PrusaSlicer-NonPlainar/src/libslic3r/Flow.hpp
Vojtech Bubnik 00db3dc419 WIP: Splitting the number of top / bottom support interface layers.
If the new support_material_bottom_interface_layers is left at default -1,
then support_material_interface_layers is used for both top and bottom
interface layers.
If support_material_interface_layers == 0, then neither top nor bottom
interface layers are being extruded.
2021-03-15 09:55:56 +01:00

140 lines
5.8 KiB
C++

#ifndef slic3r_Flow_hpp_
#define slic3r_Flow_hpp_
#include "libslic3r.h"
#include "Config.hpp"
#include "Exception.hpp"
#include "ExtrusionEntity.hpp"
namespace Slic3r {
class PrintObject;
// Extra spacing of bridge threads, in mm.
#define BRIDGE_EXTRA_SPACING 0.05
enum FlowRole {
frExternalPerimeter,
frPerimeter,
frInfill,
frSolidInfill,
frTopSolidInfill,
frSupportMaterial,
frSupportMaterialInterface,
};
class FlowError : public Slic3r::InvalidArgument
{
public:
FlowError(const std::string& what_arg) : Slic3r::InvalidArgument(what_arg) {}
FlowError(const char* what_arg) : Slic3r::InvalidArgument(what_arg) {}
};
class FlowErrorNegativeSpacing : public FlowError
{
public:
FlowErrorNegativeSpacing();
};
class FlowErrorNegativeFlow : public FlowError
{
public:
FlowErrorNegativeFlow();
};
class FlowErrorMissingVariable : public FlowError
{
public:
FlowErrorMissingVariable(const std::string& what_arg) : FlowError(what_arg) {}
};
class Flow
{
public:
Flow() = default;
Flow(float width, float height, float nozzle_diameter) :
Flow(width, height, rounded_rectangle_extrusion_spacing(width, height), nozzle_diameter, false) {}
// Non bridging flow: Maximum width of an extrusion with semicircles at the ends.
// Bridging flow: Bridge thread diameter.
float width() const { return m_width; }
coord_t scaled_width() const { return coord_t(scale_(m_width)); }
// Non bridging flow: Layer height.
// Bridging flow: Bridge thread diameter = layer height.
float height() const { return m_height; }
// Spacing between the extrusion centerlines.
float spacing() const { return m_spacing; }
coord_t scaled_spacing() const { return coord_t(scale_(m_spacing)); }
// Nozzle diameter.
float nozzle_diameter() const { return m_nozzle_diameter; }
// Is it a bridge?
bool bridge() const { return m_bridge; }
// Cross section area of the extrusion.
double mm3_per_mm() const;
// Elephant foot compensation spacing to be used to detect narrow parts, where the elephant foot compensation cannot be applied.
// To be used on frExternalPerimeter only.
// Enable some perimeter squish (see INSET_OVERLAP_TOLERANCE).
// Here an overlap of 0.2x external perimeter spacing is allowed for by the elephant foot compensation.
coord_t scaled_elephant_foot_spacing() const { return coord_t(0.5f * float(this->scaled_width() + 0.6f * this->scaled_spacing())); }
bool operator==(const Flow &rhs) const { return m_width == rhs.m_width && m_height == rhs.m_height && m_nozzle_diameter == rhs.m_nozzle_diameter && m_bridge == rhs.m_bridge; }
Flow with_width (float width) const {
assert(! m_bridge);
return Flow(width, m_height, rounded_rectangle_extrusion_spacing(width, m_height), m_nozzle_diameter, m_bridge);
}
Flow with_height(float height) const {
assert(! m_bridge);
return Flow(m_width, height, rounded_rectangle_extrusion_spacing(m_width, height), m_nozzle_diameter, m_bridge);
}
// Adjust extrusion flow for new extrusion line spacing, maintaining the old spacing between extrusions.
Flow with_spacing(float spacing) const;
// Adjust the width / height of a rounded extrusion model to reach the prescribed cross section area while maintaining extrusion spacing.
Flow with_cross_section(float area) const;
Flow with_flow_ratio(double ratio) const { return this->with_cross_section(this->mm3_per_mm() * ratio); }
static Flow bridging_flow(float dmr, float nozzle_diameter) { return Flow { dmr, dmr, bridge_extrusion_spacing(dmr), nozzle_diameter, true }; }
static Flow new_from_config_width(FlowRole role, const ConfigOptionFloatOrPercent &width, float nozzle_diameter, float height);
// Spacing of extrusions with rounded extrusion model.
static float rounded_rectangle_extrusion_spacing(float width, float height);
// Width of extrusions with rounded extrusion model.
static float rounded_rectangle_extrusion_width_from_spacing(float spacing, float height);
// Spacing of round thread extrusions.
static float bridge_extrusion_spacing(float dmr);
// Sane extrusion width defautl based on nozzle diameter.
// The defaults were derived from manual Prusa MK3 profiles.
static float auto_extrusion_width(FlowRole role, float nozzle_diameter);
// Extrusion width from full config, taking into account the defaults (when set to zero) and ratios (percentages).
// Precise value depends on layer index (1st layer vs. other layers vs. variable layer height),
// on active extruder etc. Therefore the value calculated by this function shall be used as a hint only.
static double extrusion_width(const std::string &opt_key, const ConfigOptionFloatOrPercent *opt, const ConfigOptionResolver &config, const unsigned int first_printing_extruder = 0);
static double extrusion_width(const std::string &opt_key, const ConfigOptionResolver &config, const unsigned int first_printing_extruder = 0);
private:
Flow(float width, float height, float spacing, float nozzle_diameter, bool bridge) :
m_width(width), m_height(height), m_spacing(spacing), m_nozzle_diameter(nozzle_diameter), m_bridge(bridge)
{
// Gap fill violates this condition.
//assert(width >= height);
}
float m_width { 0 };
float m_height { 0 };
float m_spacing { 0 };
float m_nozzle_diameter { 0 };
bool m_bridge { false };
};
extern Flow support_material_flow(const PrintObject *object, float layer_height = 0.f);
extern Flow support_material_1st_layer_flow(const PrintObject *object, float layer_height = 0.f);
extern Flow support_material_interface_flow(const PrintObject *object, float layer_height = 0.f);
}
#endif