo->set_model(this); this->objects.emplace_back(mo); } // copy custom code per height this->custom_gcode_per_print_z = rhs.custom_gcode_per_print_z; return *this; } Model& Model::assign_copy(Model &&rhs) { this->copy_id(rhs); // Move materials, adjust the parent pointer. this->clear_materials(); this->materials = std::move(rhs.materials); for (std::pair &m : this->materials) m.second->set_model(this); rhs.materials.clear(); // Move objects, adjust the parent pointer. this->clear_objects(); this->objects = std::move(rhs.objects); for (ModelObject *model_object : this->objects) model_object->set_model(this); rhs.objects.clear(); // copy custom code per height this->custom_gcode_per_print_z = std::move(rhs.custom_gcode_per_print_z); return *this; } void Model::assign_new_unique_ids_recursive() { this->set_new_unique_id(); for (std::pair &m : this->materials) m.second->assign_new_unique_ids_recursive(); for (ModelObject *model_object : this->objects) model_object->assign_new_unique_ids_recursive(); } void Model::update_links_bottom_up_recursive() { for (std::pair &kvp : this->materials) kvp.second->set_model(this); for (ModelObject *model_object : this->objects) { model_object->set_model(this); for (ModelInstance *model_instance : model_object->instances) model_instance->set_model_object(model_object); for (ModelVolume *model_volume : model_object->volumes) model_volume->set_model_object(model_object); } } // Loading model from a file, it may be a simple geometry file as STL or OBJ, however it may be a project file as well. Model Model::read_from_file(const std::string& input_file, DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, LoadAttributes options) { Model model; DynamicPrintConfig temp_config; ConfigSubstitutionContext temp_config_substitutions_context(ForwardCompatibilitySubstitutionRule::EnableSilent); if (config == nullptr) config = &temp_config; if (config_substitutions == nullptr) config_substitutions = &temp_config_substitutions_context; bool result = false; if (boost::algorithm::iends_with(input_file, ".stl")) result = load_stl(input_file.c_str(), &model); else if (boost::algorithm::iends_with(input_file, ".obj")) result = load_obj(input_file.c_str(), &model); else if (boost::algorithm::iends_with(input_file, ".amf") || boost::algorithm::iends_with(input_file, ".amf.xml")) result = load_amf(input_file.c_str(), config, config_substitutions, &model, options & LoadAttribute::CheckVersion); else if (boost::algorithm::iends_with(input_file, ".3mf")) //FIXME options & LoadAttribute::CheckVersion ? result = load_3mf(input_file.c_str(), *config, *config_substitutions, &model, false); else throw Slic3r::RuntimeError("Unknown file format. Input file must have .stl, .obj, .amf(.xml) or .prusa extension."); if (! result) throw Slic3r::RuntimeError("Loading of a model file failed."); if (model.objects.empty()) throw Slic3r::RuntimeError("The supplied file couldn't be read because it's empty"); for (ModelObject *o : model.objects) o->input_file = input_file; if (options & LoadAttribute::AddDefaultInstances) model.add_default_instances(); CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config); CustomGCode::check_mode_for_custom_gcode_per_print_z(model.custom_gcode_per_print_z); sort_remove_duplicates(config_substitutions->substitutions); return model; } // Loading model from a file (3MF or AMF), not from a simple geometry file (STL or OBJ). Model Model::read_from_archive(const std::string& input_file, DynamicPrintConfig* config, ConfigSubstitutionContext* config_substitutions, LoadAttributes options) { assert(config != nullptr); assert(config_substitutions != nullptr); Model model; bool result = false; if (boost::algorithm::iends_with(input_file, ".3mf")) result = load_3mf(input_file.c_str(), *config, *config_substitutions, &model, options & LoadAttribute::CheckVersion); else if (boost::algorithm::iends_with(input_file, ".zip.amf")) result = load_amf(input_file.c_str(), config, config_substitutions, &model, options & LoadAttribute::CheckVersion); else throw Slic3r::RuntimeError("Unknown file format. Input file must have .3mf or .zip.amf extension."); if (!result) throw Slic3r::RuntimeError("Loading of a model file failed."); for (ModelObject *o : model.objects) { // if (boost::algorithm::iends_with(input_file, ".zip.amf")) // { // // we remove the .zip part of the extension to avoid it be added to filenames when exporting // o->input_file = boost::ireplace_last_copy(input_file, ".zip.", "."); // } // else o->input_file = input_file; } if (options & LoadAttribute::AddDefaultInstances) model.add_default_instances(); CustomGCode::update_custom_gcode_per_print_z_from_config(model.custom_gcode_per_print_z, config); CustomGCode::check_mode_for_custom_gcode_per_print_z(model.custom_gcode_per_print_z); handle_legacy_sla(*config); return model; } ModelObject* Model::add_object() { this->objects.emplace_back(new ModelObject(this)); return this->objects.back(); } ModelObject* Model::add_object(const char *name, const char *path, const TriangleMesh &mesh) { ModelObject* new_object = new ModelObject(this); this->objects.push_back(new_object); new_object->name = name; new_object->input_file = path; ModelVolume *new_volume = new_object->add_volume(mesh); new_volume->name = name; new_volume->source.input_file = path; new_volume->source.object_idx = (int)this->objects.size() - 1; new_volume->source.volume_idx = (int)new_object->volumes.size() - 1; new_object->invalidate_bounding_box(); return new_object; } ModelObject* Model::add_object(const char *name, const char *path, TriangleMesh &&mesh) { ModelObject* new_object = new ModelObject(this); this->objects.push_back(new_object); new_object->name = name; new_object->input_file = path; ModelVolume *new_volume = new_object->add_volume(std::move(mesh)); new_volume->name = name; new_volume->source.input_file = path; new_volume->source.object_idx = (int)this->objects.size() - 1; new_volume->source.volume_idx = (int)new_object->volumes.size() - 1; new_object->invalidate_bounding_box(); return new_object; } ModelObject* Model::add_object(const ModelObject &other) { ModelObject* new_object = ModelObject::new_clone(other); new_object->set_model(this); this->objects.push_back(new_object); return new_object; } void Model::delete_object(size_t idx) { ModelObjectPtrs::iterator i = this->objects.begin() + idx; delete *i; this->objects.erase(i); } bool Model::delete_object(ModelObject* object) { if (object != nullptr) { size_t idx = 0; for (ModelObject *model_object : objects) { if (model_object == object) { delete model_object; objects.erase(objects.begin() + idx); return true; } ++ idx; } } return false; } bool Model::delete_object(ObjectID id) { if (id.id != 0) { size_t idx = 0; for (ModelObject *model_object : objects) { if (model_object->id() == id) { delete model_object; objects.erase(objects.begin() + idx); return true; } ++ idx; } } return false; } void Model::clear_objects() { for (ModelObject *o : this->objects) delete o; this->objects.clear(); } void Model::delete_material(t_model_material_id material_id) { ModelMaterialMap::iterator i = this->materials.find(material_id); if (i != this->materials.end()) { delete i->second; this->materials.erase(i); } } void Model::clear_materials() { for (auto &m : this->materials) delete m.second; this->materials.clear(); } ModelMaterial* Model::add_material(t_model_material_id material_id) { assert(! material_id.empty()); ModelMaterial* material = this->get_material(material_id); if (material == nullptr) material = this->materials[material_id] = new ModelMaterial(this); return material; } ModelMaterial* Model::add_material(t_model_material_id material_id, const ModelMaterial &other) { assert(! material_id.empty()); // delete existing material if any ModelMaterial* material = this->get_material(material_id); delete material; // set new material material = new ModelMaterial(other); material->set_model(this); this->materials[material_id] = material; return material; } // makes sure all objects have at least one instance bool Model::add_default_instances() { // apply a default position to all objects not having one for (ModelObject *o : this->objects) if (o->instances.empty()) o->add_instance(); return true; } // this returns the bounding box of the *transformed* instances BoundingBoxf3 Model::bounding_box() const { BoundingBoxf3 bb; for (ModelObject *o : this->objects) bb.merge(o->bounding_box()); return bb; } unsigned int Model::update_print_volume_state(const BuildVolume &build_volume) { unsigned int num_printable = 0; for (ModelObject* model_object : this->objects) num_printable += model_object->update_instances_print_volume_state(build_volume); return num_printable; } bool Model::center_instances_around_point(const Vec2d &point) { BoundingBoxf3 bb; for (ModelObject *o : this->objects) for (size_t i = 0; i < o->instances.size(); ++ i) bb.merge(o->instance_bounding_box(i, false)); Vec2d shift2 = point - to_2d(bb.center()); if (std::abs(shift2(0)) < EPSILON && std::abs(shift2(1)) < EPSILON) // No significant shift, don't do anything. return false; Vec3d shift3 = Vec3d(shift2(0), shift2(1), 0.0); for (ModelObject *o : this->objects) { for (ModelInstance *i : o->instances) i->set_offset(i->get_offset() + shift3); o->invalidate_bounding_box(); } return true; } // flattens everything to a single mesh TriangleMesh Model::mesh() const { TriangleMesh mesh; for (const ModelObject *o : this->objects) mesh.merge(o->mesh()); return mesh; } void Model::duplicate_objects_grid(size_t x, size_t y, coordf_t dist) { if (this->objects.size() > 1) throw "Grid duplication is not supported with multiple objects"; if (this->objects.empty()) throw "No objects!"; ModelObject* object = this->objects.front(); object->clear_instances(); Vec3d ext_size = object->bounding_box().size() + dist * Vec3d::Ones(); for (size_t x_copy = 1; x_copy <= x; ++x_copy) { for (size_t y_copy = 1; y_copy <= y; ++y_copy) { ModelInstance* instance = object->add_instance(); instance->set_offset(Vec3d(ext_size(0) * (double)(x_copy - 1), ext_size(1) * (double)(y_copy - 1), 0.0)); } } } bool Model::looks_like_multipart_object() const { if (this->objects.size() <= 1) return false; double zmin = std::numeric_limits::max(); for (const ModelObject *obj : this->objects) { if (obj->volumes.size() > 1 || obj->config.keys().size() > 1) return false; for (const ModelVolume *vol : obj->volumes) { double zmin_this = vol->mesh().bounding_box().min(2); if (zmin == std::numeric_limits::max()) zmin = zmin_this; else if (std::abs(zmin - zmin_this) > EPSILON) // The volumes don't share zmin. return true; } } return false; } // Generate next extruder ID string, in the range of (1, max_extruders). static inline int auto_extruder_id(unsigned int max_extruders, unsigned int &cntr) { int out = ++ cntr; if (cntr == max_extruders) cntr = 0; return out; } void Model::convert_multipart_object(unsigned int max_extruders) { assert(this->objects.size() >= 2); if (this->objects.size() < 2) return; ModelObject* object = new ModelObject(this); object->input_file = this->objects.front()->input_file; object->name = boost::filesystem::path(this->objects.front()->input_file).stem().string(); //FIXME copy the config etc? unsigned int extruder_counter = 0; for (const ModelObject* o : this->objects) for (const ModelVolume* v : o->volumes) { // If there are more than one object, put all volumes together // Each object may contain any number of volumes and instances // The volumes transformations are relative to the object containing them... Geometry::Transformation trafo_volume = v->get_transformation(); // Revert the centering operation. trafo_volume.set_offset(trafo_volume.get_offset() - o->origin_translation); int counter = 1; auto copy_volume = [o, max_extruders, &counter, &extruder_counter](ModelVolume *new_v) { assert(new_v != nullptr); new_v->name = (counter > 1) ? o->name + "_" + std::to_string(counter++) : o->name; new_v->config.set("extruder", auto_extruder_id(max_extruders, extruder_counter)); return new_v; }; if (o->instances.empty()) { copy_volume(object->add_volume(*v))->set_transformation(trafo_volume); } else { for (const ModelInstance* i : o->instances) // ...so, transform everything to a common reference system (world) copy_volume(object->add_volume(*v))->set_transformation(i->get_transformation() * trafo_volume); } } // commented-out to fix #2868 // object->add_instance(); // object->instances[0]->set_offset(object->raw_mesh_bounding_box().center()); this->clear_objects(); this->objects.push_back(object); } static constexpr const double volume_threshold_inches = 9.0; // 9 = 3*3*3; bool Model::looks_like_imperial_units() const { if (this->objects.size() == 0) return false; for (ModelObject* obj : this->objects) if (obj->get_object_stl_stats().volume < volume_threshold_inches) return true; return false; } void Model::convert_from_imperial_units(bool only_small_volumes) { static constexpr const float in_to_mm = 25.4f; for (ModelObject* obj : this->objects) if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_inches) { obj->scale_mesh_after_creation(in_to_mm); for (ModelVolume* v : obj->volumes) { assert(! v->source.is_converted_from_meters); v->source.is_converted_from_inches = true; } } } static constexpr const double volume_threshold_meters = 0.001; // 0.001 = 0.1*0.1*0.1 bool Model::looks_like_saved_in_meters() const { if (this->objects.size() == 0) return false; for (ModelObject* obj : this->objects) if (obj->get_object_stl_stats().volume < volume_threshold_meters) return true; return false; } void Model::convert_from_meters(bool only_small_volumes) { static constexpr const double m_to_mm = 1000; for (ModelObject* obj : this->objects) if (! only_small_volumes || obj->get_object_stl_stats().volume < volume_threshold_meters) { obj->scale_mesh_after_creation(m_to_mm); for (ModelVolume* v : obj->volumes) { assert(! v->source.is_converted_from_inches); v->source.is_converted_from_meters = true; } } } static constexpr const double zero_volume = 0.0000000001; int Model::removed_objects_with_zero_volume() { if (objects.size() == 0) return 0; int removed = 0; for (int i = int(objects.size()) - 1; i >= 0; i--) if (objects[i]->get_object_stl_stats().volume < zero_volume) { delete_object(size_t(i)); removed++; } return removed; } void Model::adjust_min_z() { if (objects.empty()) return; if (bounding_box().min(2) < 0.0) { for (ModelObject* obj : objects) { if (obj != nullptr) { coordf_t obj_min_z = obj->bounding_box().min(2); if (obj_min_z < 0.0) obj->translate_instances(Vec3d(0.0, 0.0, -obj_min_z)); } } } } // Propose a filename including path derived from the ModelObject's input path. // If object's name is filled in, use the object name, otherwise use the input name. std::string Model::propose_export_file_name_and_path() const { std::string input_file; for (const ModelObject *model_object : this->objects) for (ModelInstance *model_instance : model_object->instances) if (model_instance->is_printable()) { input_file = model_object->get_export_filename(); if (!input_file.empty()) goto end; // Other instances will produce the same name, skip them. break; } end: return input_file; } std::string Model::propose_export_file_name_and_path(const std::string &new_extension) const { return boost::filesystem::path(this->propose_export_file_name_and_path()).replace_extension(new_extension).string(); } bool Model::is_fdm_support_painted() const { return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_fdm_support_painted(); }); } bool Model::is_seam_painted() const { return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_seam_painted(); }); } bool Model::is_mm_painted() const { return std::any_of(this->objects.cbegin(), this->objects.cend(), [](const ModelObject *mo) { return mo->is_mm_painted(); }); } ModelObject::~ModelObject() { this->clear_volumes(); this->clear_instances(); } // maintains the m_model pointer ModelObject& ModelObject::assign_copy(const ModelObject &rhs) { assert(this->id().invalid() || this->id() == rhs.id()); assert(this->config.id().invalid() || this->config.id() == rhs.config.id()); this->copy_id(rhs); this->name = rhs.name; this->input_file = rhs.input_file; // Copies the config's ID this->config = rhs.config; assert(this->config.id() == rhs.config.id()); this->sla_support_points = rhs.sla_support_points; this->sla_points_status = rhs.sla_points_status; this->sla_drain_holes = rhs.sla_drain_holes; this->layer_config_ranges = rhs.layer_config_ranges; this->layer_height_profile = rhs.layer_height_profile; this->printable = rhs.printable; this->origin_translation = rhs.origin_translation; m_bounding_box = rhs.m_bounding_box; m_bounding_box_valid = rhs.m_bounding_box_valid; m_raw_bounding_box = rhs.m_raw_bounding_box; m_raw_bounding_box_valid = rhs.m_raw_bounding_box_valid; m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box; m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid; this->clear_volumes(); this->volumes.reserve(rhs.volumes.size()); for (ModelVolume *model_volume : rhs.volumes) { this->volumes.emplace_back(new ModelVolume(*model_volume)); this->volumes.back()->set_model_object(this); } this->clear_instances(); this->instances.reserve(rhs.instances.size()); for (const ModelInstance *model_instance : rhs.instances) { this->instances.emplace_back(new ModelInstance(*model_instance)); this->instances.back()->set_model_object(this); } return *this; } // maintains the m_model pointer ModelObject& ModelObject::assign_copy(ModelObject &&rhs) { assert(this->id().invalid()); this->copy_id(rhs); this->name = std::move(rhs.name); this->input_file = std::move(rhs.input_file); // Moves the config's ID this->config = std::move(rhs.config); assert(this->config.id() == rhs.config.id()); this->sla_support_points = std::move(rhs.sla_support_points); this->sla_points_status = std::move(rhs.sla_points_status); this->sla_drain_holes = std::move(rhs.sla_drain_holes); this->layer_config_ranges = std::move(rhs.layer_config_ranges); this->layer_height_profile = std::move(rhs.layer_height_profile); this->printable = std::move(rhs.printable); this->origin_translation = std::move(rhs.origin_translation); m_bounding_box = std::move(rhs.m_bounding_box); m_bounding_box_valid = std::move(rhs.m_bounding_box_valid); m_raw_bounding_box = rhs.m_raw_bounding_box; m_raw_bounding_box_valid = rhs.m_raw_bounding_box_valid; m_raw_mesh_bounding_box = rhs.m_raw_mesh_bounding_box; m_raw_mesh_bounding_box_valid = rhs.m_raw_mesh_bounding_box_valid; this->clear_volumes(); this->volumes = std::move(rhs.volumes); rhs.volumes.clear(); for (ModelVolume *model_volume : this->volumes) model_volume->set_model_object(this); this->clear_instances(); this->instances = std::move(rhs.instances); rhs.instances.clear(); for (ModelInstance *model_instance : this->instances) model_instance->set_model_object(this); return *this; } void ModelObject::assign_new_unique_ids_recursive() { this->set_new_unique_id(); for (ModelVolume *model_volume : this->volumes) model_volume->assign_new_unique_ids_recursive(); for (ModelInstance *model_instance : this->instances) model_instance->assign_new_unique_ids_recursive(); this->layer_height_profile.set_new_unique_id(); } // Clone this ModelObject including its volumes and instances, keep the IDs of the copies equal to the original. // Called by Print::apply() to clone the Model / ModelObject hierarchy to the back end for background processing. //ModelObject* ModelObject::clone(Model *parent) //{ // return new ModelObject(parent, *this, true); //} ModelVolume* ModelObject::add_volume(const TriangleMesh &mesh) { ModelVolume* v = new ModelVolume(this, mesh); this->volumes.push_back(v); v->center_geometry_after_creation(); this->invalidate_bounding_box(); return v; } ModelVolume* ModelObject::add_volume(TriangleMesh &&mesh, ModelVolumeType type /*= ModelVolumeType::MODEL_PART*/) { ModelVolume* v = new ModelVolume(this, std::move(mesh), type); this->volumes.push_back(v); v->center_geometry_after_creation(); this->invalidate_bounding_box(); return v; } ModelVolume* ModelObject::add_volume(const ModelVolume &other, ModelVolumeType type /*= ModelVolumeType::INVALID*/) { ModelVolume* v = new ModelVolume(this, other); if (type != ModelVolumeType::INVALID && v->type() != type) v->set_type(type); this->volumes.push_back(v); // The volume should already be centered at this point of time when copying shared pointers of the triangle mesh and convex hull. // v->center_geometry_after_creation(); // this->invalidate_bounding_box(); return v; } ModelVolume* ModelObject::add_volume(const ModelVolume &other, TriangleMesh &&mesh) { ModelVolume* v = new ModelVolume(this, other, std::move(mesh)); this->volumes.push_back(v); v->center_geometry_after_creation(); this->invalidate_bounding_box(); return v; } void ModelObject::delete_volume(size_t idx) { ModelVolumePtrs::iterator i = this->volumes.begin() + idx; delete *i; this->volumes.erase(i); if (this->volumes.size() == 1) { // only one volume left // we need to collapse the volume transform into the instances transforms because now when selecting this volume // it will be seen as a single full instance ans so its volume transform may be ignored ModelVolume* v = this->volumes.front(); Transform3d v_t = v->get_transformation().get_matrix(); for (ModelInstance* inst : this->instances) { inst->set_transformation(Geometry::Transformation(inst->get_transformation().get_matrix() * v_t)); } Geometry::Transformation t; v->set_transformation(t); v->set_new_unique_id(); } this->invalidate_bounding_box(); } void ModelObject::clear_volumes() { for (ModelVolume *v : this->volumes) delete v; this->volumes.clear(); this->invalidate_bounding_box(); } bool ModelObject::is_fdm_support_painted() const { return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_fdm_support_painted(); }); } bool ModelObject::is_seam_painted() const { return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_seam_painted(); }); } bool ModelObject::is_mm_painted() const { return std::any_of(this->volumes.cbegin(), this->volumes.cend(), [](const ModelVolume *mv) { return mv->is_mm_painted(); }); } void ModelObject::sort_volumes(bool full_sort) { // sort volumes inside the object to order "Model Part, Negative Volume, Modifier, Support Blocker and Support Enforcer. " if (full_sort) std::stable_sort(volumes.begin(), volumes.end(), [](ModelVolume* vl, ModelVolume* vr) { return vl->type() < vr->type(); }); // sort have to controll "place" of the support blockers/enforcers. But one of the model parts have to be on the first place. else std::stable_sort(volumes.begin(), volumes.end(), [](ModelVolume* vl, ModelVolume* vr) { ModelVolumeType vl_type = vl->type() > ModelVolumeType::PARAMETER_MODIFIER ? vl->type() : ModelVolumeType::PARAMETER_MODIFIER; ModelVolumeType vr_type = vr->type() > ModelVolumeType::PARAMETER_MODIFIER ? vr->type() : ModelVolumeType::PARAMETER_MODIFIER; return vl_type < vr_type; }); } ModelInstance* ModelObject::add_instance() { ModelInstance* i = new ModelInstance(this); this->instances.push_back(i); this->invalidate_bounding_box(); return i; } ModelInstance* ModelObject::add_instance(const ModelInstance &other) { ModelInstance* i = new ModelInstance(this, other); this->instances.push_back(i); this->invalidate_bounding_box(); return i; } ModelInstance* ModelObject::add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror) { auto *instance = add_instance(); instance->set_offset(offset); instance->set_scaling_factor(scaling_factor); instance->set_rotation(rotation); instance->set_mirror(mirror); return instance; } void ModelObject::delete_instance(size_t idx) { ModelInstancePtrs::iterator i = this->instances.begin() + idx; delete *i; this->instances.erase(i); this->invalidate_bounding_box(); } void ModelObject::delete_last_instance() { this->delete_instance(this->instances.size() - 1); } void ModelObject::clear_instances() { for (ModelInstance *i : this->instances) delete i; this->instances.clear(); this->invalidate_bounding_box(); } // Returns the bounding box of the transformed instances. // This bounding box is approximate and not snug. const BoundingBoxf3& ModelObject::bounding_box() const { if (! m_bounding_box_valid) { m_bounding_box_valid = true; BoundingBoxf3 raw_bbox = this->raw_mesh_bounding_box(); m_bounding_box.reset(); for (const ModelInstance *i : this->instances) m_bounding_box.merge(i->transform_bounding_box(raw_bbox)); } return m_bounding_box; } // A mesh containing all transformed instances of this object. TriangleMesh ModelObject::mesh() const { TriangleMesh mesh; TriangleMesh raw_mesh = this->raw_mesh(); for (const ModelInstance *i : this->instances) { TriangleMesh m = raw_mesh; i->transform_mesh(&m); mesh.merge(m); } return mesh; } // Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes. // Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D plater // and to display the object statistics at ModelObject::print_info(). TriangleMesh ModelObject::raw_mesh() const { TriangleMesh mesh; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { TriangleMesh vol_mesh(v->mesh()); vol_mesh.transform(v->get_matrix()); mesh.merge(vol_mesh); } return mesh; } // Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes. // Currently used by ModelObject::mesh(), to calculate the 2D envelope for 2D plater // and to display the object statistics at ModelObject::print_info(). indexed_triangle_set ModelObject::raw_indexed_triangle_set() const { size_t num_vertices = 0; size_t num_faces = 0; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { num_vertices += v->mesh().its.vertices.size(); num_faces += v->mesh().its.indices.size(); } indexed_triangle_set out; out.vertices.reserve(num_vertices); out.indices.reserve(num_faces); for (const ModelVolume *v : this->volumes) if (v->is_model_part()) { size_t i = out.vertices.size(); size_t j = out.indices.size(); append(out.vertices, v->mesh().its.vertices); append(out.indices, v->mesh().its.indices); auto m = v->get_matrix(); for (; i < out.vertices.size(); ++ i) out.vertices[i] = (m * out.vertices[i].cast()).cast().eval(); if (v->is_left_handed()) { for (; j < out.indices.size(); ++ j) std::swap(out.indices[j][0], out.indices[j][1]); } } return out; } const BoundingBoxf3& ModelObject::raw_mesh_bounding_box() const { if (! m_raw_mesh_bounding_box_valid) { m_raw_mesh_bounding_box_valid = true; m_raw_mesh_bounding_box.reset(); for (const ModelVolume *v : this->volumes) if (v->is_model_part()) m_raw_mesh_bounding_box.merge(v->mesh().transformed_bounding_box(v->get_matrix())); } return m_raw_mesh_bounding_box; } BoundingBoxf3 ModelObject::full_raw_mesh_bounding_box() const { BoundingBoxf3 bb; for (const ModelVolume *v : this->volumes) bb.merge(v->mesh().transformed_bounding_box(v->get_matrix())); return bb; } // A transformed snug bounding box around the non-modifier object volumes, without the translation applied. // This bounding box is only used for the actual slicing and for layer editing UI to calculate the layers. const BoundingBoxf3& ModelObject::raw_bounding_box() const { if (! m_raw_bounding_box_valid) { m_raw_bounding_box_valid = true; m_raw_bounding_box.reset(); if (this->instances.empty()) throw Slic3r::InvalidArgument("Can't call raw_bounding_box() with no instances"); const Transform3d& inst_matrix = this->instances.front()->get_transformation().get_matrix(true); for (const ModelVolume *v : this->volumes) if (v->is_model_part()) m_raw_bounding_box.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix())); } return m_raw_bounding_box; } // This returns an accurate snug bounding box of the transformed object instance, without the translation applied. BoundingBoxf3 ModelObject::instance_bounding_box(size_t instance_idx, bool dont_translate) const { BoundingBoxf3 bb; const Transform3d& inst_matrix = this->instances[instance_idx]->get_transformation().get_matrix(dont_translate); for (ModelVolume *v : this->volumes) { if (v->is_model_part()) bb.merge(v->mesh().transformed_bounding_box(inst_matrix * v->get_matrix())); } return bb; } // Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane. // This method is cheap in that it does not make any unnecessary copy of the volume meshes. // This method is used by the auto arrange function. Polygon ModelObject::convex_hull_2d(const Transform3d& trafo_instance) const { Points pts; for (const ModelVolume* v : volumes) { if (v->is_model_part()) append(pts, its_convex_hull_2d_above(v->mesh().its, (trafo_instance * v->get_matrix()).cast(), 0.0f).points); } return Geometry::convex_hull(std::move(pts)); } void ModelObject::center_around_origin(bool include_modifiers) { // calculate the displacements needed to // center this object around the origin const BoundingBoxf3 bb = include_modifiers ? full_raw_mesh_bounding_box() : raw_mesh_bounding_box(); // Shift is the vector from the center of the bounding box to the origin const Vec3d shift = -bb.center(); this->translate(shift); this->origin_translation += shift; } void ModelObject::ensure_on_bed(bool allow_negative_z) { double z_offset = 0.0; if (allow_negative_z) { if (parts_count() == 1) { const double min_z = get_min_z(); const double max_z = get_max_z(); if (min_z >= SINKING_Z_THRESHOLD || max_z < 0.0) z_offset = -min_z; } else { const double max_z = get_max_z(); if (max_z < SINKING_MIN_Z_THRESHOLD) z_offset = SINKING_MIN_Z_THRESHOLD - max_z; } } else z_offset = -get_min_z(); if (z_offset != 0.0) translate_instances(z_offset * Vec3d::UnitZ()); } void ModelObject::translate_instances(const Vec3d& vector) { for (size_t i = 0; i < instances.size(); ++i) { translate_instance(i, vector); } } void ModelObject::translate_instance(size_t instance_idx, const Vec3d& vector) { assert(instance_idx < instances.size()); ModelInstance* i = instances[instance_idx]; i->set_offset(i->get_offset() + vector); invalidate_bounding_box(); } void ModelObject::translate(double x, double y, double z) { for (ModelVolume *v : this->volumes) { v->translate(x, y, z); } if (m_bounding_box_valid) m_bounding_box.translate(x, y, z); } void ModelObject::scale(const Vec3d &versor) { for (ModelVolume *v : this->volumes) { v->scale(versor); } this->invalidate_bounding_box(); } void ModelObject::rotate(double angle, Axis axis) { for (ModelVolume *v : this->volumes) { v->rotate(angle, axis); } center_around_origin(); this->invalidate_bounding_box(); } void ModelObject::rotate(double angle, const Vec3d& axis) { for (ModelVolume *v : this->volumes) { v->rotate(angle, axis); } center_around_origin(); this->invalidate_bounding_box(); } void ModelObject::mirror(Axis axis) { for (ModelVolume *v : this->volumes) { v->mirror(axis); } this->invalidate_bounding_box(); } // This method could only be called before the meshes of this ModelVolumes are not shared! void ModelObject::scale_mesh_after_creation(const float scale) { for (ModelVolume *v : this->volumes) { v->scale_geometry_after_creation(scale); v->set_offset(Vec3d(scale, scale, scale).cwiseProduct(v->get_offset())); } this->invalidate_bounding_box(); } void ModelObject::convert_units(ModelObjectPtrs& new_objects, ConversionType conv_type, std::vector volume_idxs) { BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - start"; ModelObject* new_object = new_clone(*this); float koef = conv_type == ConversionType::CONV_FROM_INCH ? 25.4f : conv_type == ConversionType::CONV_TO_INCH ? 0.0393700787f : conv_type == ConversionType::CONV_FROM_METER ? 1000.f : conv_type == ConversionType::CONV_TO_METER ? 0.001f : 1.f; new_object->set_model(nullptr); new_object->sla_support_points.clear(); new_object->sla_drain_holes.clear(); new_object->sla_points_status = sla::PointsStatus::NoPoints; new_object->clear_volumes(); new_object->input_file.clear(); int vol_idx = 0; for (ModelVolume* volume : volumes) { if (!volume->mesh().empty()) { TriangleMesh mesh(volume->mesh()); ModelVolume* vol = new_object->add_volume(mesh); vol->name = volume->name; vol->set_type(volume->type()); // Don't copy the config's ID. vol->config.assign_config(volume->config); assert(vol->config.id().valid()); assert(vol->config.id() != volume->config.id()); vol->set_material(volume->material_id(), *volume->material()); vol->source.input_file = volume->source.input_file; vol->source.object_idx = (int)new_objects.size(); vol->source.volume_idx = vol_idx; vol->source.is_converted_from_inches = volume->source.is_converted_from_inches; vol->source.is_converted_from_meters = volume->source.is_converted_from_meters; vol->source.is_from_builtin_objects = volume->source.is_from_builtin_objects; vol->supported_facets.assign(volume->supported_facets); vol->seam_facets.assign(volume->seam_facets); vol->mmu_segmentation_facets.assign(volume->mmu_segmentation_facets); // Perform conversion only if the target "imperial" state is different from the current one. // This check supports conversion of "mixed" set of volumes, each with different "imperial" state. if (//vol->source.is_converted_from_inches != from_imperial && (volume_idxs.empty() || std::find(volume_idxs.begin(), volume_idxs.end(), vol_idx) != volume_idxs.end())) { vol->scale_geometry_after_creation(koef); vol->set_offset(Vec3d(koef, koef, koef).cwiseProduct(volume->get_offset())); if (conv_type == ConversionType::CONV_FROM_INCH || conv_type == ConversionType::CONV_TO_INCH) vol->source.is_converted_from_inches = conv_type == ConversionType::CONV_FROM_INCH; if (conv_type == ConversionType::CONV_FROM_METER || conv_type == ConversionType::CONV_TO_METER) vol->source.is_converted_from_meters = conv_type == ConversionType::CONV_FROM_METER; assert(! vol->source.is_converted_from_inches || ! vol->source.is_converted_from_meters); } else vol->set_offset(volume->get_offset()); } vol_idx ++; } new_object->invalidate_bounding_box(); new_objects.push_back(new_object); BOOST_LOG_TRIVIAL(trace) << "ModelObject::convert_units - end"; } size_t ModelObject::materials_count() const { std::set material_ids; for (const ModelVolume *v : this->volumes) material_ids.insert(v->material_id()); return material_ids.size(); } size_t ModelObject::facets_count() const { size_t num = 0; for (const ModelVolume *v : this->volumes) if (v->is_model_part()) num += v->mesh().facets_count(); return num; } size_t ModelObject::parts_count() const { size_t num = 0; for (const ModelVolume* v : this->volumes) if (v->is_model_part()) ++num; return num; } ModelObjectPtrs ModelObject::cut(size_t instance, coordf_t z, ModelObjectCutAttributes attributes) { if (! attributes.has(ModelObjectCutAttribute::KeepUpper) && ! attributes.has(ModelObjectCutAttribute::KeepLower)) return {}; BOOST_LOG_TRIVIAL(trace) << "ModelObject::cut - start"; // Clone the object to duplicate instances, materials etc. ModelObject* upper = attributes.has(ModelObjectCutAttribute::KeepUpper) ? ModelObject::new_clone(*this) : nullptr; ModelObject* lower = attributes.has(ModelObjectCutAttribute::KeepLower) ? ModelObject::new_clone(*this) : nullptr; if (attributes.has(ModelObjectCutAttribute::KeepUpper)) { upper->set_model(nullptr); upper->sla_support_points.clear(); upper->sla_drain_holes.clear(); upper->sla_points_status = sla::PointsStatus::NoPoints; upper->clear_volumes(); upper->input_file.clear(); } if (attributes.has(ModelObjectCutAttribute::KeepLower)) { lower->set_model(nullptr); lower->sla_support_points.clear(); lower->sla_drain_holes.clear(); lower->sla_points_status = sla::PointsStatus::NoPoints; lower->clear_volumes(); lower->input_file.clear(); } // Because transformations are going to be applied to meshes directly, // we reset transformation of all instances and volumes, // except for translation and Z-rotation on instances, which are preserved // in the transformation matrix and not applied to the mesh transform. // const auto instance_matrix = instances[instance]->get_matrix(true); const auto instance_matrix = Geometry::assemble_transform( Vec3d::Zero(), // don't apply offset instances[instance]->get_rotation().cwiseProduct(Vec3d(1.0, 1.0, 0.0)), // don't apply Z-rotation instances[instance]->get_scaling_factor(), instances[instance]->get_mirror() ); z -= instances[instance]->get_offset().z(); // Displacement (in instance coordinates) to be applied to place the upper parts Vec3d local_displace = Vec3d::Zero(); for (ModelVolume *volume : volumes) { const auto volume_matrix = volume->get_matrix(); volume->supported_facets.reset(); volume->seam_facets.reset(); volume->mmu_segmentation_facets.reset(); if (! volume->is_model_part()) { // Modifiers are not cut, but we still need to add the instance transformation // to the modifier volume transformation to preserve their shape properly. volume->set_transformation(Geometry::Transformation(instance_matrix * volume_matrix)); if (attributes.has(ModelObjectCutAttribute::KeepUpper)) upper->add_volume(*volume); if (attributes.has(ModelObjectCutAttribute::KeepLower)) lower->add_volume(*volume); } else if (! volume->mesh().empty()) { // Transform the mesh by the combined transformation matrix. // Flip the triangles in case the composite transformation is left handed. TriangleMesh mesh(volume->mesh()); mesh.transform(instance_matrix * volume_matrix, true); volume->reset_mesh(); // Reset volume transformation except for offset const Vec3d offset = volume->get_offset(); volume->set_transformation(Geometry::Transformation()); volume->set_offset(offset); // Perform cut TriangleMesh upper_mesh, lower_mesh; { indexed_triangle_set upper_its, lower_its; cut_mesh(mesh.its, float(z), &upper_its, &lower_its); if (attributes.has(ModelObjectCutAttribute::KeepUpper)) upper_mesh = TriangleMesh(upper_its); if (attributes.has(ModelObjectCutAttribute::KeepLower)) lower_mesh = TriangleMesh(lower_its); } if (attributes.has(ModelObjectCutAttribute::KeepUpper) && ! upper_mesh.empty()) { ModelVolume* vol = upper->add_volume(upper_mesh); vol->name = volume->name; // Don't copy the config's ID. vol->config.assign_config(volume->config); assert(vol->config.id().valid()); assert(vol->config.id() != volume->config.id()); vol->set_material(volume->material_id(), *volume->material()); } if (attributes.has(ModelObjectCutAttribute::KeepLower) && ! lower_mesh.empty()) { ModelVolume* vol = lower->add_volume(lower_mesh); vol->name = volume->name; // Don't copy the config's ID. vol->config.assign_config(volume->config); assert(vol->config.id().valid()); assert(vol->config.id() != volume->config.id()); vol->set_material(volume->material_id(), *volume->material()); // Compute the displacement (in instance coordinates) to be applied to place the upper parts // The upper part displacement is set to half of the lower part bounding box // this is done in hope at least a part of the upper part will always be visible and draggable local_displace = lower->full_raw_mesh_bounding_box().size().cwiseProduct(Vec3d(-0.5, -0.5, 0.0)); } } } ModelObjectPtrs res; if (attributes.has(ModelObjectCutAttribute::KeepUpper) && upper->volumes.size() > 0) { if (!upper->origin_translation.isApprox(Vec3d::Zero()) && instances[instance]->get_offset().isApprox(Vec3d::Zero())) { upper->center_around_origin(); upper->translate_instances(-upper->origin_translation); upper->origin_translation = Vec3d::Zero(); } // Reset instance transformation except offset and Z-rotation for (size_t i = 0; i < instances.size(); ++i) { auto &instance = upper->instances[i]; const Vec3d offset = instance->get_offset(); const double rot_z = instance->get_rotation().z(); const Vec3d displace = Geometry::assemble_transform(Vec3d::Zero(), instance->get_rotation()) * local_displace; instance->set_transformation(Geometry::Transformation()); instance->set_offset(offset + displace); instance->set_rotation(Vec3d(0.0, 0.0, rot_z)); } res.push_back(upper); } if (attributes.has(ModelObjectCutAttribute::KeepLower) && lower->volumes.size() > 0) { if (!lower->origin_translation.isApprox(Vec3d::Zero()) && instances[instance]->get_offset().isApprox(Vec3d::Zero())) { lower->center_around_origin(); lower->translate_instances(-lower->origin_translation); lower->origin_translation = Vec3d::Zero(); } // Reset instance transformation except offset and Z-rotation for (auto *instance : lower->instances) { const Vec3d offset = instance->get_offset(); const double rot_z = instance->get_rotation().z(); instance->set_transformation(Geometry::Transformation()); instance->set_offset(offset); instance->set_rotation(Vec3d(attributes.has(ModelObjectCutAttribute::FlipLower) ? Geometry::deg2rad(180.0) : 0.0, 0.0, rot_z)); } res.push_back(lower); } BOOST_LOG_TRIVIAL(trace) << "ModelObject::cut - end"; return res; } void ModelObject::split(ModelObjectPtrs* new_objects) { for (ModelVolume* volume : this->volumes) { if (volume->type() != ModelVolumeType::MODEL_PART) continue; std::vector meshes = volume->mesh().split(); size_t counter = 1; for (TriangleMesh &mesh : meshes) { // FIXME: crashes if not satisfied if (mesh.facets_count() < 3) continue; // XXX: this seems to be the only real usage of m_model, maybe refactor this so that it's not needed? ModelObject* new_object = m_model->add_object(); if (meshes.size() == 1) { new_object->name = volume->name; // Don't copy the config's ID. new_object->config.assign_config(this->config.size() > 0 ? this->config : volume->config); } else { new_object->name = this->name + (meshes.size() > 1 ? "_" + std::to_string(counter++) : ""); // Don't copy the config's ID. new_object->config.assign_config(this->config); } assert(new_object->config.id().valid()); assert(new_object->config.id() != this->config.id()); new_object->instances.reserve(this->instances.size()); for (const ModelInstance* model_instance : this->instances) new_object->add_instance(*model_instance); ModelVolume* new_vol = new_object->add_volume(*volume, std::move(mesh)); for (ModelInstance* model_instance : new_object->instances) { Vec3d shift = model_instance->get_transformation().get_matrix(true) * new_vol->get_offset(); model_instance->set_offset(model_instance->get_offset() + shift); } new_vol->set_offset(Vec3d::Zero()); // reset the source to disable reload from disk new_vol->source = ModelVolume::Source(); new_objects->emplace_back(new_object); } } } void ModelObject::merge() { if (this->volumes.size() == 1) { // We can't merge meshes if there's just one volume return; } TriangleMesh mesh; for (ModelVolume* volume : volumes) if (!volume->mesh().empty()) mesh.merge(volume->mesh()); this->clear_volumes(); ModelVolume* vol = this->add_volume(mesh); if (!vol) return; } // Support for non-uniform scaling of instances. If an instance is rotated by angles, which are not multiples of ninety degrees, // then the scaling in world coordinate system is not representable by the Geometry::Transformation structure. // This situation is solved by baking in the instance transformation into the mesh vertices. // Rotation and mirroring is being baked in. In case the instance scaling was non-uniform, it is baked in as well. void ModelObject::bake_xy_rotation_into_meshes(size_t instance_idx) { assert(instance_idx < this->instances.size()); const Geometry::Transformation reference_trafo = this->instances[instance_idx]->get_transformation(); if (Geometry::is_rotation_ninety_degrees(reference_trafo.get_rotation())) // nothing to do, scaling in the world coordinate space is possible in the representation of Geometry::Transformation. return; bool left_handed = reference_trafo.is_left_handed(); bool has_mirrorring = ! reference_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.)); bool uniform_scaling = std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().y()) < EPSILON && std::abs(reference_trafo.get_scaling_factor().x() - reference_trafo.get_scaling_factor().z()) < EPSILON; double new_scaling_factor = uniform_scaling ? reference_trafo.get_scaling_factor().x() : 1.; // Adjust the instances. for (size_t i = 0; i < this->instances.size(); ++ i) { ModelInstance &model_instance = *this->instances[i]; model_instance.set_rotation(Vec3d(0., 0., Geometry::rotation_diff_z(reference_trafo.get_rotation(), model_instance.get_rotation()))); model_instance.set_scaling_factor(Vec3d(new_scaling_factor, new_scaling_factor, new_scaling_factor)); model_instance.set_mirror(Vec3d(1., 1., 1.)); } // Adjust the meshes. // Transformation to be applied to the meshes. Eigen::Matrix3d mesh_trafo_3x3 = reference_trafo.get_matrix(true, false, uniform_scaling, ! has_mirrorring).matrix().block<3, 3>(0, 0); Transform3d volume_offset_correction = this->instances[instance_idx]->get_transformation().get_matrix().inverse() * reference_trafo.get_matrix(); for (ModelVolume *model_volume : this->volumes) { const Geometry::Transformation volume_trafo = model_volume->get_transformation(); bool volume_left_handed = volume_trafo.is_left_handed(); bool volume_has_mirrorring = ! volume_trafo.get_mirror().isApprox(Vec3d(1., 1., 1.)); bool volume_uniform_scaling = std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().y()) < EPSILON && std::abs(volume_trafo.get_scaling_factor().x() - volume_trafo.get_scaling_factor().z()) < EPSILON; double volume_new_scaling_factor = volume_uniform_scaling ? volume_trafo.get_scaling_factor().x() : 1.; // Transform the mesh. Matrix3d volume_trafo_3x3 = volume_trafo.get_matrix(true, false, volume_uniform_scaling, !volume_has_mirrorring).matrix().block<3, 3>(0, 0); // Following method creates a new shared_ptr model_volume->transform_this_mesh(mesh_trafo_3x3 * volume_trafo_3x3, left_handed != volume_left_handed); // Reset the rotation, scaling and mirroring. model_volume->set_rotation(Vec3d(0., 0., 0.)); model_volume->set_scaling_factor(Vec3d(volume_new_scaling_factor, volume_new_scaling_factor, volume_new_scaling_factor)); model_volume->set_mirror(Vec3d(1., 1., 1.)); // Move the reference point of the volume to compensate for the change of the instance trafo. model_volume->set_offset(volume_offset_correction * volume_trafo.get_offset()); // reset the source to disable reload from disk model_volume->source = ModelVolume::Source(); } this->invalidate_bounding_box(); } double ModelObject::get_min_z() const { if (instances.empty()) return 0.0; else { double min_z = DBL_MAX; for (size_t i = 0; i < instances.size(); ++i) { min_z = std::min(min_z, get_instance_min_z(i)); } return min_z; } } double ModelObject::get_max_z() const { if (instances.empty()) return 0.0; else { double max_z = -DBL_MAX; for (size_t i = 0; i < instances.size(); ++i) { max_z = std::max(max_z, get_instance_max_z(i)); } return max_z; } } double ModelObject::get_instance_min_z(size_t instance_idx) const { double min_z = DBL_MAX; const ModelInstance* inst = instances[instance_idx]; const Transform3d& mi = inst->get_matrix(true); for (const ModelVolume* v : volumes) { if (!v->is_model_part()) continue; const Transform3d mv = mi * v->get_matrix(); const TriangleMesh& hull = v->get_convex_hull(); for (const stl_triangle_vertex_indices& facet : hull.its.indices) for (int i = 0; i < 3; ++ i) min_z = std::min(min_z, (mv * hull.its.vertices[facet[i]].cast()).z()); } return min_z + inst->get_offset(Z); } double ModelObject::get_instance_max_z(size_t instance_idx) const { double max_z = -DBL_MAX; const ModelInstance* inst = instances[instance_idx]; const Transform3d& mi = inst->get_matrix(true); for (const ModelVolume* v : volumes) { if (!v->is_model_part()) continue; const Transform3d mv = mi * v->get_matrix(); const TriangleMesh& hull = v->get_convex_hull(); for (const stl_triangle_vertex_indices& facet : hull.its.indices) for (int i = 0; i < 3; ++i) max_z = std::max(max_z, (mv * hull.its.vertices[facet[i]].cast()).z()); } return max_z + inst->get_offset(Z); } unsigned int ModelObject::update_instances_print_volume_state(const BuildVolume &build_volume) { unsigned int num_printable = 0; enum { INSIDE = 1, OUTSIDE = 2 }; for (ModelInstance* model_instance : this->instances) { unsigned int inside_outside = 0; for (const ModelVolume* vol : this->volumes) if (vol->is_model_part()) { const Transform3d matrix = model_instance->get_matrix() * vol->get_matrix(); BuildVolume::ObjectState state = build_volume.object_state(vol->mesh().its, matrix.cast(), true /* may be below print bed */); if (state == BuildVolume::ObjectState::Inside) // Volume is completely inside. inside_outside |= INSIDE; else if (state == BuildVolume::ObjectState::Outside) // Volume is completely outside. inside_outside |= OUTSIDE; else if (state == BuildVolume::ObjectState::Below) { // Volume below the print bed, thus it is completely outside, however this does not prevent the object to be printable // if some of its volumes are still inside the build volume. } else // Volume colliding with the build volume. inside_outside |= INSIDE | OUTSIDE; } model_instance->print_volume_state = inside_outside == (INSIDE | OUTSIDE) ? ModelInstancePVS_Partly_Outside : inside_outside == INSIDE ? ModelInstancePVS_Inside : ModelInstancePVS_Fully_Outside; if (inside_outside == INSIDE) ++num_printable; } return num_printable; } void ModelObject::print_info() const { using namespace std; cout << fixed; boost::nowide::cout << "[" << boost::filesystem::path(this->input_file).filename().string() << "]" << endl; TriangleMesh mesh = this->raw_mesh(); BoundingBoxf3 bb = mesh.bounding_box(); Vec3d size = bb.size(); cout << "size_x = " << size(0) << endl; cout << "size_y = " << size(1) << endl; cout << "size_z = " << size(2) << endl; cout << "min_x = " << bb.min(0) << endl; cout << "min_y = " << bb.min(1) << endl; cout << "min_z = " << bb.min(2) << endl; cout << "max_x = " << bb.max(0) << endl; cout << "max_y = " << bb.max(1) << endl; cout << "max_z = " << bb.max(2) << endl; cout << "number_of_facets = " << mesh.facets_count() << endl; cout << "manifold = " << (mesh.stats().manifold() ? "yes" : "no") << endl; if (! mesh.stats().manifold()) cout << "open_edges = " << mesh.stats().open_edges << endl; if (mesh.stats().repaired()) { const RepairedMeshErrors& stats = mesh.stats().repaired_errors; if (stats.degenerate_facets > 0) cout << "degenerate_facets = " << stats.degenerate_facets << endl; if (stats.edges_fixed > 0) cout << "edges_fixed = " << stats.edges_fixed << endl; if (stats.facets_removed > 0) cout << "facets_removed = " << stats.facets_removed << endl; if (stats.facets_reversed > 0) cout << "facets_reversed = " << stats.facets_reversed << endl; if (stats.backwards_edges > 0) cout << "backwards_edges = " << stats.backwards_edges << endl; } cout << "number_of_parts = " << mesh.stats().number_of_parts << endl; cout << "volume = " << mesh.volume() << endl; } std::string ModelObject::get_export_filename() const { std::string ret = input_file; if (!name.empty()) { if (ret.empty()) // input_file was empty, just use name ret = name; else { // Replace file name in input_file with name, but keep the path and file extension. ret = (boost::filesystem::path(name).parent_path().empty()) ? (boost::filesystem::path(ret).parent_path() / name).make_preferred().string() : name; } } return ret; } TriangleMeshStats ModelObject::get_object_stl_stats() const { TriangleMeshStats full_stats; full_stats.volume = 0.f; // fill full_stats from all objet's meshes for (ModelVolume* volume : this->volumes) { const TriangleMeshStats& stats = volume->mesh().stats(); // initialize full_stats (for repaired errors) full_stats.open_edges += stats.open_edges; full_stats.repaired_errors.merge(stats.repaired_errors); // another used satistics value if (volume->is_model_part()) { Transform3d trans = instances.empty() ? volume->get_matrix() : (volume->get_matrix() * instances[0]->get_matrix()); full_stats.volume += stats.volume * std::fabs(trans.matrix().block(0, 0, 3, 3).determinant()); full_stats.number_of_parts += stats.number_of_parts; } } return full_stats; } int ModelObject::get_repaired_errors_count(const int vol_idx /*= -1*/) const { if (vol_idx >= 0) return this->volumes[vol_idx]->get_repaired_errors_count(); const RepairedMeshErrors& stats = get_object_stl_stats().repaired_errors; return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed + stats.facets_reversed + stats.backwards_edges; } void ModelVolume::set_material_id(t_model_material_id material_id) { m_material_id = material_id; // ensure m_material_id references an existing material if (! material_id.empty()) this->object->get_model()->add_material(material_id); } ModelMaterial* ModelVolume::material() const { return this->object->get_model()->get_material(m_material_id); } void ModelVolume::set_material(t_model_material_id material_id, const ModelMaterial &material) { m_material_id = material_id; if (! material_id.empty()) this->object->get_model()->add_material(material_id, material); } // Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config. int ModelVolume::extruder_id() const { int extruder_id = -1; if (this->is_model_part()) { const ConfigOption *opt = this->config.option("extruder"); if ((opt == nullptr) || (opt->getInt() == 0)) opt = this->object->config.option("extruder"); extruder_id = (opt == nullptr) ? 0 : opt->getInt(); } return extruder_id; } bool ModelVolume::is_splittable() const { // the call mesh.is_splittable() is expensive, so cache the value to calculate it only once if (m_is_splittable == -1) m_is_splittable = its_is_splittable(this->mesh().its); return m_is_splittable == 1; } void ModelVolume::center_geometry_after_creation(bool update_source_offset) { Vec3d shift = this->mesh().bounding_box().center(); if (!shift.isApprox(Vec3d::Zero())) { if (m_mesh) const_cast(m_mesh.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); if (m_convex_hull) const_cast(m_convex_hull.get())->translate(-(float)shift(0), -(float)shift(1), -(float)shift(2)); translate(shift); } if (update_source_offset) source.mesh_offset = shift; } void ModelVolume::calculate_convex_hull() { m_convex_hull = std::make_shared(this->mesh().convex_hull_3d()); assert(m_convex_hull.get()); } int ModelVolume::get_repaired_errors_count() const { const RepairedMeshErrors &stats = this->mesh().stats().repaired_errors; return stats.degenerate_facets + stats.edges_fixed + stats.facets_removed + stats.facets_reversed + stats.backwards_edges; } const TriangleMesh& ModelVolume::get_convex_hull() const { return *m_convex_hull.get(); } ModelVolumeType ModelVolume::type_from_string(const std::string &s) { // Legacy support if (s == "1") return ModelVolumeType::PARAMETER_MODIFIER; // New type (supporting the support enforcers & blockers) if (s == "ModelPart") return ModelVolumeType::MODEL_PART; if (s == "NegativeVolume") return ModelVolumeType::NEGATIVE_VOLUME; if (s == "ParameterModifier") return ModelVolumeType::PARAMETER_MODIFIER; if (s == "SupportEnforcer") return ModelVolumeType::SUPPORT_ENFORCER; if (s == "SupportBlocker") return ModelVolumeType::SUPPORT_BLOCKER; assert(s == "0"); // Default value if invalud type string received. return ModelVolumeType::MODEL_PART; } std::string ModelVolume::type_to_string(const ModelVolumeType t) { switch (t) { case ModelVolumeType::MODEL_PART: return "ModelPart"; case ModelVolumeType::NEGATIVE_VOLUME: return "NegativeVolume"; case ModelVolumeType::PARAMETER_MODIFIER: return "ParameterModifier"; case ModelVolumeType::SUPPORT_ENFORCER: return "SupportEnforcer"; case ModelVolumeType::SUPPORT_BLOCKER: return "SupportBlocker"; default: assert(false); return "ModelPart"; } } // Split this volume, append the result to the object owning this volume. // Return the number of volumes created from this one. // This is useful to assign different materials to different volumes of an object. size_t ModelVolume::split(unsigned int max_extruders) { std::vector meshes = this->mesh().split(); if (meshes.size() <= 1) return 1; size_t idx = 0; size_t ivolume = std::find(this->object->volumes.begin(), this->object->volumes.end(), this) - this->object->volumes.begin(); const std::string name = this->name; unsigned int extruder_counter = 0; const Vec3d offset = this->get_offset(); for (TriangleMesh &mesh : meshes) { if (mesh.empty()) // Repair may have removed unconnected triangles, thus emptying the mesh. continue; if (idx == 0) { this->set_mesh(std::move(mesh)); this->calculate_convex_hull(); // Assign a new unique ID, so that a new GLVolume will be generated. this->set_new_unique_id(); // reset the source to disable reload from disk this->source = ModelVolume::Source(); } else this->object->volumes.insert(this->object->volumes.begin() + (++ivolume), new ModelVolume(object, *this, std::move(mesh))); this->object->volumes[ivolume]->set_offset(Vec3d::Zero()); this->object->volumes[ivolume]->center_geometry_after_creation(); this->object->volumes[ivolume]->translate(offset); this->object->volumes[ivolume]->name = name + "_" + std::to_string(idx + 1); this->object->volumes[ivolume]->config.set("extruder", auto_extruder_id(max_extruders, extruder_counter)); this->object->volumes[ivolume]->m_is_splittable = 0; ++ idx; } // discard volumes for which the convex hull was not generated or is degenerate size_t i = 0; while (i < this->object->volumes.size()) { const std::shared_ptr &hull = this->object->volumes[i]->get_convex_hull_shared_ptr(); if (hull == nullptr || hull->its.vertices.empty() || hull->its.indices.empty()) { this->object->delete_volume(i); --idx; --i; } ++i; } return idx; } void ModelVolume::translate(const Vec3d& displacement) { set_offset(get_offset() + displacement); } void ModelVolume::scale(const Vec3d& scaling_factors) { set_scaling_factor(get_scaling_factor().cwiseProduct(scaling_factors)); } void ModelObject::scale_to_fit(const Vec3d &size) { Vec3d orig_size = this->bounding_box().size(); double factor = std::min( size.x() / orig_size.x(), std::min( size.y() / orig_size.y(), size.z() / orig_size.z() ) ); this->scale(factor); } void ModelVolume::assign_new_unique_ids_recursive() { ObjectBase::set_new_unique_id(); config.set_new_unique_id(); supported_facets.set_new_unique_id(); seam_facets.set_new_unique_id(); mmu_segmentation_facets.set_new_unique_id(); } void ModelVolume::rotate(double angle, Axis axis) { switch (axis) { case X: { rotate(angle, Vec3d::UnitX()); break; } case Y: { rotate(angle, Vec3d::UnitY()); break; } case Z: { rotate(angle, Vec3d::UnitZ()); break; } default: break; } } void ModelVolume::rotate(double angle, const Vec3d& axis) { set_rotation(get_rotation() + Geometry::extract_euler_angles(Eigen::Quaterniond(Eigen::AngleAxisd(angle, axis)).toRotationMatrix())); } void ModelVolume::mirror(Axis axis) { Vec3d mirror = get_mirror(); switch (axis) { case X: { mirror(0) *= -1.0; break; } case Y: { mirror(1) *= -1.0; break; } case Z: { mirror(2) *= -1.0; break; } default: break; } set_mirror(mirror); } // This method could only be called before the meshes of this ModelVolumes are not shared! void ModelVolume::scale_geometry_after_creation(const Vec3f& versor) { const_cast(m_mesh.get())->scale(versor); const_cast(m_convex_hull.get())->scale(versor); } void ModelVolume::transform_this_mesh(const Transform3d &mesh_trafo, bool fix_left_handed) { TriangleMesh mesh = this->mesh(); mesh.transform(mesh_trafo, fix_left_handed); this->set_mesh(std::move(mesh)); TriangleMesh convex_hull = this->get_convex_hull(); convex_hull.transform(mesh_trafo, fix_left_handed); m_convex_hull = std::make_shared(std::move(convex_hull)); // Let the rest of the application know that the geometry changed, so the meshes have to be reloaded. this->set_new_unique_id(); } void ModelVolume::transform_this_mesh(const Matrix3d &matrix, bool fix_left_handed) { TriangleMesh mesh = this->mesh(); mesh.transform(matrix, fix_left_handed); this->set_mesh(std::move(mesh)); TriangleMesh convex_hull = this->get_convex_hull(); convex_hull.transform(matrix, fix_left_handed); m_convex_hull = std::make_shared(std::move(convex_hull)); // Let the rest of the application know that the geometry changed, so the meshes have to be reloaded. this->set_new_unique_id(); } void ModelVolume::convert_from_imperial_units() { assert(! this->source.is_converted_from_meters); this->scale_geometry_after_creation(25.4f); this->set_offset(Vec3d(0, 0, 0)); this->source.is_converted_from_inches = true; } void ModelVolume::convert_from_meters() { assert(! this->source.is_converted_from_inches); this->scale_geometry_after_creation(1000.f); this->set_offset(Vec3d(0, 0, 0)); this->source.is_converted_from_meters = true; } void ModelInstance::transform_mesh(TriangleMesh* mesh, bool dont_translate) const { mesh->transform(get_matrix(dont_translate)); } BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate) const { // Rotate around mesh origin. TriangleMesh copy(mesh); copy.transform(get_matrix(true, false, true, true)); BoundingBoxf3 bbox = copy.bounding_box(); if (!empty(bbox)) { // Scale the bounding box along the three axes. for (unsigned int i = 0; i < 3; ++i) { if (std::abs(get_scaling_factor((Axis)i)-1.0) > EPSILON) { bbox.min(i) *= get_scaling_factor((Axis)i); bbox.max(i) *= get_scaling_factor((Axis)i); } } // Translate the bounding box. if (! dont_translate) { bbox.min += get_offset(); bbox.max += get_offset(); } } return bbox; } BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const { return bbox.transformed(get_matrix(dont_translate)); } Vec3d ModelInstance::transform_vector(const Vec3d& v, bool dont_translate) const { return get_matrix(dont_translate) * v; } void ModelInstance::transform_polygon(Polygon* polygon) const { // CHECK_ME -> Is the following correct or it should take in account all three rotations ? polygon->rotate(get_rotation(Z)); // rotate around polygon origin // CHECK_ME -> Is the following correct ? polygon->scale(get_scaling_factor(X), get_scaling_factor(Y)); // scale around polygon origin } arrangement::ArrangePolygon ModelInstance::get_arrange_polygon() const { // static const double SIMPLIFY_TOLERANCE_MM = 0.1; Vec3d rotation = get_rotation(); rotation.z() = 0.; Transform3d trafo_instance = Geometry::assemble_transform(get_offset().z() * Vec3d::UnitZ(), rotation, get_scaling_factor(), get_mirror()); Polygon p = get_object()->convex_hull_2d(trafo_instance); // if (!p.points.empty()) { // Polygons pp{p}; // pp = p.simplify(scaled(SIMPLIFY_TOLERANCE_MM)); // if (!pp.empty()) p = pp.front(); // } arrangement::ArrangePolygon ret; ret.poly.contour = std::move(p); ret.translation = Vec2crd{scaled(get_offset(X)), scaled(get_offset(Y))}; ret.rotation = get_rotation(Z); return ret; } indexed_triangle_set FacetsAnnotation::get_facets(const ModelVolume& mv, EnforcerBlockerType type) const { TriangleSelector selector(mv.mesh()); // Reset of TriangleSelector is done inside TriangleSelector's constructor, so we don't need it to perform it again in deserialize(). selector.deserialize(m_data, false); return selector.get_facets(type); } indexed_triangle_set FacetsAnnotation::get_facets_strict(const ModelVolume& mv, EnforcerBlockerType type) const { TriangleSelector selector(mv.mesh()); // Reset of TriangleSelector is done inside TriangleSelector's constructor, so we don't need it to perform it again in deserialize(). selector.deserialize(m_data, false); return selector.get_facets_strict(type); } bool FacetsAnnotation::has_facets(const ModelVolume& mv, EnforcerBlockerType type) const { return TriangleSelector::has_facets(m_data, type); } bool FacetsAnnotation::set(const TriangleSelector& selector) { std::pair>, std::vector> sel_map = selector.serialize(); if (sel_map != m_data) { m_data = std::move(sel_map); this->touch(); return true; } return false; } void FacetsAnnotation::reset() { m_data.first.clear(); m_data.second.clear(); this->touch(); } // Following function takes data from a triangle and encodes it as string // of hexadecimal numbers (one digit per triangle). Used for 3MF export, // changing it may break backwards compatibility !!!!! std::string FacetsAnnotation::get_triangle_as_string(int triangle_idx) const { std::string out; auto triangle_it = std::lower_bound(m_data.first.begin(), m_data.first.end(), triangle_idx, [](const std::pair &l, const int r) { return l.first < r; }); if (triangle_it != m_data.first.end() && triangle_it->first == triangle_idx) { int offset = triangle_it->second; int end = ++ triangle_it == m_data.first.end() ? int(m_data.second.size()) : triangle_it->second; while (offset < end) { int next_code = 0; for (int i=3; i>=0; --i) { next_code = next_code << 1; next_code |= int(m_data.second[offset + i]); } offset += 4; assert(next_code >=0 && next_code <= 15); char digit = next_code < 10 ? next_code + '0' : (next_code-10)+'A'; out.insert(out.begin(), digit); } } return out; } // Recover triangle splitting & state from string of hexadecimal values previously // generated by get_triangle_as_string. Used to load from 3MF. void FacetsAnnotation::set_triangle_from_string(int triangle_id, const std::string& str) { assert(! str.empty()); assert(m_data.first.empty() || m_data.first.back().first < triangle_id); m_data.first.emplace_back(triangle_id, int(m_data.second.size())); for (auto it = str.crbegin(); it != str.crend(); ++it) { const char ch = *it; int dec = 0; if (ch >= '0' && ch<='9') dec = int(ch - '0'); else if (ch >='A' && ch <= 'F') dec = 10 + int(ch - 'A'); else assert(false); // Convert to binary and append into code. for (int i=0; i<4; ++i) m_data.second.insert(m_data.second.end(), bool(dec & (1 << i))); } } // Test whether the two models contain the same number of ModelObjects with the same set of IDs // ordered in the same order. In that case it is not necessary to kill the background processing. bool model_object_list_equal(const Model &model_old, const Model &model_new) { if (model_old.objects.size() != model_new.objects.size()) return false; for (size_t i = 0; i < model_old.objects.size(); ++ i) if (model_old.objects[i]->id() != model_new.objects[i]->id()) return false; return true; } // Test whether the new model is just an extension of the old model (new objects were added // to the end of the original list. In that case it is not necessary to kill the background processing. bool model_object_list_extended(const Model &model_old, const Model &model_new) { if (model_old.objects.size() >= model_new.objects.size()) return false; for (size_t i = 0; i < model_old.objects.size(); ++ i) if (model_old.objects[i]->id() != model_new.objects[i]->id()) return false; return true; } template bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, TypeFilterFn type_filter) { size_t i_old, i_new; for (i_old = 0, i_new = 0; i_old < model_object_old.volumes.size() && i_new < model_object_new.volumes.size();) { const ModelVolume &mv_old = *model_object_old.volumes[i_old]; const ModelVolume &mv_new = *model_object_new.volumes[i_new]; if (! type_filter(mv_old.type())) { ++ i_old; continue; } if (! type_filter(mv_new.type())) { ++ i_new; continue; } if (mv_old.type() != mv_new.type() || mv_old.id() != mv_new.id()) return true; //FIXME test for the content of the mesh! if (! mv_old.get_matrix().isApprox(mv_new.get_matrix())) return true; ++ i_old; ++ i_new; } for (; i_old < model_object_old.volumes.size(); ++ i_old) { const ModelVolume &mv_old = *model_object_old.volumes[i_old]; if (type_filter(mv_old.type())) // ModelVolume was deleted. return true; } for (; i_new < model_object_new.volumes.size(); ++ i_new) { const ModelVolume &mv_new = *model_object_new.volumes[i_new]; if (type_filter(mv_new.type())) // ModelVolume was added. return true; } return false; } bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolumeType type) { return model_volume_list_changed(model_object_old, model_object_new, [type](const ModelVolumeType t) { return t == type; }); } bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const std::initializer_list &types) { return model_volume_list_changed(model_object_old, model_object_new, [&types](const ModelVolumeType t) { return std::find(types.begin(), types.end(), t) != types.end(); }); } template< typename TypeFilterFn, typename CompareFn> bool model_property_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, TypeFilterFn type_filter, CompareFn compare) { assert(! model_volume_list_changed(model_object_old, model_object_new, type_filter)); size_t i_old, i_new; for (i_old = 0, i_new = 0; i_old < model_object_old.volumes.size() && i_new < model_object_new.volumes.size();) { const ModelVolume &mv_old = *model_object_old.volumes[i_old]; const ModelVolume &mv_new = *model_object_new.volumes[i_new]; if (! type_filter(mv_old.type())) { ++ i_old; continue; } if (! type_filter(mv_new.type())) { ++ i_new; continue; } assert(mv_old.type() == mv_new.type() && mv_old.id() == mv_new.id()); if (! compare(mv_old, mv_new)) return true; ++ i_old; ++ i_new; } return false; } bool model_custom_supports_data_changed(const ModelObject& mo, const ModelObject& mo_new) { return model_property_changed(mo, mo_new, [](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; }, [](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.supported_facets.timestamp_matches(mv_new.supported_facets); }); } bool model_custom_seam_data_changed(const ModelObject& mo, const ModelObject& mo_new) { return model_property_changed(mo, mo_new, [](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; }, [](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.seam_facets.timestamp_matches(mv_new.seam_facets); }); } bool model_mmu_segmentation_data_changed(const ModelObject& mo, const ModelObject& mo_new) { return model_property_changed(mo, mo_new, [](const ModelVolumeType t) { return t == ModelVolumeType::MODEL_PART; }, [](const ModelVolume &mv_old, const ModelVolume &mv_new){ return mv_old.mmu_segmentation_facets.timestamp_matches(mv_new.mmu_segmentation_facets); }); } bool model_has_multi_part_objects(const Model &model) { for (const ModelObject *model_object : model.objects) if (model_object->volumes.size() != 1 || ! model_object->volumes.front()->is_model_part()) return true; return false; } bool model_has_advanced_features(const Model &model) { auto config_is_advanced = [](const ModelConfig &config) { return ! (config.empty() || (config.size() == 1 && config.cbegin()->first == "extruder")); }; for (const ModelObject *model_object : model.objects) { // Is there more than one instance or advanced config data? if (model_object->instances.size() > 1 || config_is_advanced(model_object->config)) return true; // Is there any modifier or advanced config data? for (const ModelVolume* model_volume : model_object->volumes) if (! model_volume->is_model_part() || config_is_advanced(model_volume->config)) return true; } return false; } #ifndef NDEBUG // Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique. void check_model_ids_validity(const Model &model) { std::set ids; auto check = [&ids](ObjectID id) { assert(id.valid()); assert(ids.find(id) == ids.end()); ids.insert(id); }; for (const ModelObject *model_object : model.objects) { check(model_object->id()); check(model_object->config.id()); for (const ModelVolume *model_volume : model_object->volumes) { check(model_volume->id()); check(model_volume->config.id()); } for (const ModelInstance *model_instance : model_object->instances) check(model_instance->id()); } for (const auto &mm : model.materials) { check(mm.second->id()); check(mm.second->config.id()); } } void check_model_ids_equal(const Model &model1, const Model &model2) { // Verify whether the IDs of model1 and model match. assert(model1.objects.size() == model2.objects.size()); for (size_t idx_model = 0; idx_model < model2.objects.size(); ++ idx_model) { const ModelObject &model_object1 = *model1.objects[idx_model]; const ModelObject &model_object2 = * model2.objects[idx_model]; assert(model_object1.id() == model_object2.id()); assert(model_object1.config.id() == model_object2.config.id()); assert(model_object1.volumes.size() == model_object2.volumes.size()); assert(model_object1.instances.size() == model_object2.instances.size()); for (size_t i = 0; i < model_object1.volumes.size(); ++ i) { assert(model_object1.volumes[i]->id() == model_object2.volumes[i]->id()); assert(model_object1.volumes[i]->config.id() == model_object2.volumes[i]->config.id()); } for (size_t i = 0; i < model_object1.instances.size(); ++ i) assert(model_object1.instances[i]->id() == model_object2.instances[i]->id()); } assert(model1.materials.size() == model2.materials.size()); { auto it1 = model1.materials.begin(); auto it2 = model2.materials.begin(); for (; it1 != model1.materials.end(); ++ it1, ++ it2) { assert(it1->first == it2->first); // compare keys assert(it1->second->id() == it2->second->id()); assert(it1->second->config.id() == it2->second->config.id()); } } } #endif /* NDEBUG */ } #if 0 CEREAL_REGISTER_TYPE(Slic3r::ModelObject) CEREAL_REGISTER_TYPE(Slic3r::ModelVolume) CEREAL_REGISTER_TYPE(Slic3r::ModelInstance) CEREAL_REGISTER_TYPE(Slic3r::Model) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelObject) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelVolume) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::ModelInstance) CEREAL_REGISTER_POLYMORPHIC_RELATION(Slic3r::ObjectBase, Slic3r::Model) #endif