PrusaSlicer-NonPlainar/src/libslic3r/QuadricEdgeCollapse.cpp
Filip Sykala 3f923628aa fix
../src/libslic3r/QuadricEdgeCollapse.cpp:628:21: warning: comparison of integer expressions of different signedness: 'const int' and 'uint32_t' {aka 'unsigned int'} [-Wsign-compare]
../src/libslic3r/QuadricEdgeCollapse.cpp:631:21: warning: comparison of integer expressions of different signedness: 'const int' and 'uint32_t' {aka 'unsigned int'} [-Wsign-compare]
../src/libslic3r/QuadricEdgeCollapse.cpp:638:48: warning: comparison of integer expressions of different signedness: 'const int' and 'uint32_t' {aka 'unsigned int'} [-Wsign-compare]
../src/libslic3r/QuadricEdgeCollapse.cpp:643:25: warning: comparison of integer expressions of different signedness: 'const int' and 'uint32_t' {aka 'unsigned int'} [-Wsign-compare]
../src/libslic3r/QuadricEdgeCollapse.cpp:647:25: warning: comparison of integer expressions of different signedness: 'const int' and 'uint32_t' {aka 'unsigned int'} [-Wsign-compare]
2021-09-02 11:41:11 +02:00

933 lines
38 KiB
C++

#include "QuadricEdgeCollapse.hpp"
#include <tuple>
#include <optional>
#include "MutablePriorityQueue.hpp"
#include "SimplifyMeshImpl.hpp"
#include <tbb/parallel_for.h>
using namespace Slic3r;
#ifndef NDEBUG
// #define EXPENSIVE_DEBUG_CHECKS
#endif // NDEBUG
// only private namespace not neccessary be in .hpp
namespace QuadricEdgeCollapse {
using Vertices = std::vector<stl_vertex>;
using Triangle = stl_triangle_vertex_indices;
using Indices = std::vector<stl_triangle_vertex_indices>;
using SymMat = SimplifyMesh::implementation::SymetricMatrix<double>;
using ThrowOnCancel = std::function<void(void)>;
using StatusFn = std::function<void(int)>;
// smallest error caused by edges, identify smallest edge in triangle
struct Error
{
float value = -1.; // identifying of smallest edge is stored inside of TriangleInfo
uint32_t triangle_index = 0;
Error(float value, uint32_t triangle_index)
: value(value)
, triangle_index(triangle_index)
{}
Error() = default;
};
using Errors = std::vector<Error>;
// merge information together - faster access during processing
struct TriangleInfo {
Vec3f n; // normalized normal - used for check when fliped
// range(0 .. 2),
unsigned char min_index = 0; // identify edge for minimal Error -> lightweight Error structure
TriangleInfo() = default;
bool is_deleted() const { return n.x() > 2.f; }
void set_deleted() { n.x() = 3.f; }
};
using TriangleInfos = std::vector<TriangleInfo>;
struct VertexInfo {
SymMat q; // sum quadric of surround triangles
uint32_t start = 0, count = 0; // vertex neighbor triangles
VertexInfo() = default;
bool is_deleted() const { return count == 0; }
};
using VertexInfos = std::vector<VertexInfo>;
struct EdgeInfo {
uint32_t t_index=0; // triangle index
unsigned char edge = 0; // 0 or 1 or 2
EdgeInfo() = default;
};
using EdgeInfos = std::vector<EdgeInfo>;
// DTO for change neighbors
struct CopyEdgeInfo {
uint32_t start;
uint32_t count;
uint32_t move;
CopyEdgeInfo(uint32_t start, uint32_t count, uint32_t move)
: start(start), count(count), move(move)
{}
};
using CopyEdgeInfos = std::vector<CopyEdgeInfo>;
Vec3d create_normal(const Triangle &triangle, const Vertices &vertices);
std::array<Vec3d,3> create_vertices(uint32_t id_v1, uint32_t id_v2, const Vertices &vertices);
std::array<double, 3> vertices_error(const SymMat &q, const std::array<Vec3d, 3> &vertices);
double calculate_determinant(const SymMat &q);
double calculate_error(uint32_t id_v1, uint32_t id_v2, const SymMat & q, const Vertices &vertices);
Vec3f calculate_vertex(uint32_t id_v1, uint32_t id_v2, const SymMat & q, const Vertices &vertices);
Vec3d calculate_vertex(double det, const SymMat &q);
// calculate error for vertex and quadrics, triangle quadrics and triangle vertex give zero, only pozitive number
double vertex_error(const SymMat &q, const Vec3d &vertex);
SymMat create_quadric(const Triangle &t, const Vec3d& n, const Vertices &vertices);
std::tuple<TriangleInfos, VertexInfos, EdgeInfos, Errors>
init(const indexed_triangle_set &its, ThrowOnCancel& throw_on_cancel, StatusFn& status_fn);
std::optional<uint32_t> find_triangle_index1(uint32_t vi, const VertexInfo& v_info,
uint32_t ti, const EdgeInfos& e_infos, const Indices& indices);
void reorder_edges(EdgeInfos &e_infos, const VertexInfo &v_info, uint32_t ti0, uint32_t ti1);
bool is_flipped(const Vec3f &new_vertex, uint32_t ti0, uint32_t ti1, const VertexInfo& v_info,
const TriangleInfos &t_infos, const EdgeInfos &e_infos, const indexed_triangle_set &its);
bool degenerate(uint32_t vi, uint32_t ti0, uint32_t ti1, const VertexInfo &v_info,
const EdgeInfos &e_infos, const Indices &indices);
bool create_no_volume(uint32_t vi0, uint32_t vi1, uint32_t ti0, uint32_t ti1,
const VertexInfo &v_info0, const VertexInfo &v_info1, const EdgeInfos &e_infos, const Indices &indices);
// find edge with smallest error in triangle
Vec3d calculate_3errors(const Triangle &t, const Vertices &vertices, const VertexInfos &v_infos);
Error calculate_error(uint32_t ti, const Triangle& t,const Vertices &vertices, const VertexInfos& v_infos, unsigned char& min_index);
void remove_triangle(EdgeInfos &e_infos, VertexInfo &v_info, uint32_t ti);
void change_neighbors(EdgeInfos &e_infos, VertexInfos &v_infos, uint32_t ti0, uint32_t ti1,
uint32_t vi0, uint32_t vi1, uint32_t vi_top0,
const Triangle &t1, CopyEdgeInfos& infos, EdgeInfos &e_infos1);
void compact(const VertexInfos &v_infos, const TriangleInfos &t_infos, const EdgeInfos &e_infos, indexed_triangle_set &its);
#ifdef EXPENSIVE_DEBUG_CHECKS
void store_surround(const char *obj_filename, size_t triangle_index, int depth, const indexed_triangle_set &its,
const VertexInfos &v_infos, const EdgeInfos &e_infos);
bool check_neighbors(const indexed_triangle_set &its, const TriangleInfos &t_infos,
const VertexInfos &v_infos, const EdgeInfos &e_infos);
#endif /* EXPENSIVE_DEBUG_CHECKS */
// constants --> may be move to config
const uint32_t check_cancel_period = 16; // how many edge to reduce before call throw_on_cancel
const size_t max_triangle_count_for_one_vertex = 50;
// change speed of progress bargraph
const int status_init_size = 10; // in percents
// parts of init size
const int status_normal_size = 25;
const int status_sum_quadric = 25;
const int status_set_offsets = 10;
const int status_calc_errors = 30;
const int status_create_refs = 10;
} // namespace QuadricEdgeCollapse
using namespace QuadricEdgeCollapse;
void Slic3r::its_quadric_edge_collapse(
indexed_triangle_set & its,
uint32_t triangle_count,
float * max_error,
std::function<void(void)> throw_on_cancel,
std::function<void(int)> status_fn)
{
// check input
if (triangle_count >= its.indices.size()) return;
float maximal_error = (max_error == nullptr)? std::numeric_limits<float>::max() : *max_error;
if (maximal_error <= 0.f) return;
if (throw_on_cancel == nullptr) throw_on_cancel = []() {};
if (status_fn == nullptr) status_fn = [](int) {};
StatusFn init_status_fn = [&](int percent) {
float n_percent = percent * status_init_size / 100.f;
status_fn(static_cast<int>(std::round(n_percent)));
};
TriangleInfos t_infos; // only normals with information about deleted triangle
VertexInfos v_infos;
EdgeInfos e_infos;
Errors errors;
std::tie(t_infos, v_infos, e_infos, errors) = init(its, throw_on_cancel, init_status_fn);
throw_on_cancel();
status_fn(status_init_size);
//its_store_triangle(its, "triangle.obj", 1182);
//store_surround("triangle_surround1.obj", 1182, 1, its, v_infos, e_infos);
// convert from triangle index to mutable priority queue index
std::vector<size_t> ti_2_mpqi(its.indices.size(), {0});
auto setter = [&ti_2_mpqi](const Error &e, size_t index) { ti_2_mpqi[e.triangle_index] = index; };
auto less = [](const Error &e1, const Error &e2) -> bool { return e1.value < e2.value; };
auto mpq = make_miniheap_mutable_priority_queue<Error, 32, false>(std::move(setter), std::move(less));
//MutablePriorityQueue<Error, decltype(setter), decltype(less)> mpq(std::move(setter), std::move(less));
mpq.reserve(its.indices.size());
for (Error &error :errors) mpq.push(error);
CopyEdgeInfos ceis;
ceis.reserve(max_triangle_count_for_one_vertex);
EdgeInfos e_infos_swap;
e_infos_swap.reserve(max_triangle_count_for_one_vertex);
std::vector<uint32_t> changed_triangle_indices;
changed_triangle_indices.reserve(2 * max_triangle_count_for_one_vertex);
uint32_t actual_triangle_count = its.indices.size();
uint32_t count_triangle_to_reduce = actual_triangle_count - triangle_count;
auto increase_status = [&]() {
double reduced = (actual_triangle_count - triangle_count) /
(double) count_triangle_to_reduce;
double status = status_init_size + (100 - status_init_size) *
(1. - reduced);
status_fn(static_cast<int>(std::round(status)));
};
// modulo for update status, call each percent only once
uint32_t status_mod = std::max(uint32_t(16),
count_triangle_to_reduce / (100 - status_init_size));
uint32_t iteration_number = 0;
float last_collapsed_error = 0.f;
while (actual_triangle_count > triangle_count && !mpq.empty()) {
++iteration_number;
if (iteration_number % status_mod == 0) increase_status();
if (iteration_number % check_cancel_period == 0) throw_on_cancel();
// triangle index 0
Error e = mpq.top(); // copy
if (e.value >= maximal_error) break; // Too big error
mpq.pop();
uint32_t ti0 = e.triangle_index;
TriangleInfo &t_info0 = t_infos[ti0];
if (t_info0.is_deleted()) continue;
assert(t_info0.min_index < 3);
const Triangle &t0 = its.indices[ti0];
uint32_t vi0 = t0[t_info0.min_index];
uint32_t vi1 = t0[(t_info0.min_index+1) %3];
// Need by move of neighbor edge infos in function: change_neighbors
if (vi0 > vi1) std::swap(vi0, vi1);
VertexInfo &v_info0 = v_infos[vi0];
VertexInfo &v_info1 = v_infos[vi1];
assert(!v_info0.is_deleted() && !v_info1.is_deleted());
// new vertex position
SymMat q(v_info0.q);
q += v_info1.q;
Vec3f new_vertex0 = calculate_vertex(vi0, vi1, q, its.vertices);
// set of triangle indices that change quadric
uint32_t ti1 = -1; // triangle 1 index
auto ti1_opt = (v_info0.count < v_info1.count)?
find_triangle_index1(vi1, v_info0, ti0, e_infos, its.indices) :
find_triangle_index1(vi0, v_info1, ti0, e_infos, its.indices) ;
if (ti1_opt.has_value()) {
ti1 = *ti1_opt;
reorder_edges(e_infos, v_info0, ti0, ti1);
reorder_edges(e_infos, v_info1, ti0, ti1);
}
if (!ti1_opt.has_value() || // edge has only one triangle
degenerate(vi0, ti0, ti1, v_info1, e_infos, its.indices) ||
degenerate(vi1, ti0, ti1, v_info0, e_infos, its.indices) ||
create_no_volume(vi0, vi1, ti0, ti1, v_info0, v_info1, e_infos, its.indices) ||
is_flipped(new_vertex0, ti0, ti1, v_info0, t_infos, e_infos, its) ||
is_flipped(new_vertex0, ti0, ti1, v_info1, t_infos, e_infos, its)) {
// try other triangle's edge
Vec3d errors = calculate_3errors(t0, its.vertices, v_infos);
Vec3i ord = (errors[0] < errors[1]) ?
((errors[0] < errors[2])?
((errors[1] < errors[2]) ? Vec3i(0, 1, 2) : Vec3i(0, 2, 1)) :
Vec3i(2, 0, 1)):
((errors[1] < errors[2])?
((errors[0] < errors[2]) ? Vec3i(1, 0, 2) : Vec3i(1, 2, 0)) :
Vec3i(2, 1, 0));
if (t_info0.min_index == ord[0]) {
t_info0.min_index = ord[1];
e.value = errors[t_info0.min_index];
} else if (t_info0.min_index == ord[1]) {
t_info0.min_index = ord[2];
e.value = errors[t_info0.min_index];
} else {
// error is changed when surround edge is reduced
t_info0.min_index = 3; // bad index -> invalidate
e.value = maximal_error;
}
// IMPROVE: check mpq top if it is ti1 with same edge
mpq.push(e);
continue;
}
last_collapsed_error = e.value;
changed_triangle_indices.clear();
changed_triangle_indices.reserve(v_info0.count + v_info1.count - 4);
// for each vertex0 triangles
uint32_t v_info0_end = v_info0.start + v_info0.count - 2;
for (uint32_t di = v_info0.start; di < v_info0_end; ++di) {
assert(di < e_infos.size());
uint32_t ti = e_infos[di].t_index;
changed_triangle_indices.emplace_back(ti);
}
// for each vertex1 triangles
uint32_t v_info1_end = v_info1.start + v_info1.count - 2;
for (uint32_t di = v_info1.start; di < v_info1_end; ++di) {
assert(di < e_infos.size());
EdgeInfo &e_info = e_infos[di];
uint32_t ti = e_info.t_index;
Triangle &t = its.indices[ti];
t[e_info.edge] = vi0; // change index
changed_triangle_indices.emplace_back(ti);
}
v_info0.q = q;
// fix neighbors
// vertex index of triangle 0 which is not vi0 nor vi1
uint32_t vi_top0 = t0[(t_info0.min_index + 2) % 3];
const Triangle &t1 = its.indices[ti1];
change_neighbors(e_infos, v_infos, ti0, ti1, vi0, vi1,
vi_top0, t1, ceis, e_infos_swap);
// Change vertex
its.vertices[vi0] = new_vertex0;
// fix errors - must be after set neighbors - v_infos
mpq.remove(ti_2_mpqi[ti1]);
for (uint32_t ti : changed_triangle_indices) {
size_t priority_queue_index = ti_2_mpqi[ti];
TriangleInfo& t_info = t_infos[ti];
t_info.n = create_normal(its.indices[ti], its.vertices).cast<float>(); // recalc normals
mpq[priority_queue_index] = calculate_error(ti, its.indices[ti], its.vertices, v_infos, t_info.min_index);
mpq.update(priority_queue_index);
}
// set triangle(0 + 1) indices as deleted
TriangleInfo &t_info1 = t_infos[ti1];
t_info0.set_deleted();
t_info1.set_deleted();
// triangle counter decrementation
actual_triangle_count-=2;
#ifdef EXPENSIVE_DEBUG_CHECKS
assert(check_neighbors(its, t_infos, v_infos, e_infos));
#endif // EXPENSIVE_DEBUG_CHECKS
}
// compact triangle
compact(v_infos, t_infos, e_infos, its);
if (max_error != nullptr) *max_error = last_collapsed_error;
}
Vec3d QuadricEdgeCollapse::create_normal(const Triangle &triangle,
const Vertices &vertices)
{
Vec3d v0 = vertices[triangle[0]].cast<double>();
Vec3d v1 = vertices[triangle[1]].cast<double>();
Vec3d v2 = vertices[triangle[2]].cast<double>();
// n = triangle normal
Vec3d n = (v1 - v0).cross(v2 - v0);
n.normalize();
return n;
}
double QuadricEdgeCollapse::calculate_determinant(const SymMat &q)
{
return q.det(0, 1, 2, 1, 4, 5, 2, 5, 7);
}
Vec3d QuadricEdgeCollapse::calculate_vertex(double det, const SymMat &q) {
double det_1 = -1 / det;
double det_x = q.det(1, 2, 3, 4, 5, 6, 5, 7, 8); // vx = A41/det(q_delta)
double det_y = q.det(0, 2, 3, 1, 5, 6, 2, 7, 8); // vy = A42/det(q_delta)
double det_z = q.det(0, 1, 3, 1, 4, 6, 2, 5, 8); // vz = A43/det(q_delta)
return Vec3d(det_1 * det_x, -det_1 * det_y, det_1 * det_z);
}
std::array<Vec3d,3> QuadricEdgeCollapse::create_vertices(uint32_t id_v1, uint32_t id_v2, const Vertices &vertices)
{
Vec3d v0 = vertices[id_v1].cast<double>();
Vec3d v1 = vertices[id_v2].cast<double>();
Vec3d vm = (v0 + v1) / 2.;
return {v0, v1, vm};
}
std::array<double, 3> QuadricEdgeCollapse::vertices_error(
const SymMat &q, const std::array<Vec3d, 3> &vertices)
{
return {
vertex_error(q, vertices[0]),
vertex_error(q, vertices[1]),
vertex_error(q, vertices[2])};
}
double QuadricEdgeCollapse::calculate_error(uint32_t id_v1,
uint32_t id_v2,
const SymMat & q,
const Vertices &vertices)
{
double det = calculate_determinant(q);
if (std::abs(det) < std::numeric_limits<double>::epsilon()) {
// can't divide by zero
auto verts = create_vertices(id_v1, id_v2, vertices);
auto errors = vertices_error(q, verts);
return *std::min_element(std::begin(errors), std::end(errors));
}
Vec3d vertex = calculate_vertex(det, q);
return vertex_error(q, vertex);
}
// similar as calculate error but focus on new vertex without calculation of error
Vec3f QuadricEdgeCollapse::calculate_vertex(uint32_t id_v1,
uint32_t id_v2,
const SymMat & q,
const Vertices &vertices)
{
double det = calculate_determinant(q);
if (std::abs(det) < std::numeric_limits<double>::epsilon()) {
// can't divide by zero
auto verts = create_vertices(id_v1, id_v2, vertices);
auto errors = vertices_error(q, verts);
auto mit = std::min_element(std::begin(errors), std::end(errors));
return verts[mit - std::begin(errors)].cast<float>();
}
return calculate_vertex(det, q).cast<float>();
}
double QuadricEdgeCollapse::vertex_error(const SymMat &q, const Vec3d &vertex)
{
const double &x = vertex.x(), &y = vertex.y(), &z = vertex.z();
return q[0] * x * x + 2 * q[1] * x * y + 2 * q[2] * x * z +
2 * q[3] * x + q[4] * y * y + 2 * q[5] * y * z +
2 * q[6] * y + q[7] * z * z + 2 * q[8] * z + q[9];
}
SymMat QuadricEdgeCollapse::create_quadric(const Triangle &t,
const Vec3d & n,
const Vertices &vertices)
{
Vec3d v0 = vertices[t[0]].cast<double>();
return SymMat(n.x(), n.y(), n.z(), -n.dot(v0));
}
std::tuple<TriangleInfos, VertexInfos, EdgeInfos, Errors>
QuadricEdgeCollapse::init(const indexed_triangle_set &its, ThrowOnCancel& throw_on_cancel, StatusFn& status_fn)
{
int status_offset = 0;
TriangleInfos t_infos(its.indices.size());
VertexInfos v_infos(its.vertices.size());
{
std::vector<SymMat> triangle_quadrics(its.indices.size());
// calculate normals
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.indices.size()),
[&](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
const Triangle &t = its.indices[i];
TriangleInfo & t_info = t_infos[i];
Vec3d normal = create_normal(t, its.vertices);
t_info.n = normal.cast<float>();
triangle_quadrics[i] = create_quadric(t, normal, its.vertices);
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_normal_size) / its.indices.size());
}
}
}); // END parallel for
status_offset += status_normal_size;
// sum quadrics
for (size_t i = 0; i < its.indices.size(); i++) {
const Triangle &t = its.indices[i];
const SymMat & q = triangle_quadrics[i];
for (size_t e = 0; e < 3; e++) {
VertexInfo &v_info = v_infos[t[e]];
v_info.q += q;
++v_info.count; // triangle count
}
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_sum_quadric) / its.indices.size());
}
}
status_offset += status_sum_quadric;
} // remove triangle quadrics
// set offseted starts
uint32_t triangle_start = 0;
for (VertexInfo &v_info : v_infos) {
v_info.start = triangle_start;
triangle_start += v_info.count;
// set filled vertex to zero
v_info.count = 0;
}
assert(its.indices.size() * 3 == triangle_start);
status_offset += status_set_offsets;
throw_on_cancel();
status_fn(status_offset);
// calc error
Errors errors(its.indices.size());
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.indices.size()),
[&](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
const Triangle &t = its.indices[i];
TriangleInfo & t_info = t_infos[i];
errors[i] = calculate_error(i, t, its.vertices, v_infos, t_info.min_index);
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_calc_errors) / its.indices.size());
}
if (i % 1000000 == 0) throw_on_cancel();
}
}); // END parallel for
status_offset += status_calc_errors;
// create reference
EdgeInfos e_infos(its.indices.size() * 3);
for (size_t i = 0; i < its.indices.size(); i++) {
const Triangle &t = its.indices[i];
for (size_t j = 0; j < 3; ++j) {
VertexInfo &v_info = v_infos[t[j]];
size_t ei = v_info.start + v_info.count;
assert(ei < e_infos.size());
EdgeInfo &e_info = e_infos[ei];
e_info.t_index = i;
e_info.edge = j;
++v_info.count;
}
if (i % 1000000 == 0) {
throw_on_cancel();
status_fn(status_offset + (i * status_create_refs) / its.indices.size());
}
}
throw_on_cancel();
status_fn(100);
return {t_infos, v_infos, e_infos, errors};
}
std::optional<uint32_t> QuadricEdgeCollapse::find_triangle_index1(uint32_t vi,
const VertexInfo &v_info,
uint32_t ti0,
const EdgeInfos & e_infos,
const Indices & indices)
{
coord_t vi_coord = static_cast<coord_t>(vi);
uint32_t end = v_info.start + v_info.count;
for (uint32_t ei = v_info.start; ei < end; ++ei) {
const EdgeInfo &e_info = e_infos[ei];
if (e_info.t_index == ti0) continue;
const Triangle& t = indices[e_info.t_index];
if (t[(e_info.edge + 1) % 3] == vi_coord ||
t[(e_info.edge + 2) % 3] == vi_coord)
return e_info.t_index;
}
// triangle0 is on border and do NOT have twin edge
return {};
}
void QuadricEdgeCollapse::reorder_edges(EdgeInfos & e_infos,
const VertexInfo &v_info,
uint32_t ti0,
uint32_t ti1)
{
// swap edge info of ti0 and ti1 to end(last one and one before)
size_t v_info_end = v_info.start + v_info.count - 2;
EdgeInfo &e_info_ti0 = e_infos[v_info_end];
EdgeInfo &e_info_ti1 = e_infos[v_info_end+1];
bool is_swaped = false;
for (size_t ei = v_info.start; ei < v_info_end; ++ei) {
EdgeInfo &e_info = e_infos[ei];
if (e_info.t_index == ti0) {
std::swap(e_info, e_info_ti0);
if (is_swaped) return;
if (e_info.t_index == ti1) {
std::swap(e_info, e_info_ti1);
return;
}
is_swaped = true;
} else if (e_info.t_index == ti1) {
std::swap(e_info, e_info_ti1);
if (is_swaped) return;
if (e_info.t_index == ti0) {
std::swap(e_info, e_info_ti0);
return;
}
is_swaped = true;
}
}
}
bool QuadricEdgeCollapse::is_flipped(const Vec3f & new_vertex,
uint32_t ti0,
uint32_t ti1,
const VertexInfo & v_info,
const TriangleInfos & t_infos,
const EdgeInfos & e_infos,
const indexed_triangle_set &its)
{
static const float thr_pos = 1.0f - std::numeric_limits<float>::epsilon();
static const float thr_neg = -thr_pos;
static const float dot_thr = 0.2f; // Value from simplify mesh cca 80 DEG
// for each vertex triangles
size_t v_info_end = v_info.start + v_info.count-2;
for (size_t ei = v_info.start; ei < v_info_end; ++ei) {
assert(ei < e_infos.size());
const EdgeInfo &e_info = e_infos[ei];
const Triangle &t = its.indices[e_info.t_index];
const Vec3f &normal = t_infos[e_info.t_index].n;
const Vec3f &vf = its.vertices[t[(e_info.edge + 1) % 3]];
const Vec3f &vs = its.vertices[t[(e_info.edge + 2) % 3]];
Vec3f d1 = vf - new_vertex;
d1.normalize();
Vec3f d2 = vs - new_vertex;
d2.normalize();
float dot = d1.dot(d2);
if (dot > thr_pos || dot < thr_neg) return true;
// IMPROVE: propagate new normal
Vec3f n = d1.cross(d2);
n.normalize();
if(n.dot(normal) < dot_thr) return true;
}
return false;
}
bool QuadricEdgeCollapse::degenerate(uint32_t vi,
uint32_t ti0,
uint32_t ti1,
const VertexInfo &v_info,
const EdgeInfos & e_infos,
const Indices & indices)
{
// check surround triangle do not contain vertex index
// protect from creation of triangle with two same vertices inside
size_t v_info_end = v_info.start + v_info.count - 2;
for (size_t ei = v_info.start; ei < v_info_end; ++ei) {
assert(ei < e_infos.size());
const EdgeInfo &e_info = e_infos[ei];
const Triangle &t = indices[e_info.t_index];
for (size_t i = 0; i < 3; ++i)
if (static_cast<uint32_t>(t[i]) == vi) return true;
}
return false;
}
bool QuadricEdgeCollapse::create_no_volume(
uint32_t vi0 , uint32_t vi1,
uint32_t ti0 , uint32_t ti1,
const VertexInfo &v_info0, const VertexInfo &v_info1,
const EdgeInfos & e_infos, const Indices &indices)
{
// check that triangles around vertex0 doesn't have half edge
// with opposit order in set of triangles around vertex1
// protect from creation of two triangles with oposit order - no volume space
size_t v_info0_end = v_info0.start + v_info0.count - 2;
size_t v_info1_end = v_info1.start + v_info1.count - 2;
for (size_t ei0 = v_info0.start; ei0 < v_info0_end; ++ei0) {
const EdgeInfo &e_info0 = e_infos[ei0];
const Triangle &t0 = indices[e_info0.t_index];
// edge CCW vertex indices are t0vi0, t0vi1
size_t t0i = 0;
uint32_t t0vi0 = static_cast<uint32_t>(t0[t0i]);
if (t0vi0 == vi0) {
++t0i;
t0vi0 = static_cast<uint32_t>(t0[t0i]);
}
++t0i;
uint32_t t0vi1 = static_cast<uint32_t>(t0[t0i]);
if (t0vi1 == vi0) {
++t0i;
t0vi1 = static_cast<uint32_t>(t0[t0i]);
}
for (size_t ei1 = v_info1.start; ei1 < v_info1_end; ++ei1) {
const EdgeInfo &e_info1 = e_infos[ei1];
const Triangle &t1 = indices[e_info1.t_index];
size_t t1i = 0;
for (; t1i < 3; ++t1i) if (static_cast<uint32_t>(t1[t1i]) == t0vi1) break;
if (t1i >= 3) continue; // without vertex index from triangle 0
// check if second index is same too
++t1i;
if (t1i == 3) t1i = 0; // triangle loop(modulo 3)
if (static_cast<uint32_t>(t1[t1i]) == vi1) {
++t1i;
if (t1i == 3) t1i = 0; // triangle loop(modulo 3)
}
if (static_cast<uint32_t>(t1[t1i]) == t0vi0) return true;
}
}
return false;
}
Vec3d QuadricEdgeCollapse::calculate_3errors(const Triangle & t,
const Vertices & vertices,
const VertexInfos &v_infos)
{
Vec3d error;
for (size_t j = 0; j < 3; ++j) {
size_t j2 = (j == 2) ? 0 : (j + 1);
uint32_t vi0 = t[j];
uint32_t vi1 = t[j2];
SymMat q(v_infos[vi0].q); // copy
q += v_infos[vi1].q;
error[j] = calculate_error(vi0, vi1, q, vertices);
}
return error;
}
Error QuadricEdgeCollapse::calculate_error(uint32_t ti,
const Triangle & t,
const Vertices & vertices,
const VertexInfos &v_infos,
unsigned char & min_index)
{
Vec3d error = calculate_3errors(t, vertices, v_infos);
// select min error
min_index = (error[0] < error[1]) ? ((error[0] < error[2]) ? 0 : 2) :
((error[1] < error[2]) ? 1 : 2);
return Error(static_cast<float>(error[min_index]), ti);
}
void QuadricEdgeCollapse::remove_triangle(EdgeInfos & e_infos,
VertexInfo &v_info,
uint32_t ti)
{
auto e_info = e_infos.begin() + v_info.start;
auto e_info_end = e_info + v_info.count - 1;
for (; e_info != e_info_end; ++e_info) {
if (e_info->t_index == ti) {
*e_info = *e_info_end;
--v_info.count;
return;
}
}
assert(e_info_end->t_index == ti);
// last triangle is ti
--v_info.count;
}
void QuadricEdgeCollapse::change_neighbors(EdgeInfos & e_infos,
VertexInfos & v_infos,
uint32_t ti0,
uint32_t ti1,
uint32_t vi0,
uint32_t vi1,
uint32_t vi_top0,
const Triangle &t1,
CopyEdgeInfos& infos,
EdgeInfos & e_infos1)
{
// have to copy Edge info from higher vertex index into smaller
assert(vi0 < vi1);
// vertex index of triangle 1 which is not vi0 nor vi1
uint32_t vi_top1 = t1[0];
if (vi_top1 == vi0 || vi_top1 == vi1) {
vi_top1 = t1[1];
if (vi_top1 == vi0 || vi_top1 == vi1) vi_top1 = t1[2];
}
remove_triangle(e_infos, v_infos[vi_top0], ti0);
remove_triangle(e_infos, v_infos[vi_top1], ti1);
VertexInfo &v_info0 = v_infos[vi0];
VertexInfo &v_info1 = v_infos[vi1];
uint32_t new_triangle_count = v_info0.count + v_info1.count - 4;
remove_triangle(e_infos, v_info0, ti0);
remove_triangle(e_infos, v_info0, ti1);
// copy second's edge infos out of e_infos, to free size
e_infos1.clear();
e_infos1.reserve(v_info1.count - 2);
uint32_t v_info_s_end = v_info1.start + v_info1.count;
for (uint32_t ei = v_info1.start; ei < v_info_s_end; ++ei) {
const EdgeInfo &e_info = e_infos[ei];
if (e_info.t_index == ti0) continue;
if (e_info.t_index == ti1) continue;
e_infos1.emplace_back(e_info);
}
v_info1.count = 0;
uint32_t need = (new_triangle_count < v_info0.count)? 0:
(new_triangle_count - v_info0.count);
uint32_t act_vi = vi0 + 1;
VertexInfo *act_v_info = &v_infos[act_vi];
uint32_t act_start = act_v_info->start;
uint32_t last_end = v_info0.start + v_info0.count;
infos.clear();
infos.reserve(need);
while (true) {
uint32_t save = act_start - last_end;
if (save > 0) {
if (save >= need) break;
need -= save;
infos.emplace_back(act_v_info->start, act_v_info->count, need);
} else {
infos.back().count += act_v_info->count;
}
last_end = act_v_info->start + act_v_info->count;
act_v_info->start += need;
++act_vi;
if (act_vi < v_infos.size()) {
act_v_info = &v_infos[act_vi];
act_start = act_v_info->start;
} else
act_start = e_infos.size(); // fix for edge between last two triangles
}
// copy by c_infos
for (uint32_t i = infos.size(); i > 0; --i) {
const CopyEdgeInfo &c_info = infos[i - 1];
for (uint32_t ei = c_info.start + c_info.count - 1; ei >= c_info.start; --ei)
e_infos[ei + c_info.move] = e_infos[ei]; // copy
}
// copy triangle from first info into second
for (uint32_t ei_s = 0; ei_s < e_infos1.size(); ++ei_s) {
uint32_t ei_f = v_info0.start + v_info0.count;
e_infos[ei_f] = e_infos1[ei_s]; // copy
++v_info0.count;
}
}
void QuadricEdgeCollapse::compact(const VertexInfos & v_infos,
const TriangleInfos & t_infos,
const EdgeInfos & e_infos,
indexed_triangle_set &its)
{
uint32_t vi_new = 0;
for (uint32_t vi = 0; vi < v_infos.size(); ++vi) {
const VertexInfo &v_info = v_infos[vi];
if (v_info.is_deleted()) continue; // deleted
uint32_t e_info_end = v_info.start + v_info.count;
for (uint32_t ei = v_info.start; ei < e_info_end; ++ei) {
const EdgeInfo &e_info = e_infos[ei];
// change vertex index
its.indices[e_info.t_index][e_info.edge] = vi_new;
}
// compact vertices
its.vertices[vi_new++] = its.vertices[vi];
}
// remove vertices tail
its.vertices.erase(its.vertices.begin() + vi_new, its.vertices.end());
uint32_t ti_new = 0;
for (uint32_t ti = 0; ti < t_infos.size(); ti++) {
const TriangleInfo &t_info = t_infos[ti];
if (t_info.is_deleted()) continue;
its.indices[ti_new++] = its.indices[ti];
}
its.indices.erase(its.indices.begin() + ti_new, its.indices.end());
}
#ifdef EXPENSIVE_DEBUG_CHECKS
// store triangle surrounding to file
void QuadricEdgeCollapse::store_surround(const char *obj_filename,
size_t triangle_index,
int depth,
const indexed_triangle_set &its,
const VertexInfos & v_infos,
const EdgeInfos & e_infos)
{
std::set<size_t> triangles;
// triangle index, depth
using Item = std::pair<size_t, int>;
std::queue<Item> process;
process.push({triangle_index, depth});
while (!process.empty()) {
Item item = process.front();
process.pop();
size_t ti = item.first;
auto it = triangles.find(ti);
if (it != triangles.end()) continue;
triangles.insert(ti);
if (item.second == 0) continue;
const Vec3i &t = its.indices[ti];
for (size_t i = 0; i < 3; ++i) {
const auto &v_info = v_infos[t[i]];
for (size_t d = 0; d < v_info.count; ++d) {
size_t ei = v_info.start + d;
const auto &e_info = e_infos[ei];
auto it = triangles.find(e_info.t_index);
if (it != triangles.end()) continue;
process.push({e_info.t_index, item.second - 1});
}
}
}
std::vector<size_t> trs;
trs.reserve(triangles.size());
for (size_t ti : triangles) trs.push_back(ti);
its_store_triangles(its, obj_filename, trs);
// its_write_obj(its,"original.obj");
}
bool QuadricEdgeCollapse::check_neighbors(const indexed_triangle_set &its,
const TriangleInfos & t_infos,
const VertexInfos & v_infos,
const EdgeInfos & e_infos)
{
VertexInfos v_infos2(v_infos.size());
size_t count_indices = 0;
for (size_t ti = 0; ti < its.indices.size(); ti++) {
if (t_infos[ti].is_deleted()) continue;
++count_indices;
const Triangle &t = its.indices[ti];
for (size_t e = 0; e < 3; e++) {
VertexInfo &v_info = v_infos2[t[e]];
++v_info.count; // triangle count
}
}
uint32_t triangle_start = 0;
for (VertexInfo &v_info : v_infos2) {
v_info.start = triangle_start;
triangle_start += v_info.count;
// set filled vertex to zero
v_info.count = 0;
}
// create reference
EdgeInfos e_infos2(count_indices * 3);
for (size_t ti = 0; ti < its.indices.size(); ti++) {
if (t_infos[ti].is_deleted()) continue;
const Triangle &t = its.indices[ti];
for (size_t j = 0; j < 3; ++j) {
VertexInfo &v_info = v_infos2[t[j]];
size_t ei = v_info.start + v_info.count;
assert(ei < e_infos2.size());
EdgeInfo &e_info = e_infos2[ei];
e_info.t_index = ti;
e_info.edge = j;
++v_info.count;
}
}
for (size_t vi = 0; vi < its.vertices.size(); vi++) {
const VertexInfo &v_info = v_infos[vi];
if (v_info.is_deleted()) continue;
const VertexInfo &v_info2 = v_infos2[vi];
if (v_info.count != v_info2.count) { return false; }
EdgeInfos eis;
eis.reserve(v_info.count);
std::copy(e_infos.begin() + v_info.start,
e_infos.begin() + v_info.start + v_info.count,
std::back_inserter(eis));
auto compare = [](const EdgeInfo &ei1, const EdgeInfo &ei2) {
return ei1.t_index < ei2.t_index;
};
std::sort(eis.begin(), eis.end(), compare);
std::sort(e_infos2.begin() + v_info2.start,
e_infos2.begin() + v_info2.start + v_info2.count, compare);
for (size_t ei = 0; ei < v_info.count; ++ei) {
if (eis[ei].t_index != e_infos2[ei + v_info2.start].t_index) {
return false;
}
}
}
return true;
}
#endif /* EXPENSIVE_DEBUG_CHECKS */