PrusaSlicer-NonPlainar/src/slic3r/GUI/Camera.hpp
2019-08-03 09:07:38 +02:00

111 lines
3.5 KiB
C++

#ifndef slic3r_Camera_hpp_
#define slic3r_Camera_hpp_
#include "libslic3r/BoundingBox.hpp"
#include <array>
namespace Slic3r {
namespace GUI {
struct Camera
{
static const double DefaultDistance;
static double FrustrumMinZRange;
static double FrustrumMinNearZ;
static double FrustrumZMargin;
static double MaxFovDeg;
enum EType : unsigned char
{
Unknown,
Ortho,
Perspective,
Num_types
};
float phi;
bool requires_zoom_to_bed;
bool inverted_phi;
private:
EType m_type;
Vec3d m_target;
float m_theta;
double m_zoom;
// Distance between camera position and camera target measured along the camera Z axis
mutable double m_distance;
mutable double m_gui_scale;
mutable std::array<int, 4> m_viewport;
mutable Transform3d m_view_matrix;
mutable Transform3d m_projection_matrix;
mutable std::pair<double, double> m_frustrum_zs;
BoundingBoxf3 m_scene_box;
public:
Camera();
EType get_type() const { return m_type; }
std::string get_type_as_string() const;
void set_type(EType type);
// valid values for type: "0" -> ortho, "1" -> perspective
void set_type(const std::string& type);
void select_next_type();
const Vec3d& get_target() const { return m_target; }
void set_target(const Vec3d& target);
double get_distance() const { return m_distance; }
double get_gui_scale() const { return m_gui_scale; }
float get_theta() const { return m_theta; }
void set_theta(float theta, bool apply_limit);
double get_zoom() const { return m_zoom; }
void set_zoom(double zoom, const BoundingBoxf3& max_box, int canvas_w, int canvas_h);
void set_zoom(double zoom) { m_zoom = zoom; }
const BoundingBoxf3& get_scene_box() const { return m_scene_box; }
void set_scene_box(const BoundingBoxf3& box) { m_scene_box = box; }
bool select_view(const std::string& direction);
const std::array<int, 4>& get_viewport() const { return m_viewport; }
const Transform3d& get_view_matrix() const { return m_view_matrix; }
const Transform3d& get_projection_matrix() const { return m_projection_matrix; }
Vec3d get_dir_right() const { return m_view_matrix.matrix().block(0, 0, 3, 3).row(0); }
Vec3d get_dir_up() const { return m_view_matrix.matrix().block(0, 0, 3, 3).row(1); }
Vec3d get_dir_forward() const { return -m_view_matrix.matrix().block(0, 0, 3, 3).row(2); }
Vec3d get_position() const { return m_view_matrix.matrix().inverse().block(0, 3, 3, 1); }
double get_near_z() const { return m_frustrum_zs.first; }
double get_far_z() const { return m_frustrum_zs.second; }
double get_fov() const;
void apply_viewport(int x, int y, unsigned int w, unsigned int h) const;
void apply_view_matrix() const;
void apply_projection(const BoundingBoxf3& box) const;
void zoom_to_box(const BoundingBoxf3& box, int canvas_w, int canvas_h);
#if ENABLE_CAMERA_STATISTICS
void debug_render() const;
#endif // ENABLE_CAMERA_STATISTICS
private:
// returns tight values for nearZ and farZ plane around the given bounding box
// the camera MUST be outside of the bounding box in eye coordinate of the given box
std::pair<double, double> calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const;
double calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, int canvas_w, int canvas_h) const;
void set_distance(double distance) const;
};
} // GUI
} // Slic3r
#endif // slic3r_Camera_hpp_