PrusaSlicer-NonPlainar/xs/src/libslic3r/ModelArrange.hpp

598 lines
20 KiB
C++

#ifndef MODELARRANGE_HPP
#define MODELARRANGE_HPP
#include "Model.hpp"
#include "SVG.hpp"
#include <libnest2d.h>
#include <numeric>
#include <ClipperUtils.hpp>
#include <boost/geometry/index/rtree.hpp>
namespace Slic3r {
namespace arr {
using namespace libnest2d;
std::string toString(const Model& model, bool holes = true) {
std::stringstream ss;
ss << "{\n";
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
for(auto& expoly_complex : expolys) {
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
if(tmp.empty()) continue;
auto expoly = tmp.front();
expoly.contour.make_clockwise();
for(auto& h : expoly.holes) h.make_counter_clockwise();
ss << "\t{\n";
ss << "\t\t{\n";
for(auto v : expoly.contour.points) ss << "\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = expoly.contour.points.front();
ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t},\n";
// Holes:
ss << "\t\t{\n";
if(holes) for(auto h : expoly.holes) {
ss << "\t\t\t{\n";
for(auto v : h.points) ss << "\t\t\t\t{"
<< v(0) << ", "
<< v(1) << "},\n";
{
auto v = h.points.front();
ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
}
ss << "\t\t\t},\n";
}
ss << "\t\t},\n";
ss << "\t},\n";
}
}
}
ss << "}\n";
return ss.str();
}
void toSVG(SVG& svg, const Model& model) {
for(auto objptr : model.objects) {
if(!objptr) continue;
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(!objinst) continue;
Slic3r::TriangleMesh tmpmesh = rmesh;
tmpmesh.scale(objinst->scaling_factor);
objinst->transform_mesh(&tmpmesh);
ExPolygons expolys = tmpmesh.horizontal_projection();
svg.draw(expolys);
}
}
}
namespace bgi = boost::geometry::index;
using SpatElement = std::pair<Box, unsigned>;
using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
std::tuple<double /*score*/, Box /*farthest point from bin center*/>
objfunc(const PointImpl& bincenter,
double /*bin_area*/,
ShapeLike::Shapes<PolygonImpl>& pile, // The currently arranged pile
double /*pile_area*/,
const Item &item,
double norm, // A norming factor for physical dimensions
std::vector<double>& areacache, // pile item areas will be cached
// a spatial index to quickly get neighbors of the candidate item
SpatIndex& spatindex
)
{
using pl = PointLike;
using sl = ShapeLike;
static const double BIG_ITEM_TRESHOLD = 0.2;
static const double ROUNDNESS_RATIO = 0.5;
static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
// We will treat big items (compared to the print bed) differently
auto normarea = [norm](double area) { return std::sqrt(area)/norm; };
// If a new bin has been created:
if(pile.size() < areacache.size()) {
areacache.clear();
spatindex.clear();
}
// We must fill the caches:
int idx = 0;
for(auto& p : pile) {
if(idx == areacache.size()) {
areacache.emplace_back(sl::area(p));
if(normarea(areacache[idx]) > BIG_ITEM_TRESHOLD)
spatindex.insert({sl::boundingBox(p), idx});
}
idx++;
}
// Candidate item bounding box
auto ibb = item.boundingBox();
// Calculate the full bounding box of the pile with the candidate item
pile.emplace_back(item.transformedShape());
auto fullbb = ShapeLike::boundingBox(pile);
pile.pop_back();
// The bounding box of the big items (they will accumulate in the center
// of the pile
Box bigbb;
if(spatindex.empty()) bigbb = fullbb;
else {
auto boostbb = spatindex.bounds();
boost::geometry::convert(boostbb, bigbb);
}
// The size indicator of the candidate item. This is not the area,
// but almost...
double item_normarea = normarea(item.area());
// Will hold the resulting score
double score = 0;
if(item_normarea > BIG_ITEM_TRESHOLD) {
// This branch is for the bigger items..
// Here we will use the closest point of the item bounding box to
// the already arranged pile. So not the bb center nor the a choosen
// corner but whichever is the closest to the center. This will
// prevent some unwanted strange arrangements.
auto minc = ibb.minCorner(); // bottom left corner
auto maxc = ibb.maxCorner(); // top right corner
// top left and bottom right corners
auto top_left = PointImpl{getX(minc), getY(maxc)};
auto bottom_right = PointImpl{getX(maxc), getY(minc)};
// Now the distance of the gravity center will be calculated to the
// five anchor points and the smallest will be chosen.
std::array<double, 5> dists;
auto cc = fullbb.center(); // The gravity center
dists[0] = pl::distance(minc, cc);
dists[1] = pl::distance(maxc, cc);
dists[2] = pl::distance(ibb.center(), cc);
dists[3] = pl::distance(top_left, cc);
dists[4] = pl::distance(bottom_right, cc);
// The smalles distance from the arranged pile center:
auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
// Density is the pack density: how big is the arranged pile
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
// Prepare a variable for the alignment score.
// This will indicate: how well is the candidate item aligned with
// its neighbors. We will check the aligment with all neighbors and
// return the score for the best alignment. So it is enough for the
// candidate to be aligned with only one item.
auto alignment_score = std::numeric_limits<double>::max();
auto& trsh = item.transformedShape();
auto querybb = item.boundingBox();
// Query the spatial index for the neigbours
std::vector<SpatElement> result;
spatindex.query(bgi::intersects(querybb), std::back_inserter(result));
for(auto& e : result) { // now get the score for the best alignment
auto idx = e.second;
auto& p = pile[idx];
auto parea = areacache[idx];
auto bb = sl::boundingBox(sl::Shapes<PolygonImpl>{p, trsh});
auto bbarea = bb.area();
auto ascore = 1.0 - (item.area() + parea)/bbarea;
if(ascore < alignment_score) alignment_score = ascore;
}
// The final mix of the score is the balance between the distance
// from the full pile center, the pack density and the
// alignment with the neigbours
auto C = 0.33;
score = C * dist + C * density + C * alignment_score;
} else if( item_normarea < BIG_ITEM_TRESHOLD && spatindex.empty()) {
// If there are no big items, only small, we should consider the
// density here as well to not get silly results
auto bindist = pl::distance(ibb.center(), bincenter) / norm;
auto density = std::sqrt(fullbb.width()*fullbb.height()) / norm;
score = ROUNDNESS_RATIO * bindist + DENSITY_RATIO * density;
} else {
// Here there are the small items that should be placed around the
// already processed bigger items.
// No need to play around with the anchor points, the center will be
// just fine for small items
score = pl::distance(ibb.center(), bigbb.center()) / norm;
}
return std::make_tuple(score, fullbb);
}
template<class PConf>
void fillConfig(PConf& pcfg) {
// Align the arranged pile into the center of the bin
pcfg.alignment = PConf::Alignment::CENTER;
// Start placing the items from the center of the print bed
pcfg.starting_point = PConf::Alignment::CENTER;
// TODO cannot use rotations until multiple objects of same geometry can
// handle different rotations
// arranger.useMinimumBoundigBoxRotation();
pcfg.rotations = { 0.0 };
// The accuracy of optimization.
// Goes from 0.0 to 1.0 and scales performance as well
pcfg.accuracy = 0.6f;
}
template<class TBin>
class AutoArranger {};
template<class TBin>
class _ArrBase {
protected:
using Placer = strategies::_NofitPolyPlacer<PolygonImpl, TBin>;
using Selector = FirstFitSelection;
using Packer = Arranger<Placer, Selector>;
using PConfig = typename Packer::PlacementConfig;
using Distance = TCoord<PointImpl>;
using Pile = ShapeLike::Shapes<PolygonImpl>;
Packer pck_;
PConfig pconf_; // Placement configuration
double bin_area_;
std::vector<double> areacache_;
SpatIndex rtree_;
public:
_ArrBase(const TBin& bin, Distance dist,
std::function<void(unsigned)> progressind):
pck_(bin, dist), bin_area_(ShapeLike::area<PolygonImpl>(bin))
{
fillConfig(pconf_);
pck_.progressIndicator(progressind);
}
template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
areacache_.clear();
return pck_.arrangeIndexed(std::forward<Args>(args)...);
}
};
template<>
class AutoArranger<Box>: public _ArrBase<Box> {
public:
AutoArranger(const Box& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<Box>(bin, dist, progressind)
{
pconf_.object_function = [this, bin] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto result = objfunc(bin.center(), bin_area_, pile,
pile_area, item, norm, areacache_, rtree_);
double score = std::get<0>(result);
auto& fullbb = std::get<1>(result);
auto wdiff = fullbb.width() - bin.width();
auto hdiff = fullbb.height() - bin.height();
if(wdiff > 0) score += std::pow(wdiff, 2) / norm;
if(hdiff > 0) score += std::pow(hdiff, 2) / norm;
return score;
};
pck_.configure(pconf_);
}
};
template<>
class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
public:
AutoArranger(const PolygonImpl& bin, Distance dist,
std::function<void(unsigned)> progressind):
_ArrBase<PolygonImpl>(bin, dist, progressind)
{
pconf_.object_function = [this, &bin] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto binbb = ShapeLike::boundingBox(bin);
auto result = objfunc(binbb.center(), bin_area_, pile,
pile_area, item, norm, areacache_, rtree_);
double score = std::get<0>(result);
pile.emplace_back(item.transformedShape());
auto chull = ShapeLike::convexHull(pile);
pile.pop_back();
// If it does not fit into the print bed we will beat it with a
// large penality. If we would not do this, there would be only one
// big pile that doesn't care whether it fits onto the print bed.
if(!Placer::wouldFit(chull, bin)) score += norm;
return score;
};
pck_.configure(pconf_);
}
};
template<> // Specialization with no bin
class AutoArranger<bool>: public _ArrBase<Box> {
public:
AutoArranger(Distance dist, std::function<void(unsigned)> progressind):
_ArrBase<Box>(Box(0, 0), dist, progressind)
{
this->pconf_.object_function = [this] (
Pile& pile,
const Item &item,
double pile_area,
double norm,
double /*penality*/) {
auto result = objfunc({0, 0}, 0, pile, pile_area,
item, norm, areacache_, rtree_);
return std::get<0>(result);
};
this->pck_.configure(pconf_);
}
};
// A container which stores a pointer to the 3D object and its projected
// 2D shape from top view.
using ShapeData2D =
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
ShapeData2D ret;
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
[](size_t s, ModelObject* o){
return s + o->instances.size();
});
ret.reserve(s);
for(auto objptr : model.objects) {
if(objptr) {
auto rmesh = objptr->raw_mesh();
for(auto objinst : objptr->instances) {
if(objinst) {
Slic3r::TriangleMesh tmpmesh = rmesh;
ClipperLib::PolygonImpl pn;
tmpmesh.scale(objinst->scaling_factor);
// TODO export the exact 2D projection
auto p = tmpmesh.convex_hull();
p.make_clockwise();
p.append(p.first_point());
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
// Efficient conversion to item.
Item item(std::move(pn));
// Invalid geometries would throw exceptions when arranging
if(item.vertexCount() > 3) {
item.rotation(objinst->rotation);
item.translation( {
ClipperLib::cInt(objinst->offset(0)/SCALING_FACTOR),
ClipperLib::cInt(objinst->offset(1)/SCALING_FACTOR)
});
ret.emplace_back(objinst, item);
}
}
}
}
}
return ret;
}
enum BedShapeHint {
BOX,
CIRCLE,
IRREGULAR,
WHO_KNOWS
};
BedShapeHint bedShape(const Slic3r::Polyline& /*bed*/) {
// Determine the bed shape by hand
return BOX;
}
void applyResult(
IndexedPackGroup::value_type& group,
Coord batch_offset,
ShapeData2D& shapemap)
{
for(auto& r : group) {
auto idx = r.first; // get the original item index
Item& item = r.second; // get the item itself
// Get the model instance from the shapemap using the index
ModelInstance *inst_ptr = shapemap[idx].first;
// Get the tranformation data from the item object and scale it
// appropriately
auto off = item.translation();
Radians rot = item.rotation();
Vec2d foff(off.X*SCALING_FACTOR + batch_offset,
off.Y*SCALING_FACTOR);
// write the tranformation data into the model instance
inst_ptr->rotation = rot;
inst_ptr->offset = foff;
}
}
/**
* \brief Arranges the model objects on the screen.
*
* The arrangement considers multiple bins (aka. print beds) for placing all
* the items provided in the model argument. If the items don't fit on one
* print bed, the remaining will be placed onto newly created print beds.
* The first_bin_only parameter, if set to true, disables this behaviour and
* makes sure that only one print bed is filled and the remaining items will be
* untouched. When set to false, the items which could not fit onto the
* print bed will be placed next to the print bed so the user should see a
* pile of items on the print bed and some other piles outside the print
* area that can be dragged later onto the print bed as a group.
*
* \param model The model object with the 3D content.
* \param dist The minimum distance which is allowed for any pair of items
* on the print bed in any direction.
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
* for bin packing.
* \param first_bin_only This parameter controls whether to place the
* remaining items which do not fit onto the print area next to the print
* bed or leave them untouched (let the user arrange them by hand or remove
* them).
*/
bool arrange(Model &model, coordf_t min_obj_distance,
const Slic3r::Polyline& bed,
BedShapeHint bedhint,
bool first_bin_only,
std::function<void(unsigned)> progressind)
{
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
bool ret = true;
// Get the 2D projected shapes with their 3D model instance pointers
auto shapemap = arr::projectModelFromTop(model);
// Copy the references for the shapes only as the arranger expects a
// sequence of objects convertible to Item or ClipperPolygon
std::vector<std::reference_wrapper<Item>> shapes;
shapes.reserve(shapemap.size());
std::for_each(shapemap.begin(), shapemap.end(),
[&shapes] (ShapeData2D::value_type& it)
{
shapes.push_back(std::ref(it.second));
});
IndexedPackGroup result;
BoundingBox bbb(bed.points);
auto binbb = Box({
static_cast<libnest2d::Coord>(bbb.min(0)),
static_cast<libnest2d::Coord>(bbb.min(1))
},
{
static_cast<libnest2d::Coord>(bbb.max(0)),
static_cast<libnest2d::Coord>(bbb.max(1))
});
switch(bedhint) {
case BOX: {
// Create the arranger for the box shaped bed
AutoArranger<Box> arrange(binbb, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
case CIRCLE:
break;
case IRREGULAR:
case WHO_KNOWS: {
using P = libnest2d::PolygonImpl;
auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
P irrbed = ShapeLike::create<PolygonImpl>(std::move(ctour));
// std::cout << ShapeLike::toString(irrbed) << std::endl;
AutoArranger<P> arrange(irrbed, min_obj_distance, progressind);
// Arrange and return the items with their respective indices within the
// input sequence.
result = arrange(shapes.begin(), shapes.end());
break;
}
};
if(first_bin_only) {
applyResult(result.front(), 0, shapemap);
} else {
const auto STRIDE_PADDING = 1.2;
Coord stride = static_cast<Coord>(STRIDE_PADDING*
binbb.width()*SCALING_FACTOR);
Coord batch_offset = 0;
for(auto& group : result) {
applyResult(group, batch_offset, shapemap);
// Only the first pack group can be placed onto the print bed. The
// other objects which could not fit will be placed next to the
// print bed
batch_offset += stride;
}
}
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
return ret && result.size() == 1;
}
}
}
#endif // MODELARRANGE_HPP