PrusaSlicer-NonPlainar/src/libslic3r/CutSurface.cpp

1456 lines
57 KiB
C++

#include "CutSurface.hpp"
using namespace Slic3r;
void Slic3r::append(SurfaceCut &sc, SurfaceCut &&sc_add)
{
if (sc.empty()) {
sc = std::move(sc_add);
return;
}
if (!sc_add.contours.empty()) {
SurfaceCut::Index offset = static_cast<SurfaceCut::Index>(
sc.vertices.size());
size_t require = sc.contours.size() + sc_add.contours.size();
if (sc.contours.capacity() < require) sc.contours.reserve(require);
for (std::vector<SurfaceCut::Index> &cut : sc_add.contours)
for (SurfaceCut::Index &i : cut) i += offset;
append(sc.contours, std::move(sc_add.contours));
}
its_merge(sc, std::move(sc_add));
}
SurfaceCut Slic3r::merge(SurfaceCuts &&cuts) {
SurfaceCut result;
for (SurfaceCut &cut : cuts)
append(result, std::move(cut));
return result;
}
#include <CGAL/Polygon_mesh_processing/corefinement.h>
#include <CGAL/Exact_integer.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Cartesian_converter.h>
// libslic3r
#include "TriangleMesh.hpp" // its_merge
#include "Utils.hpp" // next_highest_power_of_2
namespace priv {
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using CutMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
// using EpecKernel = CGAL::Exact_predicates_exact_constructions_kernel;
// using CutMesh = CGAL::Surface_mesh<EpecKernel::Point_3>;
using DynamicEdgeProperty = CGAL::dynamic_edge_property_t<bool>;
using SMPM = boost::property_map<priv::CutMesh, DynamicEdgeProperty>::SMPM;
using EcmType = CGAL::internal::Dynamic<priv::CutMesh, SMPM>;
using VI = CGAL::SM_Vertex_index;
using HI = CGAL::SM_Halfedge_index;
using EI = CGAL::SM_Edge_index;
using FI = CGAL::SM_Face_index;
/// <summary>
/// IntersectingElement
///
/// Adress polygon inside of ExPolygon
/// Keep information about source of vertex:
/// - from face (one of 2 possible)
/// - from edge (one of 2 possible)
///
/// V1~~~~~V2
/// | f1 /:
/// | / :
/// e1| /e2:
/// | / :
/// |/ f2 :
/// V1'~~~~V2'
///
/// | .. edge
/// / .. edge
/// : .. foreign edge - neighbor
/// ~ .. no care edge - idealy should not cross model
/// V1,V1' .. projected 2d point to 3d
/// V2,V2' .. projected 2d point to 3d
///
/// Vertex indexing
/// V1 .. i (vertex_base + 2x index of point in polygon)
/// V1' .. i + 1
/// V2 .. j = i + 2 || 0 (for last i in polygon)
/// V2' .. j + 1
///
/// f1 .. text_face_1 (triangle face made by side of shape contour)
/// f2 .. text_face_2
/// e1 .. text_edge_1 (edge on side of face made by side of shape contour)
/// e2 .. text_edge_2
///
/// </summary>
struct IntersectingElement
{
// Base of the zero'th point of a contour in text mesh.
// There are two vertices (front and rear) created for each contour,
// thus there are 2x more vertices in text mesh than the number of contour points.
// a.k.a offset of vertex inside vertices
uint32_t vertex_base{std::numeric_limits<uint32_t>::max()};
// index of point in Polygon contour
uint32_t point_index{std::numeric_limits<uint32_t>::max()};
// store together type, is_first, is_last
unsigned char attr;
// vertex or edge ID, where edge ID is the index of the source point.
// There are 4 consecutive indices generated for a single contour edge:
// 0th - 1st text edge (straight)
// 1th - 1st text face
// 2nd - 2nd text edge (diagonal)
// 3th - 2nd text face
// Type of intersecting element from extruded shape( 3d )
// NOTE: type must be storable to 3bit -> max value is 7
enum class Type: unsigned char {
edge_1 = 0,
face_1 = 1,
edge_2 = 2,
face_2 = 3,
undefined = 4
};
IntersectingElement &set_type(Type t)
{
attr = static_cast<unsigned char>(
attr + (int) t - (int) get_type());
return *this;
}
void set_is_first(){ attr += 8; }
void set_is_last(){ attr += 16; }
Type get_type() const { return static_cast<Type>(attr % 8);}
bool is_first() const { return 8 <= attr && attr < 16; }
bool is_last() const { return attr >= 16; }
};
/// <summary>
/// Convert triangle mesh model to CGAL Surface_mesh
/// Add property map for source face index
/// </summary>
/// <param name="its">Model</param>
/// <returns>CGAL mesh - half edge mesh</returns>
CutMesh to_cgal(const indexed_triangle_set &its);
using Project = Emboss::IProject;
/// <summary>
/// Covert 2d shape (e.g. Glyph) to CGAL model
/// </summary>
/// <param name="shapes">2d shapes to project</param>
/// <param name="projection">Define transformation 2d point into 3d</param>
/// <param name="edge_shape_map_name">Name of property map to store conversion from edge to contour</param>
/// <param name="face_shape_map_name">Name of property map to store conversion from face to contour</param>
/// <returns>CGAL model of extruded shape</returns>
CutMesh to_cgal(const ExPolygons &shapes,
const Project &projection,
const std::string &edge_shape_map_name,
const std::string &face_shape_map_name);
using VertexShapeMap = CutMesh::Property_map<VI, const IntersectingElement *>;
/// <summary>
/// Track source of intersection
/// Help for anotate inner and outer faces
/// </summary>
struct Visitor {
const CutMesh &object;
const CutMesh &shape;
// Properties of the shape mesh:
CutMesh::Property_map<EI, IntersectingElement> edge_shape_map;
CutMesh::Property_map<FI, IntersectingElement> face_shape_map;
// Properties of the object mesh.
VertexShapeMap vert_shape_map;
// check for anomalities
bool* is_valid;
// keep source of intersection for each intersection
// used to copy data into vert_shape_map
std::vector<const IntersectingElement*> intersections;
/// <summary>
/// Called when a new intersection point is detected.
/// The intersection is detected using a face of tm_f and an edge of tm_e.
/// Intersecting an edge hh_edge from tm_f with a face h_e of tm_e.
/// https://doc.cgal.org/latest/Polygon_mesh_processing/classPMPCorefinementVisitor.html#a00ee0ca85db535a48726a92414acda7f
/// </summary>
/// <param name="i_id">The id of the intersection point, starting at 0. Ids are consecutive.</param>
/// <param name="sdim">Dimension of a simplex part of face(h_e) that is intersected by edge(h_f):
/// 0 for vertex: target(h_e)
/// 1 for edge: h_e
/// 2 for the interior of face: face(h_e) </param>
/// <param name="h_f">
/// A halfedge from tm_f indicating the simplex intersected:
/// if sdim==0 the target of h_f is the intersection point,
/// if sdim==1 the edge of h_f contains the intersection point in its interior,
/// if sdim==2 the face of h_f contains the intersection point in its interior.
/// @Vojta: Edge of tm_f, see is_target_coplanar & is_source_coplanar whether any vertex of h_f is coplanar with face(h_e).
/// </param>
/// <param name="h_e">A halfedge from tm_e
/// @Vojta: Vertex, halfedge or face of tm_e intersected by h_f, see comment at sdim.
/// </param>
/// <param name="tm_f">Mesh containing h_f</param>
/// <param name="tm_e">Mesh containing h_e</param>
/// <param name="is_target_coplanar">True if the target of h_e is the intersection point
/// @Vojta: source(h_f) is coplanar with face(made by h_e).</param>
/// <param name="is_source_coplanar">True if the source of h_e is the intersection point
/// @Vojta: target(h_f) is coplanar with face(h_e).</param>
void intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar);
/// <summary>
/// Called when a new vertex is added in tm (either an edge split or a vertex inserted in the interior of a face).
/// Fill vertex_shape_map by intersections
/// </summary>
/// <param name="i_id">Order number of intersection point</param>
/// <param name="v">New added vertex</param>
/// <param name="tm">Affected mesh</param>
void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm);
// Not used visitor functions
void before_subface_creations(FI /* f_old */, CutMesh &/* mesh */){}
void after_subface_created(FI /* f_new */, CutMesh &/* mesh */) {}
void after_subface_creations(CutMesh&) {}
void before_subface_created(CutMesh&) {}
void before_edge_split(HI /* h */, CutMesh& /* tm */) {}
void edge_split(HI /* hnew */, CutMesh& /* tm */) {}
void after_edge_split() {}
void add_retriangulation_edge(HI /* h */, CutMesh& /* tm */) {}
};
/// <summary>
/// Flag for faces in CGAL mesh
/// </summary>
enum class FaceType {
// face inside of the cutted shape
inside,
// face outside of the cutted shape
outside,
// face without constrained edge (In or Out)
not_constrained,
// Helper flag that inside was processed
inside_
};
using FaceTypeMap = CutMesh::Property_map<FI, FaceType>;
/// <summary>
/// Face with constrained edge are inside/outside by type of intersection
/// Other set to not_constrained(still it could be inside/outside)
/// </summary>
/// <param name="face_type_map">[Output] property map with type of faces</param>
/// <param name="mesh">Mesh to process</param>
/// <param name="vertex_shape_map">Keep information about source element of Face
/// type</param> <param name="ecm">Dynamic Edge Constrained Map of bool</param>
/// <param name="project">projection of opoint</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
void set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const Project &project,
const CutMesh &shape_mesh);
/// <summary>
/// Check orientation(normal direction) of face on mesh
/// </summary>
/// <param name="fi">Face index to inspect</param>
/// <param name="mesh">Mesh contained fi</param>
/// <param name="projection">Define direction of projection</param>
/// <returns>TRUE for cutted face otherwise FALSE</returns>
bool is_toward_projection(FI fi,
const CutMesh &mesh,
const Project &projection);
/// <summary>
/// Change FaceType from not_constrained to inside
/// For neighbor(or neighbor of neighbor of ...) of inside triangles.
/// Process only not_constrained triangles
/// </summary>
/// <param name="mesh">Corefined mesh</param>
/// <param name="projection">Projection from 2d to 3d</param>
/// <param name="face_type_map">In/Out map with faces type</param>
void flood_fill_inner(const CutMesh &mesh,
const Project &projection,
FaceTypeMap &face_type_map);
using ReductionMap = CutMesh::Property_map<VI, VI>;
/// <summary>
/// Create map to reduce unnecesary triangles,
/// Triangles are made by divided quad to two triangles
/// on side of cutting shape mesh
/// </summary>
/// <param name="reduction_map">Reduction map from vertex to vertex,
/// when key == value than no reduction</param>
/// <param name="faces">Faces of one </param>
/// <param name="mesh">Input object</param>
/// <param name="face_type_map">Type of shape inside / outside</param>
/// <param name="vert_shape_map">Source of outline vertex</param>
void create_reduce_map(ReductionMap &reduction_map,
const CutMesh &mesh,
const FaceTypeMap &face_type_map,
const VertexShapeMap &vert_shape_map);
// connected faces(triangles) and outlines(halfEdges) for one surface cut
using CutAOI = std::pair<std::vector<FI>, std::vector<HI>>;
using CutAOIs = std::vector<CutAOI>;
/// <summary>
/// Create areas from mesh surface
/// </summary>
/// <param name="mesh">Model</param>
/// <param name="shapes">Cutted shapes</param>
/// <param name="face_type_map">Define Triangles of interest.
/// Edge between inside / outside.
/// NOTE: Not const because it need to flag proccessed faces</param>
/// <returns>Areas of interest from mesh</returns>
CutAOIs create_cut_area_of_interests(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map);
/// <summary>
/// Filter out cuts which are behind another.
/// Prevent overlapping embossed shape in space.
/// </summary>
/// <param name="cuts">AOIs</param>
/// <param name="mesh">triangle model</param>
/// <param name="shapes">2d cutted shapes</param>
/// <param name="projection">Projection from 2d to 3d</param>
/// <param name="vert_shape_map">Identify source of intersection</param>
void filter_cuts(CutAOIs &cuts,
const CutMesh &mesh,
const ExPolygons &shapes,
const Project &projection,
const VertexShapeMap &vert_shape_map);
using ConvertMap = CutMesh::Property_map<VI, SurfaceCut::Index>;
/// <summary>
/// Create surface cuts from mesh model
/// </summary>
/// <param name="mesh">Model</param>
/// <param name="shapes">Cutted shapes</param>
/// <param name="reduction_map">Reduction of vertices</param>
/// <param name="face_type_map">Define Triangles of interest.
/// Edge between inside / outside.
/// NOTE: Not const because it need to flag proccessed faces</param>
/// <param name="convert_map">Used only inside function.
/// Store conversion from mesh to result.</param>
/// <returns>Created surface cuts</returns>
SurfaceCuts create_surface_cuts(const CutAOIs &cutAOIs,
const CutMesh &mesh,
const ReductionMap &reduction_map,
ConvertMap &convert_map);
/// <summary>
/// Collect connected inside faces
/// Collect outline half edges
/// </summary>
/// <param name="process">Queue of face to process - find connected</param>
/// <param name="faces">[Output] collected Face indices from mesh</param>
/// <param name="outlines">[Output] collected Halfedge indices from mesh</param>
/// <param name="face_type_map">Use flag inside / outside
/// NOTE: Modify in function: inside -> inside_</param>
/// <param name="mesh">mesh to process</param>
void collect_surface_data(std::queue<FI> &process,
std::vector<FI> &faces,
std::vector<HI> &outlines,
FaceTypeMap &face_type_map,
const CutMesh &mesh);
/// <summary>
/// Copy triangles from CGAL mesh into index triangle set
/// NOTE: Skip vertices created by edge in center of Quad.
/// </summary>
/// <param name="faces">Faces to copy</param>
/// <param name="count_outlines">Count of outlines</param>
/// <param name="mesh">Source CGAL mesh</param>
/// <param name="reduction_map">Reduction of vertices</param>
/// <param name="v2v">[Output] map to convert CGAL vertex to its::vertex index</param>
/// <returns>Surface cut (Partialy filled - only index triangle set)</returns>
SurfaceCut create_index_triangle_set(const std::vector<FI> &faces,
size_t count_outlines,
const CutMesh &mesh,
const ReductionMap &reduction_map,
ConvertMap &v2v);
/// <summary>
/// Connect outlines into closed loops
/// </summary>
/// <param name="outlines">Half edges from border of cut - Oriented</param>
/// <param name="mesh">Source CGAL mesh</param>
/// <param name="reduction_map">Reduction of vertices</param>
/// <param name="v2v">Map to convert CGAL vertex to its::vertex</param>
/// <returns>Cuts - outlines of surface</returns>
SurfaceCut::CutContour create_cut(const std::vector<HI> &outlines,
const CutMesh &mesh,
const ReductionMap &reduction_map,
const ConvertMap &v2v);
/// <summary>
/// Debug purpose store of mesh with colored face by face type
/// </summary>
/// <param name="mesh">Input mesh, could add property color
/// NOTE: Not const because need to [optionaly] append color property map</param>
/// <param name="face_type_map">Color source</param>
/// <param name="file">File to store</param>
void store(CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string &file);
void store(CutMesh &mesh, const ReductionMap &reduction_map, const std::string &file);
void store(const SurfaceCuts &cut, const std::string &file_prefix);
} // namespace privat
SurfaceCuts Slic3r::cut_surface(const indexed_triangle_set &model,
const ExPolygons &shapes,
const Emboss::IProject &projection)
{
priv::CutMesh cgal_model = priv::to_cgal(model);
CGAL::IO::write_OFF("C:/data/temp/model.off", cgal_model); // only debug
std::string edge_shape_map_name = "e:IntersectingElement";
std::string face_shape_map_name = "f:IntersectingElement";
priv::CutMesh cgal_shape = priv::to_cgal(shapes, projection, edge_shape_map_name, face_shape_map_name);
CGAL::IO::write_OFF("C:/data/temp/shape.off", cgal_shape); // only debug
auto edge_shape_map = cgal_shape.property_map<priv::EI, priv::IntersectingElement>(edge_shape_map_name).first;
auto face_shape_map = cgal_shape.property_map<priv::FI, priv::IntersectingElement>(face_shape_map_name).first;
std::string vert_shape_map_name = "v:IntersectingElement";
// pointer to edge or face shape_map
priv::VertexShapeMap vert_shape_map = cgal_model.add_property_map<priv::VI, const priv::IntersectingElement*>(vert_shape_map_name).first;
// detect anomalities in visitor.
bool is_valid = true;
// create anotation visitor - Must be copyable
priv::Visitor visitor{cgal_model, cgal_shape, edge_shape_map, face_shape_map, vert_shape_map, &is_valid};
// bool map for affected edge
priv::EcmType ecm = get(priv::DynamicEdgeProperty(), cgal_model);
const auto &p = CGAL::parameters::visitor(visitor)
.edge_is_constrained_map(ecm)
.throw_on_self_intersection(false);
const auto& q = CGAL::parameters::do_not_modify(true);
CGAL::Polygon_mesh_processing::corefine(cgal_model, cgal_shape, p, q);
if (!is_valid) return {};
std::string face_type_map_name = "f:side";
priv::FaceTypeMap face_type_map = cgal_model.add_property_map<priv::FI, priv::FaceType>(face_type_map_name).first;
// Select inside and outside face in model
priv::set_face_type(face_type_map, cgal_model, vert_shape_map, ecm, projection, cgal_shape);
priv::store(cgal_model, face_type_map, "C:/data/temp/constrained.off"); // only debug
// Seed fill the other faces inside the region.
priv::flood_fill_inner(cgal_model, projection, face_type_map);
priv::store(cgal_model, face_type_map, "C:/data/temp/filled.off"); // only debug
std::string vertex_reduction_map_name = "v:reduction";
priv::ReductionMap vertex_reduction_map = cgal_model.add_property_map<priv::VI, priv::VI>(vertex_reduction_map_name).first;
priv::create_reduce_map(vertex_reduction_map, cgal_model, face_type_map, vert_shape_map);
priv::store(cgal_model, vertex_reduction_map, "C:/data/temp/reduction.off"); // only debug
priv::CutAOIs cutAOIs = create_cut_area_of_interests(cgal_model, shapes, face_type_map);
// Filter out NO top one cuts
priv::filter_cuts(cutAOIs, cgal_model, shapes, projection, vert_shape_map);
// conversion map between vertex index in cgal_model and indices in result
// used instead of std::map
std::string vertec_convert_map_name = "v:convert";
priv::ConvertMap vertex_convert_map = cgal_model.add_property_map<priv::VI, SurfaceCut::Index>(vertec_convert_map_name).first;
SurfaceCuts result = priv::create_surface_cuts(cutAOIs, cgal_model, vertex_reduction_map, vertex_convert_map);
priv::store(result, "C:/data/temp/cut"); // only debug
// TODO: Filter surfaceCuts to only the top most.
return result;
}
indexed_triangle_set Slic3r::cuts2model(const SurfaceCuts &cuts,
const Emboss::IProject &projection)
{
indexed_triangle_set result;
size_t count_vertices = 0;
size_t count_indices = 0;
for (const SurfaceCut &cut : cuts) {
assert(!cut.empty());
count_indices += cut.indices.size()*2;
// indices from from zig zag
for (const auto &c : cut.contours) {
assert(!c.empty());
count_indices += c.size() * 2;
}
count_vertices += cut.vertices.size()*2;
}
result.vertices.reserve(count_vertices);
result.indices.reserve(count_indices);
size_t indices_offset = 0;
for (const SurfaceCut &cut : cuts) {
// front
for (const auto &v : cut.vertices)
result.vertices.push_back(v);
for (const auto &i : cut.indices)
result.indices.emplace_back(i.x() + indices_offset,
i.y() + indices_offset,
i.z() + indices_offset);
// back
for (const auto &v : cut.vertices) {
Vec3f v2 = projection.project(v);
result.vertices.push_back(v2);
}
size_t back_offset = indices_offset + cut.vertices.size();
for (const auto &i : cut.indices) {
assert(i.x() + back_offset < result.vertices.size());
assert(i.y() + back_offset < result.vertices.size());
assert(i.z() + back_offset < result.vertices.size());
// Y and Z is swapped CCW triangles for back side
result.indices.emplace_back(i.x() + back_offset,
i.z() + back_offset,
i.y() + back_offset);
}
// zig zag indices
for (const auto &contour : cut.contours) {
size_t prev_ci = contour.back();
size_t prev_front_index = indices_offset + prev_ci;
size_t prev_back_index = back_offset + prev_ci;
for (size_t ci : contour) {
size_t front_index = indices_offset + ci;
size_t back_index = back_offset + ci;
assert(front_index < result.vertices.size());
assert(prev_front_index < result.vertices.size());
assert(back_index < result.vertices.size());
assert(prev_back_index < result.vertices.size());
result.indices.emplace_back(
front_index,
prev_front_index,
back_index
);
result.indices.emplace_back(
prev_front_index,
prev_back_index,
back_index
);
prev_front_index = front_index;
prev_back_index = back_index;
}
}
indices_offset = result.vertices.size();
}
assert(count_vertices == result.vertices.size());
assert(count_indices == result.indices.size());
return result;
}
indexed_triangle_set Slic3r::cut2model(const SurfaceCut &cut,
const Emboss::IProject &projection)
{
assert(!cut.empty());
size_t count_vertices = cut.vertices.size() * 2;
size_t count_indices = cut.indices.size() * 2;
// indices from from zig zag
for (const auto &c : cut.contours) {
assert(!c.empty());
count_indices += c.size() * 2;
}
indexed_triangle_set result;
result.vertices.reserve(count_vertices);
result.indices.reserve(count_indices);
// front
result.vertices.insert(result.vertices.end(),
cut.vertices.begin(), cut.vertices.end());
result.indices.insert(result.indices.end(),
cut.indices.begin(), cut.indices.end());
// back
for (const auto &v : cut.vertices) {
Vec3f v2 = projection.project(v);
result.vertices.push_back(v2);
}
size_t back_offset = cut.vertices.size();
for (const auto &i : cut.indices) {
// check range of indices in cut
assert(i.x() >= 0 && i.x() < cut.vertices.size());
assert(i.y() >= 0 && i.y() < cut.vertices.size());
assert(i.z() >= 0 && i.z() < cut.vertices.size());
// Y and Z is swapped CCW triangles for back side
result.indices.emplace_back(i.x() + back_offset,
i.z() + back_offset,
i.y() + back_offset);
}
// zig zag indices
for (const auto &contour : cut.contours) {
size_t prev_front_index = contour.back();
size_t prev_back_index = back_offset + prev_front_index;
for (size_t front_index : contour) {
assert(front_index < cut.vertices.size());
size_t back_index = back_offset + front_index;
result.indices.emplace_back(front_index, prev_front_index, back_index);
result.indices.emplace_back(prev_front_index, prev_back_index, back_index);
prev_front_index = front_index;
prev_back_index = back_index;
}
}
assert(count_vertices == result.vertices.size());
assert(count_indices == result.indices.size());
return result;
}
priv::CutMesh priv::to_cgal(const indexed_triangle_set &its)
{
CutMesh result;
if (its.empty()) return result;
const std::vector<stl_vertex> &vertices = its.vertices;
const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
size_t vertices_count = vertices.size();
size_t faces_count = indices.size();
size_t edges_count = (faces_count * 3) / 2;
result.reserve(vertices_count, edges_count, faces_count);
for (const stl_vertex &v : vertices)
result.add_vertex(CutMesh::Point{v.x(), v.y(), v.z()});
for (const stl_triangle_vertex_indices &f : indices)
result.add_face(static_cast<VI>(f[0]),
static_cast<VI>(f[1]),
static_cast<VI>(f[2]));
return result;
}
priv::CutMesh priv::to_cgal(const ExPolygons &shapes,
const Project &projection,
const std::string &edge_shape_map_name,
const std::string &face_shape_map_name)
{
CutMesh result;
if (shapes.empty()) return result;
auto edge_shape_map = result.add_property_map<EI, IntersectingElement>(edge_shape_map_name).first;
auto face_shape_map = result.add_property_map<FI, IntersectingElement>(face_shape_map_name).first;
std::vector<VI> indices;
auto insert_contour = [&projection, &indices, &result,
&edge_shape_map, &face_shape_map]
(const Polygon &polygon) {
indices.clear();
indices.reserve(polygon.points.size() * 2);
size_t num_vertices_old = result.number_of_vertices();
for (const Point &p2 : polygon.points) {
auto p = projection.project(p2);
CutMesh::Point v_first{p.first.x(), p.first.y(), p.first.z()};
CutMesh::Point v_second{p.second.x(), p.second.y(), p.second.z()};
VI reduction_from = result.add_vertex(v_first);
assert(size_t(reduction_from) == (indices.size() + num_vertices_old));
indices.emplace_back(reduction_from);
reduction_from = result.add_vertex(v_second);
assert(size_t(reduction_from) == (indices.size() + num_vertices_old));
indices.emplace_back(reduction_from);
}
auto find_edge = [&result](FI fi, VI from, VI to) {
HI hi = result.halfedge(fi);
for (; result.target(hi) != to; hi = result.next(hi));
assert(result.source(hi) == from);
assert(result.target(hi) == to);
return result.edge(hi);
};
uint32_t contour_index = 0;
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
bool is_first = i == 0;
bool is_last = size_t(i + 2) >= indices.size();
int32_t j = is_last ? 0 : (i + 2);
auto fi1 = result.add_face(indices[i], indices[i + 1], indices[j]);
auto ei1 = find_edge(fi1, indices[i], indices[i + 1]);
auto ei2 = find_edge(fi1, indices[i + 1], indices[j]);
auto fi2 = result.add_face(indices[j], indices[i + 1], indices[j + 1]);
uint32_t vertex_base = static_cast<uint32_t>(num_vertices_old);
IntersectingElement element {vertex_base, contour_index, (unsigned char)IntersectingElement::Type::undefined};
if (is_first) element.set_is_first();
if (is_last) element.set_is_last();
edge_shape_map[ei1] = element.set_type(IntersectingElement::Type::edge_1);
face_shape_map[fi1] = element.set_type(IntersectingElement::Type::face_1);
edge_shape_map[ei2] = element.set_type(IntersectingElement::Type::edge_2);
face_shape_map[fi2] = element.set_type(IntersectingElement::Type::face_2);
++contour_index;
}
};
size_t count_point = count_points(shapes);
result.reserve(result.number_of_vertices() + 2 * count_point,
result.number_of_edges() + 4 * count_point,
result.number_of_faces() + 2 * count_point);
// Identify polygon
for (const ExPolygon &shape : shapes) {
insert_contour(shape.contour);
for (const Polygon &hole : shape.holes)
insert_contour(hole);
}
return result;
}
void priv::set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EcmType &ecm,
const Project &project,
const CutMesh &shape_mesh)
{
for (const FI& fi : mesh.faces()) {
FaceType face_type = FaceType::not_constrained;
HI hi_end = mesh.halfedge(fi);
HI hi = hi_end;
do {
EI edge_index = mesh.edge(hi);
// is edge new created - constrained?
if (get(ecm, edge_index)) {
// This face has a constrained edge.
const IntersectingElement& shape_from = *vertex_shape_map[mesh.source(hi)];
const IntersectingElement& shape_to = *vertex_shape_map[mesh.target(hi)];
assert(shape_from.point_index != std::numeric_limits<uint32_t>::max());
assert(shape_from.attr != (unsigned char)IntersectingElement::Type::undefined);
assert(shape_to.point_index != std::numeric_limits<uint32_t>::max());
assert(shape_to.attr != (unsigned char)IntersectingElement::Type::undefined);
// assert mean: There is constrained between two shapes
// Filip think it can't happens.
// consider what to do?
assert(shape_from.vertex_base == shape_to.vertex_base);
bool is_inside = false;
// index into contour
uint32_t i_from = shape_from.point_index;
uint32_t i_to = shape_to.point_index;
IntersectingElement::Type type_from = shape_from.get_type();
IntersectingElement::Type type_to = shape_to.get_type();
if (i_from == i_to && type_from == type_to) {
// intersecting element must be face
assert(type_from == IntersectingElement::Type::face_1 ||
type_from == IntersectingElement::Type::face_2);
// count of vertices is twice as count of point in the contour
uint32_t i = i_from * 2;
// j is next contour point in vertices
uint32_t j = shape_from.is_last() ? 0 : i + 2;
i += shape_from.vertex_base;
j += shape_from.vertex_base;
// opposit point(in triangle face) to edge
const auto &p = mesh.point(mesh.target(mesh.next(hi)));
// abc is source triangle face
auto abcp =
type_from == IntersectingElement::Type::face_1 ?
CGAL::orientation(
shape_mesh.point(VI(i)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j)), p) :
// type_from == IntersectingElement::Type::face_2
CGAL::orientation(
shape_mesh.point(VI(j)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j + 1)), p);
is_inside = abcp == CGAL::NEGATIVE;
} else if (i_from < i_to || (i_from == i_to && type_from < type_to)) {
// TODO: check that it is continous indices of contour
bool is_last = shape_from.is_first() && shape_to.is_last() &&
shape_to.vertex_base == shape_from.vertex_base;
if (!is_last) is_inside = true;
} else { // i_from > i_to || (i_from == i_to && shape_from.type > shape_to.type)
// TODO: check that it is continous indices of contour
bool is_last = shape_to.is_first() && shape_from.is_last() &&
shape_to.vertex_base == shape_from.vertex_base;
if (is_last) is_inside = true;
}
if (is_inside) {
if (is_toward_projection(fi, mesh, project))
face_type = FaceType::inside;
else
is_inside = false;
}
if (!is_inside) face_type = FaceType::outside;
break;
}
// next half edge index inside of face
hi = mesh.next(hi);
} while (hi != hi_end);
face_type_map[fi] = face_type;
}
}
bool priv::is_toward_projection(FI fi,
const CutMesh &mesh,
const Project &projection)
{
HI hi = mesh.halfedge(fi);
const auto &a = mesh.point(mesh.source(hi));
const auto &b = mesh.point(mesh.target(hi));
const auto &c = mesh.point(mesh.target(mesh.next(hi)));
Vec3f a_(a.x(), a.y(), a.z());
Vec3f p_ = projection.project(a_);
CGAL::Epick::Point_3 p{p_.x(), p_.y(), p_.z()};
return CGAL::orientation(a, b, c, p) == CGAL::NEGATIVE;
}
void priv::flood_fill_inner(const CutMesh &mesh,
const Project &projection,
FaceTypeMap &face_type_map)
{
for (FI fi : mesh.faces()) {
if (face_type_map[fi] != FaceType::not_constrained) continue;
// check if neighbor(one of three in triangle) has type inside
bool has_inside_neighbor = false;
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
// list of other not constrained neighbors
std::queue<FI> queue;
do {
HI hi_opposite = mesh.opposite(hi);
// open edge doesn't have opposit half edge
if (!hi_opposite.is_valid()) {
hi = mesh.next(hi);
continue;
}
FI fi_opposite = mesh.face(hi_opposite);
FaceType side = face_type_map[fi_opposite];
if (side == FaceType::inside) {
has_inside_neighbor = true;
} else if (side == FaceType::not_constrained) {
queue.emplace(fi_opposite);
}
hi = mesh.next(hi);
} while (hi != hi_end);
if (!has_inside_neighbor) continue;
face_type_map[fi] = FaceType::inside;
while (!queue.empty()) {
FI fi = queue.front();
queue.pop();
// Do not fill twice
if (face_type_map[fi] == FaceType::inside) continue;
face_type_map[fi] = FaceType::inside;
// check neighbor triangle
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
do {
HI hi_opposite = mesh.opposite(hi);
// open edge doesn't have opposit half edge
if (!hi_opposite.is_valid()) {
hi = mesh.next(hi);
continue;
}
FI fi_opposite = mesh.face(hi_opposite);
FaceType &side = face_type_map[fi_opposite];
if (side == FaceType::not_constrained) {
if (is_toward_projection(fi_opposite, mesh, projection)) {
queue.emplace(fi_opposite);
} else {
// Is in opposit direction
side = FaceType::outside;
}
}
hi = mesh.next(hi);
} while (hi != hi_end);
}
}
}
void priv::Visitor::intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar)
{
if (i_id >= intersections.size()) {
size_t capacity = Slic3r::next_highest_power_of_2(i_id + 1);
intersections.reserve(capacity);
intersections.resize(capacity);
}
const IntersectingElement *intersection_ptr = nullptr;
if (&tm_e == &shape) {
assert(&tm_f == &object);
switch (sdim) {
case 1:
// edge x edge intersection
intersection_ptr = &edge_shape_map[shape.edge(h_e)];
break;
case 2:
// edge x face intersection
intersection_ptr = &face_shape_map[shape.face(h_e)];
break;
default: assert(false);
}
if (is_target_coplanar)
vert_shape_map[object.source(h_f)] = intersection_ptr;
if (is_source_coplanar)
vert_shape_map[object.target(h_f)] = intersection_ptr;
} else {
assert(&tm_f == &shape && &tm_e == &object);
assert(!is_target_coplanar);
assert(!is_source_coplanar);
intersection_ptr = &edge_shape_map[shape.edge(h_f)];
if (sdim == 0) vert_shape_map[object.target(h_e)] = intersection_ptr;
}
if (intersection_ptr->point_index == std::numeric_limits<uint32_t>::max()) {
// there is unexpected intersection
// Top (or Bottom) shape contour edge (or vertex) intersection
// Suggest to change projection min/max limits
*is_valid = false;
}
intersections[i_id] = intersection_ptr;
}
void priv::Visitor::new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
{
assert(&tm == &object);
assert(i_id < intersections.size());
const IntersectingElement *intersection_ptr = intersections[i_id];
assert(intersection_ptr != nullptr);
// intersection was not filled in function intersection_point_detected
//assert(intersection_ptr->point_index != std::numeric_limits<uint32_t>::max());
vert_shape_map[v] = intersection_ptr;
}
void priv::collect_surface_data(std::queue<FI> &process,
std::vector<FI> &faces,
std::vector<HI> &outlines,
FaceTypeMap &face_type_map,
const CutMesh &mesh)
{
while (!process.empty()) {
FI fi_ = process.front();
process.pop();
// Do not process twice
if (face_type_map[fi_] == FaceType::inside_) continue;
assert(face_type_map[fi_] == FaceType::inside);
// flag face as processed
face_type_map[fi_] = FaceType::inside_;
faces.push_back(fi_);
// check neighbor triangle
HI hi = mesh.halfedge(fi_);
HI hi_end = hi;
do {
HI hi_opposite = mesh.opposite(hi);
// open edge doesn't have opposit half edge
if (!hi_opposite.is_valid()) {
hi = mesh.next(hi);
continue;
}
FI fi_opposite = mesh.face(hi_opposite);
FaceType side = face_type_map[fi_opposite];
if (side == FaceType::inside) {
process.emplace(fi_opposite);
} else if (side == FaceType::outside) {
// store outlines
outlines.push_back(hi);
}
hi = mesh.next(hi);
} while (hi != hi_end);
}
}
void priv::create_reduce_map(ReductionMap &reduction_map,
const CutMesh &mesh,
const FaceTypeMap &face_type_map,
const VertexShapeMap &vert_shape_map)
{
// IMPROVE: find better way to initialize or try use std::map
// initialize reduction map
for (VI reduction_from : mesh.vertices())
reduction_map[reduction_from] = reduction_from;
// check if vertex was made by edge_2 which is diagonal of quad
auto is_reducible_vertex = [&vert_shape_map, &mesh](VI reduction_from) -> bool {
const IntersectingElement *ie = vert_shape_map[reduction_from];
if (ie == nullptr) return false;
IntersectingElement::Type type = ie->get_type();
return type == IntersectingElement::Type::edge_2;
};
/// <summary>
/// Append reduction or change existing one.
/// </summary>
/// <param name="hi">HalEdge between outside and inside face.
/// Target vertex will be reduced
/// Source vertex left</param>
auto add_reduction = [&reduction_map, &mesh, &is_reducible_vertex, &face_type_map]
(HI hi) {
VI erase = mesh.target(hi);
VI left = mesh.source(hi);
assert(is_reducible_vertex(erase));
assert(!is_reducible_vertex(left));
assert((
FaceType::outside == face_type_map[mesh.face(hi)] &&
FaceType::inside == face_type_map[mesh.face(mesh.opposite(hi))]
) || (
FaceType::outside == face_type_map[mesh.face(mesh.opposite(hi))] &&
FaceType::inside == face_type_map[mesh.face(hi)]
));
bool is_first = reduction_map[erase] == erase;
if (is_first)
reduction_map[erase] = left;
// I have no better rule than take the first
// for decide which reduction will be better
// But it could be use only one of them
};
for (FI fi : mesh.faces()) {
if (face_type_map[fi] != FaceType::inside) continue;
// find all reducible edges
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
do {
VI reduction_from = mesh.target(hi);
if (is_reducible_vertex(reduction_from)) {
// reducible vertex
VI vi_from = mesh.target(hi);
// halfedges connected with reduction_from
HI hi1 = hi;
HI hi2 = mesh.next(hi);
// faces connected with reduction_from
FI fi1 = mesh.face(mesh.opposite(hi1));
FI fi2 = mesh.face(mesh.opposite(hi2));
if (face_type_map[fi1] == FaceType::outside)
add_reduction(hi1);
if (face_type_map[fi2] == FaceType::outside)
add_reduction(mesh.opposite(hi2));
}
hi = mesh.next(hi);
} while (hi != hi_end);
}
}
SurfaceCut priv::create_index_triangle_set(const std::vector<FI> &faces,
size_t count_outlines,
const CutMesh &mesh,
const ReductionMap &reduction_map,
ConvertMap &v2v)
{
// IMPROVE: use reduced count of faces and outlines
size_t indices_size = faces.size();
size_t vertices_size = (indices_size * 3 - count_outlines / 2) / 2;
SurfaceCut sc;
sc.indices.reserve(indices_size);
sc.vertices.reserve(vertices_size);
for (FI fi : faces) {
//auto reduce = get_reduce_vertex(fi);
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
Vec3i its_face;
// index into its_face
int its_face_id = 0;
bool exist_reduction = false;
do {
VI vi = mesh.source(hi);
VI vi_r = reduction_map[vi];
if (vi_r != vi) {
exist_reduction = true;
vi = vi_r;
}
size_t index = v2v[vi];
if (index == std::numeric_limits<SurfaceCut::Index>::max()) {
index = sc.vertices.size();
const auto &p = mesh.point(vi);
// create vertex in result
sc.vertices.emplace_back(p.x(), p.y(), p.z());
v2v[vi] = index;
}
assert(index != std::numeric_limits<SurfaceCut::Index>::max());
its_face[its_face_id++] = index;
hi = mesh.next(hi);
} while (hi != hi_end);
// prevent add reduced triangle
if (exist_reduction && (
its_face[0] == its_face[1] ||
its_face[1] == its_face[2] ||
its_face[2] == its_face[0]
)) continue;
sc.indices.emplace_back(std::move(its_face));
}
// reduce size with respect to reduction triangles
sc.indices.shrink_to_fit();
sc.vertices.shrink_to_fit();
return sc;
}
SurfaceCut::CutContour priv::create_cut(const std::vector<HI> &outlines,
const CutMesh &mesh,
const ReductionMap &reduction_map,
const ConvertMap &v2v)
{
using Index = SurfaceCut::Index;
SurfaceCut::CutContour cut;
SurfaceCut::CutContour unclosed_cut;
for (HI hi : outlines) {
VI vi_s = mesh.source(hi);
VI vi_t = mesh.target(hi);
// reduced vertex
VI vi_s_r = reduction_map[vi_s];
VI vi_t_r = reduction_map[vi_t];
// is reduced edge?
if (vi_s_r == vi_t || vi_t_r == vi_s) continue;
// source vertex (from)
Index vi_from = v2v[vi_s_r];
assert(vi_from != std::numeric_limits<Index>::max());
// target vertex (to)
Index vi_to = v2v[vi_t_r];
assert(vi_to != std::numeric_limits<Index>::max());
std::vector<Index> *cut_move = nullptr;
std::vector<Index> *cut_connect = nullptr;
for (std::vector<Index> &cut : unclosed_cut) {
if (cut.back() != vi_from) continue;
if (cut.front() == vi_to) {
// cut closing
cut_move = &cut;
} else {
cut_connect = &cut;
}
break;
}
if (cut_move != nullptr) {
// index of closed cut
size_t index = cut_move - &unclosed_cut.front();
// move cut to result
cut.emplace_back(std::move(*cut_move));
// remove it from unclosed cut
unclosed_cut.erase(unclosed_cut.begin() + index);
} else if (cut_connect != nullptr) {
// try find tail to connect cut
std::vector<Index> *cut_tail = nullptr;
for (std::vector<Index> &cut : unclosed_cut) {
if (cut.front() != vi_to) continue;
cut_tail = &cut;
break;
}
if (cut_tail != nullptr) {
// index of tail
size_t index = cut_tail - &unclosed_cut.front();
// move to connect vector
cut_connect->insert(cut_connect->end(),
make_move_iterator(cut_tail->begin()),
make_move_iterator(cut_tail->end()));
// remove tail from unclosed cut
unclosed_cut.erase(unclosed_cut.begin() + index);
} else {
cut_connect->push_back(vi_to);
}
} else { // not found
bool create_cut = true;
// try to insert to front of cut
for (std::vector<Index> &cut : unclosed_cut) {
if (cut.front() != vi_to) continue;
cut.insert(cut.begin(), vi_from);
create_cut = false;
break;
}
if (create_cut)
unclosed_cut.emplace_back(std::vector{vi_from, vi_to});
}
}
assert(unclosed_cut.empty());
return cut;
}
priv::CutAOIs priv::create_cut_area_of_interests(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map)
{
// IMPROVE: Create better heuristic for count.
size_t faces_per_cut = mesh.faces().size() / shapes.size();
size_t outlines_per_cut = faces_per_cut / 2;
size_t cuts_per_model = shapes.size() * 2;
CutAOIs result;
result.reserve(cuts_per_model);
// It is faster to use one queue for all cuts
std::queue<FI> process;
for (FI fi : mesh.faces()) {
if (face_type_map[fi] != FaceType::inside) continue;
CutAOI cut;
std::vector<FI> &faces = cut.first;
std::vector<HI> &outlines = cut.second;
// faces for one surface cut
faces.reserve(faces_per_cut);
// outline for one surface cut
outlines.reserve(outlines_per_cut);
assert(process.empty());
// Process queue of faces to separate to surface_cut
process.push(fi);
collect_surface_data(process, faces, outlines, face_type_map, mesh);
assert(!faces.empty());
assert(!outlines.empty());
result.emplace_back(std::move(cut));
}
return result;
}
void priv::filter_cuts(CutAOIs &cuts,
const CutMesh &mesh,
const ExPolygons &shapes,
const Project &projection,
const VertexShapeMap &vert_shape_map)
{
auto get_point = [&shapes](const IntersectingElement &intersection) -> Point {
assert(intersection.vertex_base != std::numeric_limits<uint32_t>::max());
assert(intersection.point_index != std::numeric_limits<uint32_t>::max());
size_t offset = 0;
for (const ExPolygon &s : shapes) {
if (offset == intersection.vertex_base) {
assert(s.contour.size() > intersection.point_index);
return s.contour[intersection.point_index];
}
// *2 .. see description of IntersectingElement::vertex_base
offset += 2*s.contour.size();
assert(offset <= intersection.vertex_base);
for (const Polygon &h : s.holes) {
if (offset == intersection.vertex_base) {
assert(h.points.size() > intersection.point_index);
return h.points[intersection.point_index];
}
// *2 .. see description of IntersectingElement::vertex_base
offset += 2*h.points.size();
assert(offset <= intersection.vertex_base);
}
}
// index is out of shape
assert(false);
return Point{};
};
struct CutIndex
{
// index in vector into cuts
size_t cut_index = std::numeric_limits<size_t>::max();
// vertex index inside of mesh
VI vi;
};
size_t count = count_points(shapes);
// each source point from shapes could has only one nearest projection
std::vector<CutIndex> indices(count);
// flags which cut is not first
std::vector<bool> del_cuts(cuts.size(), false);
// check whether vertex is behind another cut
auto is_behind = [&vert_shape_map, &indices, &del_cuts, &get_point,
&projection, &mesh]
(VI vi, size_t cut_index) -> bool {
const IntersectingElement *i = vert_shape_map[vi];
// Is vertex made by corefine?
if (i == nullptr) return false;
assert(i->vertex_base != std::numeric_limits<uint32_t>::max());
assert(i->vertex_base%2 == 0);
assert(i->point_index != std::numeric_limits<uint32_t>::max());
assert(i->attr != (unsigned char)IntersectingElement::Type::undefined);
// Use only straigh edge
if (i->get_type() != IntersectingElement::Type::edge_1)
return false;
size_t index = i->vertex_base/2 + i->point_index;
CutIndex &ci = indices[index];
// is first cut for vertex OR
// is remembred cut is deleted?
if (ci.cut_index == std::numeric_limits<size_t>::max() ||
del_cuts[ci.cut_index] ) {
ci.cut_index = cut_index;
ci.vi = vi;
return false;
}
if (ci.cut_index == cut_index) {
// In one connected triangles area are more points
// with same source point from text contour
//assert(ci.vi == vi);
return false;
}
// compare distances of vertices
Point p = get_point(*i);
Vec3f source_point = projection.project(p).first;
const auto &prev = mesh.point(ci.vi);
Vec3f prev_point(prev.x(), prev.y(), prev.z());
float prev_sq_norm = (source_point - prev_point).squaredNorm();
const auto &act = mesh.point(vi);
Vec3f act_point(act.x(), act.y(), act.z());
float act_sq_norm = (source_point - act_point).squaredNorm();
if (act_sq_norm > prev_sq_norm) {
del_cuts[cut_index] = true;
return true;
}
// previous cut is behind actual one
del_cuts[ci.cut_index] = true;
ci.cut_index = cut_index;
ci.vi = vi;
return false;
};
// filter top one cuts
for (const CutAOI &cut : cuts) {
size_t cut_index = &cut - &cuts.front();
const std::vector<HI> &outlines = cut.second;
for (HI hi : outlines) {
if (is_behind(mesh.source(hi), cut_index) ||
is_behind(mesh.target(hi), cut_index))
break;
}
}
// remove flagged cuts
for (size_t i = del_cuts.size(); i > 0; --i) {
size_t index = i - 1;
if (del_cuts[index])
cuts.erase(cuts.begin() + index);
}
}
SurfaceCuts priv::create_surface_cuts(const CutAOIs &cuts,
const CutMesh &mesh,
const ReductionMap &reduction_map,
ConvertMap &convert_map)
{
// initialize convert_map to MAX values
for (VI vi : mesh.vertices())
convert_map[vi] = std::numeric_limits<SurfaceCut::Index>::max();
SurfaceCuts result;
for (const CutAOI &cut : cuts) {
const std::vector<FI>& faces = cut.first;
const std::vector<HI> &outlines = cut.second;
// convert_map could be used separately for each surface cut.
// But it is moore faster to use one memory allocation for them all.
SurfaceCut sc = create_index_triangle_set(faces, outlines.size(), mesh, reduction_map, convert_map);
// connect outlines
sc.contours = create_cut(outlines, mesh, reduction_map, convert_map);
result.emplace_back(std::move(sc));
}
return result;
}
// only for debug
void priv::store(CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string& file)
{
auto face_colors = mesh.add_property_map<priv::FI, CGAL::Color>("f:color").first;
for (FI fi : mesh.faces()) {
auto &color = face_colors[fi];
switch (face_type_map[fi]) {
case FaceType::inside: color = CGAL::Color{255, 0, 0}; break;
case FaceType::inside_: color = CGAL::Color{150, 0, 0}; break;
case FaceType::outside: color = CGAL::Color{255, 0, 255}; break;
case FaceType::not_constrained: color = CGAL::Color{0, 255, 0}; break;
default: color = CGAL::Color{127, 127, 127};
}
}
CGAL::IO::write_OFF(file, mesh);
mesh.remove_property_map(face_colors);
}
void priv::store(CutMesh &mesh, const ReductionMap &reduction_map, const std::string& file)
{
auto vertex_colors = mesh.add_property_map<priv::VI, CGAL::Color>("v:color").first;
// initialize to gray color
for (VI vi: mesh.vertices())
vertex_colors[vi] = CGAL::Color{127, 127, 127};
for (VI reduction_from : mesh.vertices()) {
VI reduction_to = reduction_map[reduction_from];
if (reduction_to != reduction_from) {
vertex_colors[reduction_from] = CGAL::Color{255, 0, 0};
vertex_colors[reduction_to] = CGAL::Color{0, 0, 255};
}
}
CGAL::IO::write_OFF(file, mesh);
mesh.remove_property_map(vertex_colors);
}
void priv::store(const SurfaceCuts &cut, const std::string &file_prefix) {
for (auto &c : cut) {
size_t index = &c - &cut.front();
std::string file = file_prefix + std::to_string(index) + ".obj";
its_write_obj(c, file.c_str());
}
}