598 lines
20 KiB
C++
598 lines
20 KiB
C++
#ifndef MODELARRANGE_HPP
|
|
#define MODELARRANGE_HPP
|
|
|
|
#include "Model.hpp"
|
|
#include "SVG.hpp"
|
|
#include <libnest2d.h>
|
|
|
|
#include <numeric>
|
|
#include <ClipperUtils.hpp>
|
|
|
|
#include <boost/geometry/index/rtree.hpp>
|
|
|
|
namespace Slic3r {
|
|
namespace arr {
|
|
|
|
using namespace libnest2d;
|
|
|
|
std::string toString(const Model& model, bool holes = true) {
|
|
std::stringstream ss;
|
|
|
|
ss << "{\n";
|
|
|
|
for(auto objptr : model.objects) {
|
|
if(!objptr) continue;
|
|
|
|
auto rmesh = objptr->raw_mesh();
|
|
|
|
for(auto objinst : objptr->instances) {
|
|
if(!objinst) continue;
|
|
|
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
tmpmesh.scale(objinst->scaling_factor);
|
|
objinst->transform_mesh(&tmpmesh);
|
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
for(auto& expoly_complex : expolys) {
|
|
|
|
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
|
if(tmp.empty()) continue;
|
|
auto expoly = tmp.front();
|
|
expoly.contour.make_clockwise();
|
|
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
|
|
|
ss << "\t{\n";
|
|
ss << "\t\t{\n";
|
|
|
|
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
|
<< v(0) << ", "
|
|
<< v(1) << "},\n";
|
|
{
|
|
auto v = expoly.contour.points.front();
|
|
ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
|
|
}
|
|
ss << "\t\t},\n";
|
|
|
|
// Holes:
|
|
ss << "\t\t{\n";
|
|
if(holes) for(auto h : expoly.holes) {
|
|
ss << "\t\t\t{\n";
|
|
for(auto v : h.points) ss << "\t\t\t\t{"
|
|
<< v(0) << ", "
|
|
<< v(1) << "},\n";
|
|
{
|
|
auto v = h.points.front();
|
|
ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
|
|
}
|
|
ss << "\t\t\t},\n";
|
|
}
|
|
ss << "\t\t},\n";
|
|
|
|
ss << "\t},\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
ss << "}\n";
|
|
|
|
return ss.str();
|
|
}
|
|
|
|
void toSVG(SVG& svg, const Model& model) {
|
|
for(auto objptr : model.objects) {
|
|
if(!objptr) continue;
|
|
|
|
auto rmesh = objptr->raw_mesh();
|
|
|
|
for(auto objinst : objptr->instances) {
|
|
if(!objinst) continue;
|
|
|
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
tmpmesh.scale(objinst->scaling_factor);
|
|
objinst->transform_mesh(&tmpmesh);
|
|
ExPolygons expolys = tmpmesh.horizontal_projection();
|
|
svg.draw(expolys);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace bgi = boost::geometry::index;
|
|
|
|
using SpatElement = std::pair<Box, unsigned>;
|
|
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
|
|
|
|
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
|
|
objfunc(const PointImpl& bincenter,
|
|
double /*bin_area*/,
|
|
ShapeLike::Shapes<PolygonImpl>& pile, // The currently arranged pile
|
|
double /*pile_area*/,
|
|
const Item &item,
|
|
double norm, // A norming factor for physical dimensions
|
|
std::vector<double>& areacache, // pile item areas will be cached
|
|
// a spatial index to quickly get neighbors of the candidate item
|
|
SpatIndex& spatindex
|
|
)
|
|
{
|
|
using pl = PointLike;
|
|
using sl = ShapeLike;
|
|
|
|
static const double BIG_ITEM_TRESHOLD = 0.2;
|
|
static const double ROUNDNESS_RATIO = 0.5;
|
|
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
|
|
|
|
// We will treat big items (compared to the print bed) differently
|
|
auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
|
|
|
|
// If a new bin has been created:
|
|
if(pile.size() < areacache.size()) {
|
|
areacache.clear();
|
|
spatindex.clear();
|
|
}
|
|
|
|
// We must fill the caches:
|
|
int idx = 0;
|
|
for(auto& p : pile) {
|
|
if(idx == areacache.size()) {
|
|
areacache.emplace_back(sl::area(p));
|
|
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
|
|
spatindex.insert({sl::boundingBox(p), idx});
|
|
}
|
|
|
|
idx++;
|
|
}
|
|
|
|
// Candidate item bounding box
|
|
auto ibb = item.boundingBox();
|
|
|
|
// Calculate the full bounding box of the pile with the candidate item
|
|
pile.emplace_back(item.transformedShape());
|
|
auto fullbb = ShapeLike::boundingBox(pile);
|
|
pile.pop_back();
|
|
|
|
// The bounding box of the big items (they will accumulate in the center
|
|
// of the pile
|
|
Box bigbb;
|
|
if(spatindex.empty()) bigbb = fullbb;
|
|
else {
|
|
auto boostbb = spatindex.bounds();
|
|
boost::geometry::convert(boostbb, bigbb);
|
|
}
|
|
|
|
// The size indicator of the candidate item. This is not the area,
|
|
// but almost...
|
|
double item_normarea = normarea(item.area());
|
|
|
|
// Will hold the resulting score
|
|
double score = 0;
|
|
|
|
if(item_normarea > BIG_ITEM_TRESHOLD) {
|
|
// This branch is for the bigger items..
|
|
// Here we will use the closest point of the item bounding box to
|
|
// the already arranged pile. So not the bb center nor the a choosen
|
|
// corner but whichever is the closest to the center. This will
|
|
// prevent some unwanted strange arrangements.
|
|
|
|
auto minc = ibb.minCorner(); // bottom left corner
|
|
auto maxc = ibb.maxCorner(); // top right corner
|
|
|
|
// top left and bottom right corners
|
|
auto top_left = PointImpl{getX(minc), getY(maxc)};
|
|
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
|
|
|
|
// Now the distance of the gravity center will be calculated to the
|
|
// five anchor points and the smallest will be chosen.
|
|
std::array<double, 5> dists;
|
|
auto cc = fullbb.center(); // The gravity center
|
|
dists[0] = pl::distance(minc, cc);
|
|
dists[1] = pl::distance(maxc, cc);
|
|
dists[2] = pl::distance(ibb.center(), cc);
|
|
dists[3] = pl::distance(top_left, cc);
|
|
dists[4] = pl::distance(bottom_right, cc);
|
|
|
|
// The smalles distance from the arranged pile center:
|
|
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
|
|
|
|
// Density is the pack density: how big is the arranged pile
|
|
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
|
|
|
// Prepare a variable for the alignment score.
|
|
// This will indicate: how well is the candidate item aligned with
|
|
// its neighbors. We will check the aligment with all neighbors and
|
|
// return the score for the best alignment. So it is enough for the
|
|
// candidate to be aligned with only one item.
|
|
auto alignment_score = std::numeric_limits<double>::max();
|
|
|
|
auto& trsh = item.transformedShape();
|
|
|
|
auto querybb = item.boundingBox();
|
|
|
|
// Query the spatial index for the neigbours
|
|
std::vector<SpatElement> result;
|
|
spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
|
|
|
|
for(auto& e : result) { // now get the score for the best alignment
|
|
auto idx = e.second;
|
|
auto& p = pile[idx];
|
|
auto parea = areacache[idx];
|
|
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
|
|
auto bbarea = bb.area();
|
|
auto ascore = 1.0 - (item.area() + parea)/bbarea;
|
|
|
|
if(ascore < alignment_score) alignment_score = ascore;
|
|
}
|
|
|
|
// The final mix of the score is the balance between the distance
|
|
// from the full pile center, the pack density and the
|
|
// alignment with the neigbours
|
|
auto C = 0.33;
|
|
score = C * dist + C * density + C * alignment_score;
|
|
|
|
} else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
|
|
// If there are no big items, only small, we should consider the
|
|
// density here as well to not get silly results
|
|
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
|
|
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
|
|
score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
|
|
} else {
|
|
// Here there are the small items that should be placed around the
|
|
// already processed bigger items.
|
|
// No need to play around with the anchor points, the center will be
|
|
// just fine for small items
|
|
score = pl::distance(ibb.center(), bigbb.center()) / norm;
|
|
}
|
|
|
|
return std::make_tuple(score, fullbb);
|
|
}
|
|
|
|
template<class PConf>
|
|
void fillConfig(PConf& pcfg) {
|
|
|
|
// Align the arranged pile into the center of the bin
|
|
pcfg.alignment = PConf::Alignment::CENTER;
|
|
|
|
// Start placing the items from the center of the print bed
|
|
pcfg.starting_point = PConf::Alignment::CENTER;
|
|
|
|
// TODO cannot use rotations until multiple objects of same geometry can
|
|
// handle different rotations
|
|
// arranger.useMinimumBoundigBoxRotation();
|
|
pcfg.rotations = { 0.0 };
|
|
|
|
// The accuracy of optimization.
|
|
// Goes from 0.0 to 1.0 and scales performance as well
|
|
pcfg.accuracy = 0.6f;
|
|
}
|
|
|
|
template<class TBin>
|
|
class AutoArranger {};
|
|
|
|
template<class TBin>
|
|
class _ArrBase {
|
|
protected:
|
|
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
|
|
using Selector = FirstFitSelection;
|
|
using Packer = Arranger<Placer, Selector>;
|
|
using PConfig = typename Packer::PlacementConfig;
|
|
using Distance = TCoord<PointImpl>;
|
|
using Pile = ShapeLike::Shapes<PolygonImpl>;
|
|
|
|
Packer pck_;
|
|
PConfig pconf_; // Placement configuration
|
|
double bin_area_;
|
|
std::vector<double> areacache_;
|
|
SpatIndex rtree_;
|
|
public:
|
|
|
|
_ArrBase(const TBin& bin, Distance dist,
|
|
std::function<void(unsigned)> progressind):
|
|
pck_(bin, dist), bin_area_(ShapeLike::area<PolygonImpl>(bin))
|
|
{
|
|
fillConfig(pconf_);
|
|
pck_.progressIndicator(progressind);
|
|
}
|
|
|
|
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
|
|
areacache_.clear();
|
|
return pck_.arrangeIndexed(std::forward<Args>(args)...);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
class AutoArranger<Box>: public _ArrBase<Box> {
|
|
public:
|
|
|
|
AutoArranger(const Box& bin, Distance dist,
|
|
std::function<void(unsigned)> progressind):
|
|
_ArrBase<Box>(bin, dist, progressind)
|
|
{
|
|
pconf_.object_function = [this, bin] (
|
|
Pile& pile,
|
|
const Item &item,
|
|
double pile_area,
|
|
double norm,
|
|
double /*penality*/) {
|
|
|
|
auto result = objfunc(bin.center(), bin_area_, pile,
|
|
pile_area, item, norm, areacache_, rtree_);
|
|
double score = std::get<0>(result);
|
|
auto& fullbb = std::get<1>(result);
|
|
|
|
auto wdiff = fullbb.width() - bin.width();
|
|
auto hdiff = fullbb.height() - bin.height();
|
|
if(wdiff > 0) score += std::pow(wdiff, 2) / norm;
|
|
if(hdiff > 0) score += std::pow(hdiff, 2) / norm;
|
|
|
|
return score;
|
|
};
|
|
|
|
pck_.configure(pconf_);
|
|
}
|
|
};
|
|
|
|
template<>
|
|
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
|
|
public:
|
|
AutoArranger(const PolygonImpl& bin, Distance dist,
|
|
std::function<void(unsigned)> progressind):
|
|
_ArrBase<PolygonImpl>(bin, dist, progressind)
|
|
{
|
|
pconf_.object_function = [this, &bin] (
|
|
Pile& pile,
|
|
const Item &item,
|
|
double pile_area,
|
|
double norm,
|
|
double /*penality*/) {
|
|
|
|
auto binbb = ShapeLike::boundingBox(bin);
|
|
auto result = objfunc(binbb.center(), bin_area_, pile,
|
|
pile_area, item, norm, areacache_, rtree_);
|
|
double score = std::get<0>(result);
|
|
|
|
pile.emplace_back(item.transformedShape());
|
|
auto chull = ShapeLike::convexHull(pile);
|
|
pile.pop_back();
|
|
|
|
// If it does not fit into the print bed we will beat it with a
|
|
// large penality. If we would not do this, there would be only one
|
|
// big pile that doesn't care whether it fits onto the print bed.
|
|
if(!Placer::wouldFit(chull, bin)) score += norm;
|
|
|
|
return score;
|
|
};
|
|
|
|
pck_.configure(pconf_);
|
|
}
|
|
};
|
|
|
|
template<> // Specialization with no bin
|
|
class AutoArranger<bool>: public _ArrBase<Box> {
|
|
public:
|
|
|
|
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
|
|
_ArrBase<Box>(Box(0, 0), dist, progressind)
|
|
{
|
|
this->pconf_.object_function = [this] (
|
|
Pile& pile,
|
|
const Item &item,
|
|
double pile_area,
|
|
double norm,
|
|
double /*penality*/) {
|
|
|
|
auto result = objfunc({0, 0}, 0, pile, pile_area,
|
|
item, norm, areacache_, rtree_);
|
|
return std::get<0>(result);
|
|
};
|
|
|
|
this->pck_.configure(pconf_);
|
|
}
|
|
};
|
|
|
|
// A container which stores a pointer to the 3D object and its projected
|
|
// 2D shape from top view.
|
|
using ShapeData2D =
|
|
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
|
|
|
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
|
ShapeData2D ret;
|
|
|
|
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
|
|
[](size_t s, ModelObject* o){
|
|
return s + o->instances.size();
|
|
});
|
|
|
|
ret.reserve(s);
|
|
|
|
for(auto objptr : model.objects) {
|
|
if(objptr) {
|
|
|
|
auto rmesh = objptr->raw_mesh();
|
|
|
|
for(auto objinst : objptr->instances) {
|
|
if(objinst) {
|
|
Slic3r::TriangleMesh tmpmesh = rmesh;
|
|
ClipperLib::PolygonImpl pn;
|
|
|
|
tmpmesh.scale(objinst->scaling_factor);
|
|
|
|
// TODO export the exact 2D projection
|
|
auto p = tmpmesh.convex_hull();
|
|
|
|
p.make_clockwise();
|
|
p.append(p.first_point());
|
|
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
|
|
|
// Efficient conversion to item.
|
|
Item item(std::move(pn));
|
|
|
|
// Invalid geometries would throw exceptions when arranging
|
|
if(item.vertexCount() > 3) {
|
|
item.rotation(objinst->rotation);
|
|
item.translation( {
|
|
ClipperLib::cInt(objinst->offset(0)/SCALING_FACTOR),
|
|
ClipperLib::cInt(objinst->offset(1)/SCALING_FACTOR)
|
|
});
|
|
ret.emplace_back(objinst, item);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
enum BedShapeHint {
|
|
BOX,
|
|
CIRCLE,
|
|
IRREGULAR,
|
|
WHO_KNOWS
|
|
};
|
|
|
|
BedShapeHint bedShape(const Slic3r::Polyline& /*bed*/) {
|
|
// Determine the bed shape by hand
|
|
return BOX;
|
|
}
|
|
|
|
void applyResult(
|
|
IndexedPackGroup::value_type& group,
|
|
Coord batch_offset,
|
|
ShapeData2D& shapemap)
|
|
{
|
|
for(auto& r : group) {
|
|
auto idx = r.first; // get the original item index
|
|
Item& item = r.second; // get the item itself
|
|
|
|
// Get the model instance from the shapemap using the index
|
|
ModelInstance *inst_ptr = shapemap[idx].first;
|
|
|
|
// Get the tranformation data from the item object and scale it
|
|
// appropriately
|
|
auto off = item.translation();
|
|
Radians rot = item.rotation();
|
|
Vec2d foff(off.X*SCALING_FACTOR + batch_offset,
|
|
off.Y*SCALING_FACTOR);
|
|
|
|
// write the tranformation data into the model instance
|
|
inst_ptr->rotation = rot;
|
|
inst_ptr->offset = foff;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* \brief Arranges the model objects on the screen.
|
|
*
|
|
* The arrangement considers multiple bins (aka. print beds) for placing all
|
|
* the items provided in the model argument. If the items don't fit on one
|
|
* print bed, the remaining will be placed onto newly created print beds.
|
|
* The first_bin_only parameter, if set to true, disables this behaviour and
|
|
* makes sure that only one print bed is filled and the remaining items will be
|
|
* untouched. When set to false, the items which could not fit onto the
|
|
* print bed will be placed next to the print bed so the user should see a
|
|
* pile of items on the print bed and some other piles outside the print
|
|
* area that can be dragged later onto the print bed as a group.
|
|
*
|
|
* \param model The model object with the 3D content.
|
|
* \param dist The minimum distance which is allowed for any pair of items
|
|
* on the print bed in any direction.
|
|
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
|
* for bin packing.
|
|
* \param first_bin_only This parameter controls whether to place the
|
|
* remaining items which do not fit onto the print area next to the print
|
|
* bed or leave them untouched (let the user arrange them by hand or remove
|
|
* them).
|
|
*/
|
|
bool arrange(Model &model, coordf_t min_obj_distance,
|
|
const Slic3r::Polyline& bed,
|
|
BedShapeHint bedhint,
|
|
bool first_bin_only,
|
|
std::function<void(unsigned)> progressind)
|
|
{
|
|
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
|
|
|
bool ret = true;
|
|
|
|
// Get the 2D projected shapes with their 3D model instance pointers
|
|
auto shapemap = arr::projectModelFromTop(model);
|
|
|
|
// Copy the references for the shapes only as the arranger expects a
|
|
// sequence of objects convertible to Item or ClipperPolygon
|
|
std::vector<std::reference_wrapper<Item>> shapes;
|
|
shapes.reserve(shapemap.size());
|
|
std::for_each(shapemap.begin(), shapemap.end(),
|
|
[&shapes] (ShapeData2D::value_type& it)
|
|
{
|
|
shapes.push_back(std::ref(it.second));
|
|
});
|
|
|
|
IndexedPackGroup result;
|
|
BoundingBox bbb(bed.points);
|
|
|
|
auto binbb = Box({
|
|
static_cast<libnest2d::Coord>(bbb.min(0)),
|
|
static_cast<libnest2d::Coord>(bbb.min(1))
|
|
},
|
|
{
|
|
static_cast<libnest2d::Coord>(bbb.max(0)),
|
|
static_cast<libnest2d::Coord>(bbb.max(1))
|
|
});
|
|
|
|
switch(bedhint) {
|
|
case BOX: {
|
|
|
|
// Create the arranger for the box shaped bed
|
|
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
|
|
|
|
// Arrange and return the items with their respective indices within the
|
|
// input sequence.
|
|
result = arrange(shapes.begin(), shapes.end());
|
|
break;
|
|
}
|
|
case CIRCLE:
|
|
break;
|
|
case IRREGULAR:
|
|
case WHO_KNOWS: {
|
|
using P = libnest2d::PolygonImpl;
|
|
|
|
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
|
|
P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
|
|
|
|
// std::cout << ShapeLike::toString(irrbed) << std::endl;
|
|
|
|
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
|
|
|
|
// Arrange and return the items with their respective indices within the
|
|
// input sequence.
|
|
result = arrange(shapes.begin(), shapes.end());
|
|
break;
|
|
}
|
|
};
|
|
|
|
if(first_bin_only) {
|
|
applyResult(result.front(), 0, shapemap);
|
|
} else {
|
|
|
|
const auto STRIDE_PADDING = 1.2;
|
|
|
|
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
|
binbb.width()*SCALING_FACTOR);
|
|
Coord batch_offset = 0;
|
|
|
|
for(auto& group : result) {
|
|
applyResult(group, batch_offset, shapemap);
|
|
|
|
// Only the first pack group can be placed onto the print bed. The
|
|
// other objects which could not fit will be placed next to the
|
|
// print bed
|
|
batch_offset += stride;
|
|
}
|
|
}
|
|
|
|
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
|
|
|
return ret && result.size() == 1;
|
|
}
|
|
|
|
}
|
|
}
|
|
#endif // MODELARRANGE_HPP
|