a552a55cce
Compile-time instantiation of the MutablePriorityQueue with run-time resetting of indices when removing items from the queue active in debug mode only.
2055 lines
98 KiB
C++
2055 lines
98 KiB
C++
#if 0
|
|
#pragma optimize("", off)
|
|
#undef NDEBUG
|
|
#undef assert
|
|
#endif
|
|
|
|
#include "clipper.hpp"
|
|
#include "ShortestPath.hpp"
|
|
#include "KDTreeIndirect.hpp"
|
|
#include "MutablePriorityQueue.hpp"
|
|
#include "Print.hpp"
|
|
|
|
#include <cmath>
|
|
#include <cassert>
|
|
|
|
namespace Slic3r {
|
|
|
|
// Naive implementation of the Traveling Salesman Problem, it works by always taking the next closest neighbor.
|
|
// This implementation will always produce valid result even if some segments cannot reverse.
|
|
template<typename EndPointType, typename KDTreeType, typename CouldReverseFunc>
|
|
std::vector<std::pair<size_t, bool>> chain_segments_closest_point(std::vector<EndPointType> &end_points, KDTreeType &kdtree, CouldReverseFunc &could_reverse_func, EndPointType &first_point)
|
|
{
|
|
assert((end_points.size() & 1) == 0);
|
|
size_t num_segments = end_points.size() / 2;
|
|
assert(num_segments >= 2);
|
|
for (EndPointType &ep : end_points)
|
|
ep.chain_id = 0;
|
|
std::vector<std::pair<size_t, bool>> out;
|
|
out.reserve(num_segments);
|
|
size_t first_point_idx = &first_point - end_points.data();
|
|
out.emplace_back(first_point_idx / 2, (first_point_idx & 1) != 0);
|
|
first_point.chain_id = 1;
|
|
size_t this_idx = first_point_idx ^ 1;
|
|
for (int iter = (int)num_segments - 2; iter >= 0; -- iter) {
|
|
EndPointType &this_point = end_points[this_idx];
|
|
this_point.chain_id = 1;
|
|
// Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda).
|
|
// Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it.
|
|
size_t next_idx = find_closest_point(kdtree, this_point.pos,
|
|
[this_idx, &end_points, &could_reverse_func](size_t idx) {
|
|
return (idx ^ this_idx) > 1 && end_points[idx].chain_id == 0 && ((idx & 1) == 0 || could_reverse_func(idx >> 1));
|
|
});
|
|
assert(next_idx < end_points.size());
|
|
EndPointType &end_point = end_points[next_idx];
|
|
end_point.chain_id = 1;
|
|
assert((next_idx & 1) == 0 || could_reverse_func(next_idx >> 1));
|
|
out.emplace_back(next_idx / 2, (next_idx & 1) != 0);
|
|
this_idx = next_idx ^ 1;
|
|
}
|
|
#ifndef NDEBUG
|
|
assert(end_points[this_idx].chain_id == 0);
|
|
for (EndPointType &ep : end_points)
|
|
assert(&ep == &end_points[this_idx] || ep.chain_id == 1);
|
|
#endif /* NDEBUG */
|
|
return out;
|
|
}
|
|
|
|
// Chain perimeters (always closed) and thin fills (closed or open) using a greedy algorithm.
|
|
// Solving a Traveling Salesman Problem (TSP) with the modification, that the sites are not always points, but points and segments.
|
|
// Solving using a greedy algorithm, where a shortest edge is added to the solution if it does not produce a bifurcation or a cycle.
|
|
// Return index and "reversed" flag.
|
|
// https://en.wikipedia.org/wiki/Multi-fragment_algorithm
|
|
// The algorithm builds a tour for the traveling salesman one edge at a time and thus maintains multiple tour fragments, each of which
|
|
// is a simple path in the complete graph of cities. At each stage, the algorithm selects the edge of minimal cost that either creates
|
|
// a new fragment, extends one of the existing paths or creates a cycle of length equal to the number of cities.
|
|
template<typename PointType, typename SegmentEndPointFunc, bool REVERSE_COULD_FAIL, typename CouldReverseFunc>
|
|
std::vector<std::pair<size_t, bool>> chain_segments_greedy_constrained_reversals_(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near)
|
|
{
|
|
std::vector<std::pair<size_t, bool>> out;
|
|
|
|
if (num_segments == 0) {
|
|
// Nothing to do.
|
|
}
|
|
else if (num_segments == 1)
|
|
{
|
|
// Just sort the end points so that the first point visited is closest to start_near.
|
|
out.emplace_back(0, could_reverse_func(0) && start_near != nullptr &&
|
|
(end_point_func(0, false) - *start_near).template cast<double>().squaredNorm() < (end_point_func(0, true) - *start_near).template cast<double>().squaredNorm());
|
|
}
|
|
else
|
|
{
|
|
// End points of segments for the KD tree closest point search.
|
|
// A single end point is inserted into the search structure for loops, two end points are entered for open paths.
|
|
struct EndPoint {
|
|
EndPoint(const Vec2d &pos) : pos(pos) {}
|
|
Vec2d pos;
|
|
// Identifier of the chain, to which this end point belongs. Zero means unassigned.
|
|
size_t chain_id = 0;
|
|
// Link to the closest currently valid end point.
|
|
EndPoint *edge_out = nullptr;
|
|
// Distance to the next end point following the link.
|
|
// Zero value -> start of the final path.
|
|
double distance_out = std::numeric_limits<double>::max();
|
|
size_t heap_idx = std::numeric_limits<size_t>::max();
|
|
};
|
|
std::vector<EndPoint> end_points;
|
|
end_points.reserve(num_segments * 2);
|
|
for (size_t i = 0; i < num_segments; ++ i) {
|
|
end_points.emplace_back(end_point_func(i, true ).template cast<double>());
|
|
end_points.emplace_back(end_point_func(i, false).template cast<double>());
|
|
}
|
|
|
|
// Construct the closest point KD tree over end points of segments.
|
|
auto coordinate_fn = [&end_points](size_t idx, size_t dimension) -> double { return end_points[idx].pos[dimension]; };
|
|
KDTreeIndirect<2, double, decltype(coordinate_fn)> kdtree(coordinate_fn, end_points.size());
|
|
|
|
// Helper to detect loops in already connected paths.
|
|
// Unique chain IDs are assigned to paths. If paths are connected, end points will not have their chain IDs updated, but the chain IDs
|
|
// will remember an "equivalent" chain ID, which is the lowest ID of all the IDs in the path, and the lowest ID is equivalent to itself.
|
|
class EquivalentChains {
|
|
public:
|
|
// Zero'th chain ID is invalid.
|
|
EquivalentChains(size_t reserve) { m_equivalent_with.reserve(reserve); m_equivalent_with.emplace_back(0); }
|
|
// Generate next equivalence class.
|
|
size_t next() {
|
|
m_equivalent_with.emplace_back(++ m_last_chain_id);
|
|
return m_last_chain_id;
|
|
}
|
|
// Get equivalence class for chain ID.
|
|
size_t operator()(size_t chain_id) {
|
|
if (chain_id != 0) {
|
|
for (size_t last = chain_id;;) {
|
|
size_t lower = m_equivalent_with[last];
|
|
if (lower == last) {
|
|
m_equivalent_with[chain_id] = lower;
|
|
chain_id = lower;
|
|
break;
|
|
}
|
|
last = lower;
|
|
}
|
|
}
|
|
return chain_id;
|
|
}
|
|
size_t merge(size_t chain_id1, size_t chain_id2) {
|
|
size_t chain_id = std::min((*this)(chain_id1), (*this)(chain_id2));
|
|
m_equivalent_with[chain_id1] = chain_id;
|
|
m_equivalent_with[chain_id2] = chain_id;
|
|
return chain_id;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
bool validate()
|
|
{
|
|
assert(m_last_chain_id >= 0);
|
|
assert(m_last_chain_id + 1 == m_equivalent_with.size());
|
|
for (size_t i = 0; i < m_equivalent_with.size(); ++ i) {
|
|
for (size_t last = i;;) {
|
|
size_t lower = m_equivalent_with[last];
|
|
assert(lower <= last);
|
|
if (lower == last)
|
|
break;
|
|
last = lower;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
private:
|
|
// Unique chain ID assigned to chains of end points of segments.
|
|
size_t m_last_chain_id = 0;
|
|
std::vector<size_t> m_equivalent_with;
|
|
} equivalent_chain(num_segments);
|
|
|
|
// Find the first end point closest to start_near.
|
|
EndPoint *first_point = nullptr;
|
|
size_t first_point_idx = std::numeric_limits<size_t>::max();
|
|
if (start_near != nullptr) {
|
|
size_t idx = find_closest_point(kdtree, start_near->template cast<double>(),
|
|
// Don't start with a reverse segment, if flipping of the segment is not allowed.
|
|
[&could_reverse_func](size_t idx) { return (idx & 1) == 0 || could_reverse_func(idx >> 1); });
|
|
assert(idx < end_points.size());
|
|
first_point = &end_points[idx];
|
|
first_point->distance_out = 0.;
|
|
first_point->chain_id = equivalent_chain.next();
|
|
first_point_idx = idx;
|
|
}
|
|
EndPoint *initial_point = first_point;
|
|
EndPoint *last_point = nullptr;
|
|
|
|
// Assign the closest point and distance to the end points.
|
|
for (EndPoint &end_point : end_points) {
|
|
assert(end_point.edge_out == nullptr);
|
|
if (&end_point != first_point) {
|
|
size_t this_idx = &end_point - &end_points.front();
|
|
// Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda).
|
|
// Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it.
|
|
size_t next_idx = find_closest_point(kdtree, end_point.pos,
|
|
[this_idx, first_point_idx](size_t idx){ return idx != first_point_idx && (idx ^ this_idx) > 1; });
|
|
assert(next_idx < end_points.size());
|
|
EndPoint &end_point2 = end_points[next_idx];
|
|
end_point.edge_out = &end_point2;
|
|
end_point.distance_out = (end_point2.pos - end_point.pos).squaredNorm();
|
|
}
|
|
}
|
|
|
|
// Initialize a heap of end points sorted by the lowest distance to the next valid point of a path.
|
|
auto queue = make_mutable_priority_queue<EndPoint*,
|
|
#ifndef NDEBUG
|
|
// In debug mode, reset indices when removing an item from the queue for debugging purposes.
|
|
true
|
|
#else // NDEBUG
|
|
// In release mode, don't reset indices when removing an item from the queue.
|
|
false
|
|
#endif // NDEBUG
|
|
>(
|
|
[](EndPoint *ep, size_t idx){ ep->heap_idx = idx; },
|
|
[](EndPoint *l, EndPoint *r){ return l->distance_out < r->distance_out; });
|
|
queue.reserve(end_points.size() * 2 - 1);
|
|
for (EndPoint &ep : end_points)
|
|
if (first_point != &ep)
|
|
queue.push(&ep);
|
|
|
|
#ifndef NDEBUG
|
|
auto validate_graph_and_queue = [&equivalent_chain, &end_points, &queue, first_point]() -> bool {
|
|
assert(equivalent_chain.validate());
|
|
for (EndPoint &ep : end_points) {
|
|
if (ep.heap_idx < queue.size()) {
|
|
// End point is on the heap.
|
|
assert(*(queue.cbegin() + ep.heap_idx) == &ep);
|
|
assert(ep.chain_id == 0);
|
|
} else {
|
|
// End point is NOT on the heap, therefore it is part of the output path.
|
|
assert(ep.heap_idx == queue.invalid_id());
|
|
assert(ep.chain_id != 0);
|
|
if (&ep == first_point) {
|
|
assert(ep.edge_out == nullptr);
|
|
} else {
|
|
assert(ep.edge_out != nullptr);
|
|
// Detect loops.
|
|
for (EndPoint *pt = &ep; pt != nullptr;) {
|
|
// Out of queue. It is a final point.
|
|
assert(pt->heap_idx == queue.invalid_id());
|
|
EndPoint *pt_other = &end_points[(pt - &end_points.front()) ^ 1];
|
|
if (pt_other->heap_idx < queue.size())
|
|
// The other side of this segment is undecided yet.
|
|
break;
|
|
pt = pt_other->edge_out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (EndPoint *ep : queue)
|
|
// Points in the queue are not connected yet.
|
|
assert(ep->chain_id == 0);
|
|
return true;
|
|
};
|
|
#endif /* NDEBUG */
|
|
|
|
// Chain the end points: find (num_segments - 1) shortest links not forming bifurcations or loops.
|
|
assert(num_segments >= 2);
|
|
#ifndef NDEBUG
|
|
double distance_taken_last = 0.;
|
|
#endif /* NDEBUG */
|
|
for (int iter = int(num_segments) - 2;; -- iter) {
|
|
assert(validate_graph_and_queue());
|
|
// Take the first end point, for which the link points to the currently closest valid neighbor.
|
|
EndPoint &end_point1 = *queue.top();
|
|
#ifndef NDEBUG
|
|
// Each edge added shall be longer than the previous one taken.
|
|
assert(end_point1.distance_out > distance_taken_last - SCALED_EPSILON);
|
|
distance_taken_last = end_point1.distance_out;
|
|
#endif /* NDEBUG */
|
|
assert(end_point1.edge_out != nullptr);
|
|
// No point on the queue may be connected yet.
|
|
assert(end_point1.chain_id == 0);
|
|
// Take the closest end point to the first end point,
|
|
EndPoint &end_point2 = *end_point1.edge_out;
|
|
bool valid = true;
|
|
size_t end_point1_other_chain_id = 0;
|
|
size_t end_point2_other_chain_id = 0;
|
|
if (end_point2.chain_id > 0) {
|
|
// The other side is part of the output path. Don't connect to end_point2, update end_point1 and try another one.
|
|
valid = false;
|
|
} else {
|
|
// End points of the opposite ends of the segments.
|
|
end_point1_other_chain_id = equivalent_chain(end_points[(&end_point1 - &end_points.front()) ^ 1].chain_id);
|
|
end_point2_other_chain_id = equivalent_chain(end_points[(&end_point2 - &end_points.front()) ^ 1].chain_id);
|
|
if (end_point1_other_chain_id == end_point2_other_chain_id && end_point1_other_chain_id != 0)
|
|
// This edge forms a loop. Update end_point1 and try another one.
|
|
valid = false;
|
|
}
|
|
if (valid) {
|
|
// Remove the first and second point from the queue.
|
|
queue.pop();
|
|
queue.remove(end_point2.heap_idx);
|
|
assert(end_point1.edge_out = &end_point2);
|
|
end_point2.edge_out = &end_point1;
|
|
end_point2.distance_out = end_point1.distance_out;
|
|
// Assign chain IDs to the newly connected end points, set equivalent_chain if two chains were merged.
|
|
size_t chain_id =
|
|
(end_point1_other_chain_id == 0) ?
|
|
((end_point2_other_chain_id == 0) ? equivalent_chain.next() : end_point2_other_chain_id) :
|
|
((end_point2_other_chain_id == 0) ? end_point1_other_chain_id :
|
|
(end_point1_other_chain_id == end_point2_other_chain_id) ?
|
|
end_point1_other_chain_id :
|
|
equivalent_chain.merge(end_point1_other_chain_id, end_point2_other_chain_id));
|
|
end_point1.chain_id = chain_id;
|
|
end_point2.chain_id = chain_id;
|
|
assert(validate_graph_and_queue());
|
|
if (iter == 0) {
|
|
// Last iteration. There shall be exactly one or two end points waiting to be connected.
|
|
assert(queue.size() == ((first_point == nullptr) ? 2 : 1));
|
|
if (first_point == nullptr) {
|
|
first_point = queue.top();
|
|
queue.pop();
|
|
first_point->edge_out = nullptr;
|
|
}
|
|
last_point = queue.top();
|
|
last_point->edge_out = nullptr;
|
|
queue.pop();
|
|
assert(queue.empty());
|
|
break;
|
|
}
|
|
} else {
|
|
// This edge forms a loop. Update end_point1 and try another one.
|
|
++ iter;
|
|
end_point1.edge_out = nullptr;
|
|
// Update edge_out and distance.
|
|
size_t this_idx = &end_point1 - &end_points.front();
|
|
// Find the closest point to this end_point, which lies on a different extrusion path (filtered by the filter lambda).
|
|
size_t next_idx = find_closest_point(kdtree, end_point1.pos, [&end_points, &equivalent_chain, this_idx](size_t idx) {
|
|
assert(end_points[this_idx].edge_out == nullptr);
|
|
assert(end_points[this_idx].chain_id == 0);
|
|
if ((idx ^ this_idx) <= 1 || end_points[idx].chain_id != 0)
|
|
// Points of the same segment shall not be connected,
|
|
// cannot connect to an already connected point (ideally those would be removed from the KD tree, but the update is difficult).
|
|
return false;
|
|
size_t chain1 = equivalent_chain(end_points[this_idx ^ 1].chain_id);
|
|
size_t chain2 = equivalent_chain(end_points[idx ^ 1].chain_id);
|
|
return chain1 != chain2 || chain1 == 0;
|
|
});
|
|
assert(next_idx < end_points.size());
|
|
end_point1.edge_out = &end_points[next_idx];
|
|
end_point1.distance_out = (end_points[next_idx].pos - end_point1.pos).squaredNorm();
|
|
#ifndef NDEBUG
|
|
// Each edge shall be longer than the last one removed from the queue.
|
|
assert(end_point1.distance_out > distance_taken_last - SCALED_EPSILON);
|
|
#endif /* NDEBUG */
|
|
// Update position of this end point in the queue based on the distance calculated at the line above.
|
|
queue.update(end_point1.heap_idx);
|
|
//FIXME Remove the other end point from the KD tree.
|
|
// As the KD tree update is expensive, do it only after some larger number of points is removed from the queue.
|
|
assert(validate_graph_and_queue());
|
|
}
|
|
}
|
|
assert(queue.empty());
|
|
|
|
// Now interconnect pairs of segments into a chain.
|
|
assert(first_point != nullptr);
|
|
out.reserve(num_segments);
|
|
bool failed = false;
|
|
do {
|
|
assert(out.size() < num_segments);
|
|
size_t first_point_id = first_point - &end_points.front();
|
|
size_t segment_id = first_point_id >> 1;
|
|
bool reverse = (first_point_id & 1) != 0;
|
|
EndPoint *second_point = &end_points[first_point_id ^ 1];
|
|
if (REVERSE_COULD_FAIL) {
|
|
if (reverse && ! could_reverse_func(segment_id)) {
|
|
failed = true;
|
|
break;
|
|
}
|
|
} else {
|
|
assert(! reverse || could_reverse_func(segment_id));
|
|
}
|
|
out.emplace_back(segment_id, reverse);
|
|
first_point = second_point->edge_out;
|
|
} while (first_point != nullptr);
|
|
if (REVERSE_COULD_FAIL) {
|
|
if (failed) {
|
|
if (start_near == nullptr) {
|
|
// We may try the reverse order.
|
|
out.clear();
|
|
first_point = last_point;
|
|
failed = false;
|
|
do {
|
|
assert(out.size() < num_segments);
|
|
size_t first_point_id = first_point - &end_points.front();
|
|
size_t segment_id = first_point_id >> 1;
|
|
bool reverse = (first_point_id & 1) != 0;
|
|
EndPoint *second_point = &end_points[first_point_id ^ 1];
|
|
if (reverse && ! could_reverse_func(segment_id)) {
|
|
failed = true;
|
|
break;
|
|
}
|
|
out.emplace_back(segment_id, reverse);
|
|
first_point = second_point->edge_out;
|
|
} while (first_point != nullptr);
|
|
}
|
|
}
|
|
if (failed)
|
|
// As a last resort, try a dumb algorithm, which is not sensitive to edge reversal constraints.
|
|
out = chain_segments_closest_point<EndPoint, decltype(kdtree), CouldReverseFunc>(end_points, kdtree, could_reverse_func, (initial_point != nullptr) ? *initial_point : end_points.front());
|
|
} else {
|
|
assert(! failed);
|
|
}
|
|
}
|
|
|
|
assert(out.size() == num_segments);
|
|
return out;
|
|
}
|
|
|
|
template<typename QueueType, typename KDTreeType, typename ChainsType, typename EndPointType>
|
|
void update_end_point_in_queue(QueueType &queue, const KDTreeType &kdtree, ChainsType &chains, std::vector<EndPointType> &end_points, EndPointType &end_point, size_t first_point_idx, const EndPointType *first_point)
|
|
{
|
|
// Updating an end point or a 2nd from an end point.
|
|
size_t this_idx = end_point.index(end_points);
|
|
// If this segment is not the starting segment, then this end point or the opposite is unconnected.
|
|
assert(first_point_idx == this_idx || first_point_idx == (this_idx ^ 1) || end_point.chain_id == 0 || end_point.opposite(end_points).chain_id == 0);
|
|
end_point.edge_candidate = nullptr;
|
|
if (first_point_idx == this_idx || (end_point.chain_id > 0 && first_point_idx == (this_idx ^ 1)))
|
|
{
|
|
// One may never flip the 1st edge, don't try it again.
|
|
if (! end_point.heap_idx_invalid())
|
|
queue.remove(end_point.heap_idx);
|
|
}
|
|
else
|
|
{
|
|
// Update edge_candidate and distance.
|
|
size_t chain1a = end_point.chain_id;
|
|
size_t chain1b = end_points[this_idx ^ 1].chain_id;
|
|
size_t this_chain = chains.equivalent(std::max(chain1a, chain1b));
|
|
// Find the closest point to this end_point, which lies on a different extrusion path (filtered by the filter lambda).
|
|
size_t next_idx = find_closest_point(kdtree, end_point.pos, [&end_points, &chains, this_idx, first_point_idx, first_point, this_chain](size_t idx) {
|
|
assert(end_points[this_idx].edge_candidate == nullptr);
|
|
// Either this end of the edge or the other end of the edge is not yet connected.
|
|
assert((end_points[this_idx ].chain_id == 0 && end_points[this_idx ].edge_out == nullptr) ||
|
|
(end_points[this_idx ^ 1].chain_id == 0 && end_points[this_idx ^ 1].edge_out == nullptr));
|
|
if ((idx ^ this_idx) <= 1 || idx == first_point_idx)
|
|
// Points of the same segment shall not be connected.
|
|
// Don't connect to the first point, we must not flip the 1st edge.
|
|
return false;
|
|
size_t chain2a = end_points[idx].chain_id;
|
|
size_t chain2b = end_points[idx ^ 1].chain_id;
|
|
if (chain2a > 0 && chain2b > 0)
|
|
// Only unconnected end point or a point next to an unconnected end point may be connected to.
|
|
// Ideally those would be removed from the KD tree, but the update is difficult.
|
|
return false;
|
|
assert(chain2a == 0 || chain2b == 0);
|
|
size_t chain2 = chains.equivalent(std::max(chain2a, chain2b));
|
|
if (this_chain == chain2)
|
|
// Don't connect back to the same chain, don't create a loop.
|
|
return this_chain == 0;
|
|
// Don't connect to a segment requiring flipping if the segment starts or ends with the first point.
|
|
if (chain2a > 0) {
|
|
// Chain requires flipping.
|
|
assert(chain2b == 0);
|
|
auto &chain = chains.chain(chain2);
|
|
if (chain.begin == first_point || chain.end == first_point)
|
|
return false;
|
|
}
|
|
// Everything is all right, try to connect.
|
|
return true;
|
|
});
|
|
assert(next_idx < end_points.size());
|
|
assert(chains.equivalent(end_points[next_idx].chain_id) != chains.equivalent(end_points[next_idx ^ 1].chain_id) || end_points[next_idx].chain_id == 0);
|
|
end_point.edge_candidate = &end_points[next_idx];
|
|
end_point.distance_out = (end_points[next_idx].pos - end_point.pos).norm();
|
|
if (end_point.chain_id > 0)
|
|
end_point.distance_out += chains.chain_flip_penalty(this_chain);
|
|
if (end_points[next_idx].chain_id > 0)
|
|
// The candidate chain is flipped.
|
|
end_point.distance_out += chains.chain_flip_penalty(end_points[next_idx].chain_id);
|
|
// Update position of this end point in the queue based on the distance calculated at the line above.
|
|
if (end_point.heap_idx_invalid())
|
|
queue.push(&end_point);
|
|
else
|
|
queue.update(end_point.heap_idx);
|
|
}
|
|
}
|
|
|
|
template<typename PointType, typename SegmentEndPointFunc, bool REVERSE_COULD_FAIL, typename CouldReverseFunc>
|
|
std::vector<std::pair<size_t, bool>> chain_segments_greedy_constrained_reversals2_(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near)
|
|
{
|
|
std::vector<std::pair<size_t, bool>> out;
|
|
|
|
if (num_segments == 0) {
|
|
// Nothing to do.
|
|
}
|
|
else if (num_segments == 1)
|
|
{
|
|
// Just sort the end points so that the first point visited is closest to start_near.
|
|
out.emplace_back(0, start_near != nullptr &&
|
|
(end_point_func(0, true) - *start_near).template cast<double>().squaredNorm() < (end_point_func(0, false) - *start_near).template cast<double>().squaredNorm());
|
|
}
|
|
else
|
|
{
|
|
// End points of segments for the KD tree closest point search.
|
|
// A single end point is inserted into the search structure for loops, two end points are entered for open paths.
|
|
struct EndPoint {
|
|
EndPoint(const Vec2d &pos) : pos(pos) {}
|
|
Vec2d pos;
|
|
|
|
// Candidate for a new connection link.
|
|
EndPoint *edge_candidate = nullptr;
|
|
// Distance to the next end point following the link.
|
|
// Zero value -> start of the final path.
|
|
double distance_out = std::numeric_limits<double>::max();
|
|
|
|
size_t heap_idx = std::numeric_limits<size_t>::max();
|
|
bool heap_idx_invalid() const { return this->heap_idx == std::numeric_limits<size_t>::max(); }
|
|
|
|
// Identifier of the chain, to which this end point belongs. Zero means unassigned.
|
|
size_t chain_id = 0;
|
|
// Double linked chain of segment end points in current path.
|
|
EndPoint *edge_out = nullptr;
|
|
|
|
size_t index(std::vector<EndPoint> &endpoints) const { return this - endpoints.data(); }
|
|
// Opposite end point of the same segment.
|
|
EndPoint& opposite(std::vector<EndPoint> &endpoints) { return endpoints[(this - endpoints.data()) ^ 1]; }
|
|
const EndPoint& opposite(const std::vector<EndPoint> &endpoints) const { return endpoints[(this - endpoints.data()) ^ 1]; }
|
|
};
|
|
|
|
std::vector<EndPoint> end_points;
|
|
end_points.reserve(num_segments * 2);
|
|
for (size_t i = 0; i < num_segments; ++ i) {
|
|
end_points.emplace_back(end_point_func(i, true ).template cast<double>());
|
|
end_points.emplace_back(end_point_func(i, false).template cast<double>());
|
|
}
|
|
|
|
// Construct the closest point KD tree over end points of segments.
|
|
auto coordinate_fn = [&end_points](size_t idx, size_t dimension) -> double { return end_points[idx].pos[dimension]; };
|
|
KDTreeIndirect<2, double, decltype(coordinate_fn)> kdtree(coordinate_fn, end_points.size());
|
|
|
|
// Chained segments with their sum of connection lengths.
|
|
// The chain supports flipping all the segments, connecting the segments at the opposite ends.
|
|
// (this is a very useful path optimization for infill lines).
|
|
struct Chain {
|
|
size_t num_segments = 0;
|
|
double cost = 0.;
|
|
double cost_flipped = 0.;
|
|
EndPoint *begin = nullptr;
|
|
EndPoint *end = nullptr;
|
|
size_t equivalent_with = 0;
|
|
|
|
// Flipping the chain has a time complexity of O(n).
|
|
void flip(std::vector<EndPoint> &endpoints)
|
|
{
|
|
assert(this->num_segments > 1);
|
|
assert(this->begin->edge_out == nullptr);
|
|
assert(this->end ->edge_out == nullptr);
|
|
assert(this->begin->opposite(endpoints).edge_out != nullptr);
|
|
assert(this->end ->opposite(endpoints).edge_out != nullptr);
|
|
// Start of the current segment processed.
|
|
EndPoint *ept = this->begin;
|
|
// Previous end point to connect the other side of ept to.
|
|
EndPoint *ept_prev = nullptr;
|
|
do {
|
|
EndPoint *ept_end = &ept->opposite(endpoints);
|
|
EndPoint *ept_next = ept_end->edge_out;
|
|
assert(ept_next == nullptr || ept_next->edge_out == ept_end);
|
|
// Connect to the preceding segment.
|
|
ept_end->edge_out = ept_prev;
|
|
if (ept_prev != nullptr)
|
|
ept_prev->edge_out = ept_end;
|
|
ept_prev = ept;
|
|
ept = ept_next;
|
|
} while (ept != nullptr);
|
|
ept_prev->edge_out = nullptr;
|
|
// Swap the costs.
|
|
std::swap(this->cost, this->cost_flipped);
|
|
// Swap the ends.
|
|
EndPoint *new_begin = &this->begin->opposite(endpoints);
|
|
EndPoint *new_end = &this->end->opposite(endpoints);
|
|
std::swap(this->begin->chain_id, new_begin->chain_id);
|
|
std::swap(this->end ->chain_id, new_end ->chain_id);
|
|
this->begin = new_begin;
|
|
this->end = new_end;
|
|
assert(this->begin->edge_out == nullptr);
|
|
assert(this->end ->edge_out == nullptr);
|
|
assert(this->begin->opposite(endpoints).edge_out != nullptr);
|
|
assert(this->end ->opposite(endpoints).edge_out != nullptr);
|
|
}
|
|
|
|
double flip_penalty() const { return this->cost_flipped - this->cost; }
|
|
};
|
|
|
|
// Helper to detect loops in already connected paths and to accomodate flipping of chains.
|
|
//
|
|
// Unique chain IDs are assigned to paths. If paths are connected, end points will not have their chain IDs updated, but the chain IDs
|
|
// will remember an "equivalent" chain ID, which is the lowest ID of all the IDs in the path, and the lowest ID is equivalent to itself.
|
|
// Chain IDs are indexed starting with 1.
|
|
//
|
|
// Chains remember their lengths and their lengths when each segment of the chain is flipped.
|
|
class Chains {
|
|
public:
|
|
// Zero'th chain ID is invalid.
|
|
Chains(size_t reserve) {
|
|
m_chains.reserve(reserve / 2);
|
|
// Indexing starts with 1.
|
|
m_chains.emplace_back();
|
|
}
|
|
|
|
// Generate next equivalence class.
|
|
size_t next_id() {
|
|
m_chains.emplace_back();
|
|
m_chains.back().equivalent_with = ++ m_last_chain_id;
|
|
return m_last_chain_id;
|
|
}
|
|
|
|
// Get equivalence class for chain ID, update the "equivalent_with" along the equivalence path.
|
|
size_t equivalent(size_t chain_id) {
|
|
if (chain_id != 0) {
|
|
for (size_t last = chain_id;;) {
|
|
size_t lower = m_chains[last].equivalent_with;
|
|
if (lower == last) {
|
|
m_chains[chain_id].equivalent_with = lower;
|
|
chain_id = lower;
|
|
break;
|
|
}
|
|
last = lower;
|
|
}
|
|
}
|
|
return chain_id;
|
|
}
|
|
|
|
// Return a lowest chain ID of the two input chains.
|
|
// Produce a new chain ID of both chain IDs are zero.
|
|
size_t merge(size_t chain_id1, size_t chain_id2) {
|
|
if (chain_id1 == 0)
|
|
return (chain_id2 == 0) ? this->next_id() : chain_id2;
|
|
if (chain_id2 == 0)
|
|
return chain_id1;
|
|
assert(m_chains[chain_id1].equivalent_with == chain_id1);
|
|
assert(m_chains[chain_id2].equivalent_with == chain_id2);
|
|
size_t chain_id = std::min(chain_id1, chain_id2);
|
|
m_chains[chain_id1].equivalent_with = chain_id;
|
|
m_chains[chain_id2].equivalent_with = chain_id;
|
|
return chain_id;
|
|
}
|
|
|
|
Chain& chain(size_t chain_id) { return m_chains[chain_id]; }
|
|
const Chain& chain(size_t chain_id) const { return m_chains[chain_id]; }
|
|
|
|
double chain_flip_penalty(size_t chain_id) {
|
|
chain_id = this->equivalent(chain_id);
|
|
return m_chains[chain_id].flip_penalty();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
bool validate()
|
|
{
|
|
// Validate that the segments merged chain IDs make up a directed acyclic graph
|
|
// with edges oriented towards the lower chain ID, therefore all ending up
|
|
// in the lowest chain ID of all of them.
|
|
assert(m_last_chain_id >= 0);
|
|
assert(m_last_chain_id + 1 == m_chains.size());
|
|
for (size_t i = 0; i < m_chains.size(); ++ i) {
|
|
for (size_t last = i;;) {
|
|
size_t lower = m_chains[last].equivalent_with;
|
|
assert(lower <= last);
|
|
if (lower == last)
|
|
break;
|
|
last = lower;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
private:
|
|
std::vector<Chain> m_chains;
|
|
// Unique chain ID assigned to chains of end points of segments.
|
|
size_t m_last_chain_id = 0;
|
|
} chains(num_segments);
|
|
|
|
// Find the first end point closest to start_near.
|
|
EndPoint *first_point = nullptr;
|
|
size_t first_point_idx = std::numeric_limits<size_t>::max();
|
|
if (start_near != nullptr) {
|
|
size_t idx = find_closest_point(kdtree, start_near->template cast<double>());
|
|
assert(idx < end_points.size());
|
|
first_point = &end_points[idx];
|
|
first_point->distance_out = 0.;
|
|
first_point->chain_id = chains.next_id();
|
|
Chain &chain = chains.chain(first_point->chain_id);
|
|
chain.begin = first_point;
|
|
chain.end = &first_point->opposite(end_points);
|
|
first_point_idx = idx;
|
|
}
|
|
EndPoint *initial_point = first_point;
|
|
EndPoint *last_point = nullptr;
|
|
|
|
// Assign the closest point and distance to the end points.
|
|
for (EndPoint &end_point : end_points) {
|
|
assert(end_point.edge_candidate == nullptr);
|
|
if (&end_point != first_point) {
|
|
size_t this_idx = end_point.index(end_points);
|
|
// Find the closest point to this end_point, which lies on a different extrusion path (filtered by the lambda).
|
|
// Ignore the starting point as the starting point is considered to be occupied, no end point coud connect to it.
|
|
size_t next_idx = find_closest_point(kdtree, end_point.pos,
|
|
[this_idx, first_point_idx](size_t idx){ return idx != first_point_idx && (idx ^ this_idx) > 1; });
|
|
assert(next_idx < end_points.size());
|
|
EndPoint &end_point2 = end_points[next_idx];
|
|
end_point.edge_candidate = &end_point2;
|
|
end_point.distance_out = (end_point2.pos - end_point.pos).norm();
|
|
}
|
|
}
|
|
|
|
// Initialize a heap of end points sorted by the lowest distance to the next valid point of a path.
|
|
auto queue = make_mutable_priority_queue<EndPoint*, true>(
|
|
[](EndPoint *ep, size_t idx){ ep->heap_idx = idx; },
|
|
[](EndPoint *l, EndPoint *r){ return l->distance_out < r->distance_out; });
|
|
queue.reserve(end_points.size() * 2);
|
|
for (EndPoint &ep : end_points)
|
|
if (first_point != &ep)
|
|
queue.push(&ep);
|
|
|
|
#ifndef NDEBUG
|
|
auto validate_graph_and_queue = [&chains, &end_points, &queue, first_point]() -> bool {
|
|
assert(chains.validate());
|
|
for (EndPoint &ep : end_points) {
|
|
if (ep.heap_idx < queue.size()) {
|
|
// End point is on the heap.
|
|
assert(*(queue.cbegin() + ep.heap_idx) == &ep);
|
|
// One side or the other of the segment is not yet connected.
|
|
assert(ep.chain_id == 0 || ep.opposite(end_points).chain_id == 0);
|
|
} else {
|
|
// End point is NOT on the heap, therefore it must part of the output path.
|
|
assert(ep.heap_idx_invalid());
|
|
assert(ep.chain_id != 0);
|
|
if (&ep == first_point) {
|
|
assert(ep.edge_out == nullptr);
|
|
} else {
|
|
assert(ep.edge_out != nullptr);
|
|
// Detect loops.
|
|
for (EndPoint *pt = &ep; pt != nullptr;) {
|
|
// Out of queue. It is a final point.
|
|
EndPoint *pt_other = &pt->opposite(end_points);
|
|
if (pt_other->heap_idx < queue.size()) {
|
|
// The other side of this segment is undecided yet.
|
|
// assert(pt_other->edge_out == nullptr);
|
|
break;
|
|
}
|
|
pt = pt_other->edge_out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (EndPoint *ep : queue)
|
|
// Points in the queue or the opposites of the same segment are not connected yet.
|
|
assert(ep->chain_id == 0 || ep->opposite(end_points).chain_id == 0);
|
|
return true;
|
|
};
|
|
#endif /* NDEBUG */
|
|
|
|
// Chain the end points: find (num_segments - 1) shortest links not forming bifurcations or loops.
|
|
assert(num_segments >= 2);
|
|
#ifndef NDEBUG
|
|
double distance_taken_last = 0.;
|
|
#endif /* NDEBUG */
|
|
// Some links stored onto the priority queue are being invalidated during the calculation and they are not
|
|
// updated immediately. If such a situation is detected for an end point pulled from the priority queue,
|
|
// the end point is being updated and re-inserted into the priority queue. Therefore the number of iterations
|
|
// required is higher than expected (it would be the number of links, num_segments - 1).
|
|
// The limit here may not be necessary, but it guards us against an endless loop if something goes wrong.
|
|
size_t num_iter = num_segments * 16;
|
|
for (size_t num_connections_to_end = num_segments - 1; num_iter > 0; -- num_iter) {
|
|
assert(validate_graph_and_queue());
|
|
// Take the first end point, for which the link points to the currently closest valid neighbor.
|
|
EndPoint *end_point1 = queue.top();
|
|
assert(end_point1 != first_point);
|
|
EndPoint *end_point1_other = &end_point1->opposite(end_points);
|
|
// true if end_point1 is not the end of its chain, but the 2nd point. When connecting to the 2nd point, this chain needs
|
|
// to be flipped first.
|
|
bool chain1_flip = end_point1->chain_id > 0;
|
|
// Either this point at the queue is not connected, or it is the 2nd point of a chain.
|
|
// If connecting to a 2nd point of a chain, the 1st point shall not yet be connected and this chain will need
|
|
// to be flipped.
|
|
assert( chain1_flip || (end_point1->chain_id == 0 && end_point1->edge_out == nullptr));
|
|
assert(! chain1_flip || (end_point1_other->chain_id == 0 && end_point1_other->edge_out == nullptr));
|
|
assert(end_point1->edge_candidate != nullptr);
|
|
#ifndef NDEBUG
|
|
// Each edge added shall be longer than the previous one taken.
|
|
//assert(end_point1->distance_out > distance_taken_last - SCALED_EPSILON);
|
|
if (end_point1->distance_out < distance_taken_last - SCALED_EPSILON) {
|
|
// printf("Warning: taking shorter length than previously is suspicious\n");
|
|
}
|
|
distance_taken_last = end_point1->distance_out;
|
|
#endif /* NDEBUG */
|
|
// Take the closest end point to the first end point,
|
|
EndPoint *end_point2 = end_point1->edge_candidate;
|
|
EndPoint *end_point2_other = &end_point2->opposite(end_points);
|
|
bool chain2_flip = end_point2->chain_id > 0;
|
|
// Is the link from end_point1 to end_point2 still valid? If yes, the link may be taken. Otherwise the link needs to be refreshed.
|
|
bool valid = true;
|
|
size_t end_point1_chain_id = 0;
|
|
size_t end_point2_chain_id = 0;
|
|
if (end_point2->chain_id > 0 && end_point2_other->chain_id > 0) {
|
|
// The other side is part of the output path. Don't connect to end_point2, update end_point1 and try another one.
|
|
valid = false;
|
|
} else {
|
|
// End points of the opposite ends of the segments.
|
|
end_point1_chain_id = chains.equivalent((chain1_flip ? end_point1 : end_point1_other)->chain_id);
|
|
end_point2_chain_id = chains.equivalent((chain2_flip ? end_point2 : end_point2_other)->chain_id);
|
|
if (end_point1_chain_id == end_point2_chain_id && end_point1_chain_id != 0)
|
|
// This edge forms a loop. Update end_point1 and try another one.
|
|
valid = false;
|
|
else {
|
|
// Verify whether end_point1.distance_out still matches the current state of the two end points to be connected and their chains.
|
|
// Namely, the other chain may have been flipped in the meantime.
|
|
double dist = (end_point2->pos - end_point1->pos).norm();
|
|
if (chain1_flip)
|
|
dist += chains.chain_flip_penalty(end_point1_chain_id);
|
|
if (chain2_flip)
|
|
dist += chains.chain_flip_penalty(end_point2_chain_id);
|
|
if (std::abs(dist - end_point1->distance_out) > SCALED_EPSILON)
|
|
// The distance changed due to flipping of one of the chains. Refresh this end point in the queue.
|
|
valid = false;
|
|
}
|
|
if (valid && first_point != nullptr) {
|
|
// Verify that a chain starting or ending with the first_point does not get flipped.
|
|
if (chain1_flip) {
|
|
Chain &chain = chains.chain(end_point1_chain_id);
|
|
if (chain.begin == first_point || chain.end == first_point)
|
|
valid = false;
|
|
}
|
|
if (valid && chain2_flip) {
|
|
Chain &chain = chains.chain(end_point2_chain_id);
|
|
if (chain.begin == first_point || chain.end == first_point)
|
|
valid = false;
|
|
}
|
|
}
|
|
}
|
|
if (valid) {
|
|
// Remove the first and second point from the queue.
|
|
queue.pop();
|
|
queue.remove(end_point2->heap_idx);
|
|
assert(end_point1->edge_candidate == end_point2);
|
|
end_point1->edge_candidate = nullptr;
|
|
Chain *chain1 = (end_point1_chain_id == 0) ? nullptr : &chains.chain(end_point1_chain_id);
|
|
Chain *chain2 = (end_point2_chain_id == 0) ? nullptr : &chains.chain(end_point2_chain_id);
|
|
assert(chain1 == nullptr || (chain1_flip ? (chain1->begin == end_point1_other || chain1->end == end_point1_other) : (chain1->begin == end_point1 || chain1->end == end_point1)));
|
|
assert(chain2 == nullptr || (chain2_flip ? (chain2->begin == end_point2_other || chain2->end == end_point2_other) : (chain2->begin == end_point2 || chain2->end == end_point2)));
|
|
if (chain1_flip)
|
|
chain1->flip(end_points);
|
|
if (chain2_flip)
|
|
chain2->flip(end_points);
|
|
assert(chain1 == nullptr || chain1->begin == end_point1 || chain1->end == end_point1);
|
|
assert(chain2 == nullptr || chain2->begin == end_point2 || chain2->end == end_point2);
|
|
size_t chain_id = chains.merge(end_point1_chain_id, end_point2_chain_id);
|
|
Chain &chain = chains.chain(chain_id);
|
|
{
|
|
Chain chain_dst;
|
|
chain_dst.begin = (chain1 == nullptr) ? end_point1_other : (chain1->begin == end_point1) ? chain1->end : chain1->begin;
|
|
chain_dst.end = (chain2 == nullptr) ? end_point2_other : (chain2->begin == end_point2) ? chain2->end : chain2->begin;
|
|
chain_dst.cost = (chain1 == 0 ? 0. : chain1->cost) + (chain2 == 0 ? 0. : chain2->cost) + (end_point2->pos - end_point1->pos).norm();
|
|
chain_dst.cost_flipped = (chain1 == 0 ? 0. : chain1->cost_flipped) + (chain2 == 0 ? 0. : chain2->cost_flipped) + (end_point2_other->pos - end_point1_other->pos).norm();
|
|
chain_dst.num_segments = (chain1 == 0 ? 1 : chain1->num_segments) + (chain2 == 0 ? 1 : chain2->num_segments);
|
|
chain_dst.equivalent_with = chain_id;
|
|
chain = chain_dst;
|
|
}
|
|
if (chain.begin != end_point1_other && ! end_point1_other->heap_idx_invalid())
|
|
queue.remove(end_point1_other->heap_idx);
|
|
if (chain.end != end_point2_other && ! end_point2_other->heap_idx_invalid())
|
|
queue.remove(end_point2_other->heap_idx);
|
|
end_point1->edge_out = end_point2;
|
|
end_point2->edge_out = end_point1;
|
|
end_point1->chain_id = chain_id;
|
|
end_point2->chain_id = chain_id;
|
|
end_point1_other->chain_id = chain_id;
|
|
end_point2_other->chain_id = chain_id;
|
|
if (chain.begin != first_point)
|
|
chain.begin->chain_id = 0;
|
|
if (chain.end != first_point)
|
|
chain.end->chain_id = 0;
|
|
if (-- num_connections_to_end == 0) {
|
|
assert(validate_graph_and_queue());
|
|
// Last iteration. There shall be exactly one or two end points waiting to be connected.
|
|
assert(queue.size() <= ((first_point == nullptr) ? 4 : 2));
|
|
if (first_point == nullptr) {
|
|
// Find the first remaining end point.
|
|
do {
|
|
first_point = queue.top();
|
|
queue.pop();
|
|
} while (first_point->edge_out != nullptr);
|
|
assert(first_point->edge_out == nullptr);
|
|
}
|
|
// Find the first remaining end point.
|
|
do {
|
|
last_point = queue.top();
|
|
queue.pop();
|
|
} while (last_point->edge_out != nullptr);
|
|
assert(last_point->edge_out == nullptr);
|
|
#ifndef NDEBUG
|
|
while (! queue.empty()) {
|
|
assert(queue.top()->edge_out != nullptr && queue.top()->chain_id > 0);
|
|
queue.pop();
|
|
}
|
|
#endif /* NDEBUG */
|
|
break;
|
|
} else {
|
|
//FIXME update the 2nd end points on the queue.
|
|
// Update end points of the flipped segments.
|
|
update_end_point_in_queue(queue, kdtree, chains, end_points, chain.begin->opposite(end_points), first_point_idx, first_point);
|
|
update_end_point_in_queue(queue, kdtree, chains, end_points, chain.end->opposite(end_points), first_point_idx, first_point);
|
|
if (chain1_flip)
|
|
update_end_point_in_queue(queue, kdtree, chains, end_points, *chain.begin, first_point_idx, first_point);
|
|
if (chain2_flip)
|
|
update_end_point_in_queue(queue, kdtree, chains, end_points, *chain.end, first_point_idx, first_point);
|
|
// End points of chains shall certainly stay in the queue.
|
|
assert(chain.begin == first_point || chain.begin->heap_idx < queue.size());
|
|
assert(chain.end == first_point || chain.end ->heap_idx < queue.size());
|
|
assert(&chain.begin->opposite(end_points) != first_point &&
|
|
(chain.begin == first_point ? chain.begin->opposite(end_points).heap_idx_invalid() : chain.begin->opposite(end_points).heap_idx < queue.size()));
|
|
assert(&chain.end ->opposite(end_points) != first_point &&
|
|
(chain.end == first_point ? chain.end ->opposite(end_points).heap_idx_invalid() : chain.end ->opposite(end_points).heap_idx < queue.size()));
|
|
|
|
}
|
|
} else {
|
|
// This edge forms a loop. Update end_point1 and try another one.
|
|
update_end_point_in_queue(queue, kdtree, chains, end_points, *end_point1, first_point_idx, first_point);
|
|
#ifndef NDEBUG
|
|
// Each edge shall be longer than the last one removed from the queue.
|
|
//assert(end_point1->distance_out > distance_taken_last - SCALED_EPSILON);
|
|
if (end_point1->distance_out < distance_taken_last - SCALED_EPSILON) {
|
|
// printf("Warning: taking shorter length than previously is suspicious\n");
|
|
}
|
|
#endif /* NDEBUG */
|
|
//FIXME Remove the other end point from the KD tree.
|
|
// As the KD tree update is expensive, do it only after some larger number of points is removed from the queue.
|
|
}
|
|
assert(validate_graph_and_queue());
|
|
}
|
|
assert(queue.empty());
|
|
|
|
// Now interconnect pairs of segments into a chain.
|
|
assert(first_point != nullptr);
|
|
out.reserve(num_segments);
|
|
bool failed = false;
|
|
do {
|
|
assert(out.size() < num_segments);
|
|
size_t first_point_id = first_point - &end_points.front();
|
|
size_t segment_id = first_point_id >> 1;
|
|
bool reverse = (first_point_id & 1) != 0;
|
|
EndPoint *second_point = &end_points[first_point_id ^ 1];
|
|
if (REVERSE_COULD_FAIL) {
|
|
if (reverse && ! could_reverse_func(segment_id)) {
|
|
failed = true;
|
|
break;
|
|
}
|
|
} else {
|
|
assert(! reverse || could_reverse_func(segment_id));
|
|
}
|
|
out.emplace_back(segment_id, reverse);
|
|
first_point = second_point->edge_out;
|
|
} while (first_point != nullptr);
|
|
if (REVERSE_COULD_FAIL) {
|
|
if (failed) {
|
|
if (start_near == nullptr) {
|
|
// We may try the reverse order.
|
|
out.clear();
|
|
first_point = last_point;
|
|
failed = false;
|
|
do {
|
|
assert(out.size() < num_segments);
|
|
size_t first_point_id = first_point - &end_points.front();
|
|
size_t segment_id = first_point_id >> 1;
|
|
bool reverse = (first_point_id & 1) != 0;
|
|
EndPoint *second_point = &end_points[first_point_id ^ 1];
|
|
if (reverse && ! could_reverse_func(segment_id)) {
|
|
failed = true;
|
|
break;
|
|
}
|
|
out.emplace_back(segment_id, reverse);
|
|
first_point = second_point->edge_out;
|
|
} while (first_point != nullptr);
|
|
}
|
|
}
|
|
if (failed)
|
|
// As a last resort, try a dumb algorithm, which is not sensitive to edge reversal constraints.
|
|
out = chain_segments_closest_point<EndPoint, decltype(kdtree), CouldReverseFunc>(end_points, kdtree, could_reverse_func, (initial_point != nullptr) ? *initial_point : end_points.front());
|
|
} else {
|
|
assert(! failed);
|
|
}
|
|
}
|
|
|
|
assert(out.size() == num_segments);
|
|
return out;
|
|
}
|
|
|
|
template<typename PointType, typename SegmentEndPointFunc, typename CouldReverseFunc>
|
|
std::vector<std::pair<size_t, bool>> chain_segments_greedy_constrained_reversals(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near)
|
|
{
|
|
return chain_segments_greedy_constrained_reversals_<PointType, SegmentEndPointFunc, true, CouldReverseFunc>(end_point_func, could_reverse_func, num_segments, start_near);
|
|
}
|
|
|
|
template<typename PointType, typename SegmentEndPointFunc>
|
|
std::vector<std::pair<size_t, bool>> chain_segments_greedy(SegmentEndPointFunc end_point_func, size_t num_segments, const PointType *start_near)
|
|
{
|
|
auto could_reverse_func = [](size_t /* idx */) -> bool { return true; };
|
|
return chain_segments_greedy_constrained_reversals_<PointType, SegmentEndPointFunc, false, decltype(could_reverse_func)>(end_point_func, could_reverse_func, num_segments, start_near);
|
|
}
|
|
|
|
template<typename PointType, typename SegmentEndPointFunc, typename CouldReverseFunc>
|
|
std::vector<std::pair<size_t, bool>> chain_segments_greedy_constrained_reversals2(SegmentEndPointFunc end_point_func, CouldReverseFunc could_reverse_func, size_t num_segments, const PointType *start_near)
|
|
{
|
|
return chain_segments_greedy_constrained_reversals2_<PointType, SegmentEndPointFunc, true, CouldReverseFunc>(end_point_func, could_reverse_func, num_segments, start_near);
|
|
}
|
|
|
|
template<typename PointType, typename SegmentEndPointFunc>
|
|
std::vector<std::pair<size_t, bool>> chain_segments_greedy2(SegmentEndPointFunc end_point_func, size_t num_segments, const PointType *start_near)
|
|
{
|
|
auto could_reverse_func = [](size_t /* idx */) -> bool { return true; };
|
|
return chain_segments_greedy_constrained_reversals2_<PointType, SegmentEndPointFunc, false, decltype(could_reverse_func)>(end_point_func, could_reverse_func, num_segments, start_near);
|
|
}
|
|
|
|
std::vector<std::pair<size_t, bool>> chain_extrusion_entities(std::vector<ExtrusionEntity*> &entities, const Point *start_near)
|
|
{
|
|
auto segment_end_point = [&entities](size_t idx, bool first_point) -> const Point& { return first_point ? entities[idx]->first_point() : entities[idx]->last_point(); };
|
|
auto could_reverse = [&entities](size_t idx) { const ExtrusionEntity *ee = entities[idx]; return ee->is_loop() || ee->can_reverse(); };
|
|
std::vector<std::pair<size_t, bool>> out = chain_segments_greedy_constrained_reversals<Point, decltype(segment_end_point), decltype(could_reverse)>(segment_end_point, could_reverse, entities.size(), start_near);
|
|
for (std::pair<size_t, bool> &segment : out) {
|
|
ExtrusionEntity *ee = entities[segment.first];
|
|
if (ee->is_loop())
|
|
// Ignore reversals for loops, as the start point equals the end point.
|
|
segment.second = false;
|
|
// Is can_reverse() respected by the reversals?
|
|
assert(ee->can_reverse() || ! segment.second);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
void reorder_extrusion_entities(std::vector<ExtrusionEntity*> &entities, const std::vector<std::pair<size_t, bool>> &chain)
|
|
{
|
|
assert(entities.size() == chain.size());
|
|
std::vector<ExtrusionEntity*> out;
|
|
out.reserve(entities.size());
|
|
for (const std::pair<size_t, bool> &idx : chain) {
|
|
assert(entities[idx.first] != nullptr);
|
|
out.emplace_back(entities[idx.first]);
|
|
if (idx.second)
|
|
out.back()->reverse();
|
|
}
|
|
entities.swap(out);
|
|
}
|
|
|
|
void chain_and_reorder_extrusion_entities(std::vector<ExtrusionEntity*> &entities, const Point *start_near)
|
|
{
|
|
reorder_extrusion_entities(entities, chain_extrusion_entities(entities, start_near));
|
|
}
|
|
|
|
std::vector<std::pair<size_t, bool>> chain_extrusion_paths(std::vector<ExtrusionPath> &extrusion_paths, const Point *start_near)
|
|
{
|
|
auto segment_end_point = [&extrusion_paths](size_t idx, bool first_point) -> const Point& { return first_point ? extrusion_paths[idx].first_point() : extrusion_paths[idx].last_point(); };
|
|
return chain_segments_greedy<Point, decltype(segment_end_point)>(segment_end_point, extrusion_paths.size(), start_near);
|
|
}
|
|
|
|
void reorder_extrusion_paths(std::vector<ExtrusionPath> &extrusion_paths, const std::vector<std::pair<size_t, bool>> &chain)
|
|
{
|
|
assert(extrusion_paths.size() == chain.size());
|
|
std::vector<ExtrusionPath> out;
|
|
out.reserve(extrusion_paths.size());
|
|
for (const std::pair<size_t, bool> &idx : chain) {
|
|
out.emplace_back(std::move(extrusion_paths[idx.first]));
|
|
if (idx.second)
|
|
out.back().reverse();
|
|
}
|
|
extrusion_paths.swap(out);
|
|
}
|
|
|
|
void chain_and_reorder_extrusion_paths(std::vector<ExtrusionPath> &extrusion_paths, const Point *start_near)
|
|
{
|
|
reorder_extrusion_paths(extrusion_paths, chain_extrusion_paths(extrusion_paths, start_near));
|
|
}
|
|
|
|
std::vector<size_t> chain_points(const Points &points, Point *start_near)
|
|
{
|
|
auto segment_end_point = [&points](size_t idx, bool /* first_point */) -> const Point& { return points[idx]; };
|
|
std::vector<std::pair<size_t, bool>> ordered = chain_segments_greedy<Point, decltype(segment_end_point)>(segment_end_point, points.size(), start_near);
|
|
std::vector<size_t> out;
|
|
out.reserve(ordered.size());
|
|
for (auto &segment_and_reversal : ordered)
|
|
out.emplace_back(segment_and_reversal.first);
|
|
return out;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// #define DEBUG_SVG_OUTPUT
|
|
#endif /* NDEBUG */
|
|
|
|
#ifdef DEBUG_SVG_OUTPUT
|
|
void svg_draw_polyline_chain(const char *name, size_t idx, const Polylines &polylines)
|
|
{
|
|
BoundingBox bbox = get_extents(polylines);
|
|
SVG svg(debug_out_path("%s-%d.svg", name, idx).c_str(), bbox);
|
|
svg.draw(polylines);
|
|
for (size_t i = 1; i < polylines.size(); ++i)
|
|
svg.draw(Line(polylines[i - 1].last_point(), polylines[i].first_point()), "red");
|
|
}
|
|
#endif /* DEBUG_SVG_OUTPUT */
|
|
|
|
#if 0
|
|
// Flip the sequences of polylines to lower the total length of connecting lines.
|
|
static inline void improve_ordering_by_segment_flipping(Polylines &polylines, bool fixed_start)
|
|
{
|
|
#ifndef NDEBUG
|
|
auto cost = [&polylines]() {
|
|
double sum = 0.;
|
|
for (size_t i = 1; i < polylines.size(); ++i)
|
|
sum += (polylines[i].first_point() - polylines[i - 1].last_point()).cast<double>().norm();
|
|
return sum;
|
|
};
|
|
double cost_initial = cost();
|
|
|
|
static int iRun = 0;
|
|
++ iRun;
|
|
#ifdef DEBUG_SVG_OUTPUT
|
|
svg_draw_polyline_chain("improve_ordering_by_segment_flipping-initial", iRun, polylines);
|
|
#endif /* DEBUG_SVG_OUTPUT */
|
|
#endif /* NDEBUG */
|
|
|
|
struct Connection {
|
|
Connection(size_t heap_idx = std::numeric_limits<size_t>::max(), bool flipped = false) : heap_idx(heap_idx), flipped(flipped) {}
|
|
// Position of this object on MutablePriorityHeap.
|
|
size_t heap_idx;
|
|
// Is segment_idx flipped?
|
|
bool flipped;
|
|
|
|
double squaredNorm(const Polylines &polylines, const std::vector<Connection> &connections) const
|
|
{ return ((this + 1)->start_point(polylines, connections) - this->end_point(polylines, connections)).squaredNorm(); }
|
|
double norm(const Polylines &polylines, const std::vector<Connection> &connections) const
|
|
{ return sqrt(this->squaredNorm(polylines, connections)); }
|
|
double squaredNorm(const Polylines &polylines, const std::vector<Connection> &connections, bool try_flip1, bool try_flip2) const
|
|
{ return ((this + 1)->start_point(polylines, connections, try_flip2) - this->end_point(polylines, connections, try_flip1)).squaredNorm(); }
|
|
double norm(const Polylines &polylines, const std::vector<Connection> &connections, bool try_flip1, bool try_flip2) const
|
|
{ return sqrt(this->squaredNorm(polylines, connections, try_flip1, try_flip2)); }
|
|
Vec2d start_point(const Polylines &polylines, const std::vector<Connection> &connections, bool flip = false) const
|
|
{ const Polyline &pl = polylines[this - connections.data()]; return ((this->flipped == flip) ? pl.points.front() : pl.points.back()).cast<double>(); }
|
|
Vec2d end_point(const Polylines &polylines, const std::vector<Connection> &connections, bool flip = false) const
|
|
{ const Polyline &pl = polylines[this - connections.data()]; return ((this->flipped == flip) ? pl.points.back() : pl.points.front()).cast<double>(); }
|
|
|
|
bool in_queue() const { return this->heap_idx != std::numeric_limits<size_t>::max(); }
|
|
void flip() { this->flipped = ! this->flipped; }
|
|
};
|
|
std::vector<Connection> connections(polylines.size());
|
|
|
|
#ifndef NDEBUG
|
|
auto cost_flipped = [fixed_start, &polylines, &connections]() {
|
|
assert(! fixed_start || ! connections.front().flipped);
|
|
double sum = 0.;
|
|
for (size_t i = 1; i < polylines.size(); ++ i)
|
|
sum += connections[i - 1].norm(polylines, connections);
|
|
return sum;
|
|
};
|
|
double cost_prev = cost_flipped();
|
|
assert(std::abs(cost_initial - cost_prev) < SCALED_EPSILON);
|
|
|
|
auto print_statistics = [&polylines, &connections]() {
|
|
#if 0
|
|
for (size_t i = 1; i < polylines.size(); ++ i)
|
|
printf("Connecting %d with %d: Current length %lf flip(%d, %d), left flipped: %lf, right flipped: %lf, both flipped: %lf, \n",
|
|
int(i - 1), int(i),
|
|
unscale<double>(connections[i - 1].norm(polylines, connections)),
|
|
int(connections[i - 1].flipped), int(connections[i].flipped),
|
|
unscale<double>(connections[i - 1].norm(polylines, connections, true, false)),
|
|
unscale<double>(connections[i - 1].norm(polylines, connections, false, true)),
|
|
unscale<double>(connections[i - 1].norm(polylines, connections, true, true)));
|
|
#endif
|
|
};
|
|
print_statistics();
|
|
#endif /* NDEBUG */
|
|
|
|
// Initialize a MutablePriorityHeap of connections between polylines.
|
|
auto queue = make_mutable_priority_queue<Connection*, false>(
|
|
[](Connection *connection, size_t idx){ connection->heap_idx = idx; },
|
|
// Sort by decreasing connection distance.
|
|
[&polylines, &connections](Connection *l, Connection *r){ return l->squaredNorm(polylines, connections) > r->squaredNorm(polylines, connections); });
|
|
queue.reserve(polylines.size() - 1);
|
|
for (size_t i = 0; i + 1 < polylines.size(); ++ i)
|
|
queue.push(&connections[i]);
|
|
|
|
static constexpr size_t itercnt = 100;
|
|
size_t iter = 0;
|
|
for (; ! queue.empty() && iter < itercnt; ++ iter) {
|
|
Connection &connection = *queue.top();
|
|
queue.pop();
|
|
connection.heap_idx = std::numeric_limits<size_t>::max();
|
|
size_t idx_first = &connection - connections.data();
|
|
// Try to flip segments starting with idx_first + 1 to the end.
|
|
// Calculate the last segment to be flipped to improve the total path length.
|
|
double length_current = connection.norm(polylines, connections);
|
|
double length_flipped = connection.norm(polylines, connections, false, true);
|
|
int best_idx_forward = int(idx_first);
|
|
double best_improvement_forward = 0.;
|
|
for (size_t i = idx_first + 1; i + 1 < connections.size(); ++ i) {
|
|
length_current += connections[i].norm(polylines, connections);
|
|
double this_improvement = length_current - length_flipped - connections[i].norm(polylines, connections, true, false);
|
|
length_flipped += connections[i].norm(polylines, connections, true, true);
|
|
if (this_improvement > best_improvement_forward) {
|
|
best_improvement_forward = this_improvement;
|
|
best_idx_forward = int(i);
|
|
}
|
|
// if (length_flipped > 1.5 * length_current)
|
|
// break;
|
|
}
|
|
if (length_current - length_flipped > best_improvement_forward)
|
|
// Best improvement by flipping up to the end.
|
|
best_idx_forward = int(connections.size()) - 1;
|
|
// Try to flip segments starting with idx_first - 1 to the start.
|
|
// Calculate the last segment to be flipped to improve the total path length.
|
|
length_current = connection.norm(polylines, connections);
|
|
length_flipped = connection.norm(polylines, connections, true, false);
|
|
int best_idx_backwards = int(idx_first);
|
|
double best_improvement_backwards = 0.;
|
|
for (int i = int(idx_first) - 1; i >= 0; -- i) {
|
|
length_current += connections[i].norm(polylines, connections);
|
|
double this_improvement = length_current - length_flipped - connections[i].norm(polylines, connections, false, true);
|
|
length_flipped += connections[i].norm(polylines, connections, true, true);
|
|
if (this_improvement > best_improvement_backwards) {
|
|
best_improvement_backwards = this_improvement;
|
|
best_idx_backwards = int(i);
|
|
}
|
|
// if (length_flipped > 1.5 * length_current)
|
|
// break;
|
|
}
|
|
if (! fixed_start && length_current - length_flipped > best_improvement_backwards)
|
|
// Best improvement by flipping up to the start including the first polyline.
|
|
best_idx_backwards = -1;
|
|
int update_begin = int(idx_first);
|
|
int update_end = best_idx_forward;
|
|
if (best_improvement_backwards > 0. && best_improvement_backwards > best_improvement_forward) {
|
|
// Flip the sequence of polylines from idx_first to best_improvement_forward + 1.
|
|
update_begin = best_idx_backwards;
|
|
update_end = int(idx_first);
|
|
}
|
|
assert(update_begin <= update_end);
|
|
if (update_begin == update_end)
|
|
continue;
|
|
for (int i = update_begin + 1; i <= update_end; ++ i)
|
|
connections[i].flip();
|
|
|
|
#ifndef NDEBUG
|
|
double cost = cost_flipped();
|
|
assert(cost < cost_prev);
|
|
cost_prev = cost;
|
|
print_statistics();
|
|
#endif /* NDEBUG */
|
|
|
|
update_end = std::min(update_end + 1, int(connections.size()) - 1);
|
|
for (int i = std::max(0, update_begin); i < update_end; ++ i) {
|
|
Connection &c = connections[i];
|
|
if (c.in_queue())
|
|
queue.update(c.heap_idx);
|
|
else
|
|
queue.push(&c);
|
|
}
|
|
}
|
|
|
|
// Flip the segments based on the flip flag.
|
|
for (Polyline &pl : polylines)
|
|
if (connections[&pl - polylines.data()].flipped)
|
|
pl.reverse();
|
|
|
|
#ifndef NDEBUG
|
|
double cost_final = cost();
|
|
#ifdef DEBUG_SVG_OUTPUT
|
|
svg_draw_polyline_chain("improve_ordering_by_segment_flipping-final", iRun, polylines);
|
|
#endif /* DEBUG_SVG_OUTPUT */
|
|
assert(cost_final <= cost_prev);
|
|
assert(cost_final <= cost_initial);
|
|
#endif /* NDEBUG */
|
|
}
|
|
#endif
|
|
|
|
struct FlipEdge {
|
|
FlipEdge(const Vec2d &p1, const Vec2d &p2, size_t source_index) : p1(p1), p2(p2), source_index(source_index) {}
|
|
void flip() { std::swap(this->p1, this->p2); }
|
|
Vec2d p1;
|
|
Vec2d p2;
|
|
size_t source_index;
|
|
};
|
|
|
|
struct ConnectionCost {
|
|
ConnectionCost(double cost, double cost_flipped) : cost(cost), cost_flipped(cost_flipped) {}
|
|
ConnectionCost() : cost(0.), cost_flipped(0.) {}
|
|
void flip() { std::swap(this->cost, this->cost_flipped); }
|
|
double cost = 0;
|
|
double cost_flipped = 0;
|
|
};
|
|
static inline ConnectionCost operator-(const ConnectionCost &lhs, const ConnectionCost& rhs) { return ConnectionCost(lhs.cost - rhs.cost, lhs.cost_flipped - rhs.cost_flipped); }
|
|
|
|
static inline std::pair<double, size_t> minimum_crossover_cost(
|
|
const std::vector<FlipEdge> &edges,
|
|
const std::pair<size_t, size_t> &span1, const ConnectionCost &cost1,
|
|
const std::pair<size_t, size_t> &span2, const ConnectionCost &cost2,
|
|
const std::pair<size_t, size_t> &span3, const ConnectionCost &cost3,
|
|
const double cost_current)
|
|
{
|
|
auto connection_cost = [&edges](
|
|
const std::pair<size_t, size_t> &span1, const ConnectionCost &cost1, bool reversed1, bool flipped1,
|
|
const std::pair<size_t, size_t> &span2, const ConnectionCost &cost2, bool reversed2, bool flipped2,
|
|
const std::pair<size_t, size_t> &span3, const ConnectionCost &cost3, bool reversed3, bool flipped3) {
|
|
auto first_point = [&edges](const std::pair<size_t, size_t> &span, bool flipped) { return flipped ? edges[span.first].p2 : edges[span.first].p1; };
|
|
auto last_point = [&edges](const std::pair<size_t, size_t> &span, bool flipped) { return flipped ? edges[span.second - 1].p1 : edges[span.second - 1].p2; };
|
|
auto point = [first_point, last_point](const std::pair<size_t, size_t> &span, bool start, bool flipped) { return start ? first_point(span, flipped) : last_point(span, flipped); };
|
|
auto cost = [](const ConnectionCost &acost, bool flipped) {
|
|
assert(acost.cost >= 0. && acost.cost_flipped >= 0.);
|
|
return flipped ? acost.cost_flipped : acost.cost;
|
|
};
|
|
// Ignore reversed single segment spans.
|
|
auto simple_span_ignore = [](const std::pair<size_t, size_t>& span, bool reversed) {
|
|
return span.first + 1 == span.second && reversed;
|
|
};
|
|
assert(span1.first < span1.second);
|
|
assert(span2.first < span2.second);
|
|
assert(span3.first < span3.second);
|
|
return
|
|
simple_span_ignore(span1, reversed1) || simple_span_ignore(span2, reversed2) || simple_span_ignore(span3, reversed3) ?
|
|
// Don't perform unnecessary calculations simulating reversion of single segment spans.
|
|
std::numeric_limits<double>::max() :
|
|
// Calculate the cost of reverting chains and / or flipping segment orientations.
|
|
cost(cost1, flipped1) + cost(cost2, flipped2) + cost(cost3, flipped3) +
|
|
(point(span2, ! reversed2, flipped2) - point(span1, reversed1, flipped1)).norm() +
|
|
(point(span3, ! reversed3, flipped3) - point(span2, reversed2, flipped2)).norm();
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
double c = connection_cost(span1, cost1, false, false, span2, cost2, false, false, span3, cost3, false, false);
|
|
assert(std::abs(c - cost_current) < SCALED_EPSILON);
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
double cost_min = cost_current;
|
|
size_t flip_min = 0; // no flip, no improvement
|
|
for (size_t i = 0; i < (1 << 6); ++ i) {
|
|
// From the three combinations of 1,2,3 ordering, the other three are reversals of the first three.
|
|
double c1 = (i == 0) ? cost_current :
|
|
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0);
|
|
double c2 = connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0);
|
|
double c3 = connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0);
|
|
if (c1 < cost_min) {
|
|
cost_min = c1;
|
|
flip_min = i;
|
|
}
|
|
if (c2 < cost_min) {
|
|
cost_min = c2;
|
|
flip_min = i + (1 << 6);
|
|
}
|
|
if (c3 < cost_min) {
|
|
cost_min = c3;
|
|
flip_min = i + (2 << 6);
|
|
}
|
|
}
|
|
return std::make_pair(cost_min, flip_min);
|
|
}
|
|
|
|
#if 0
|
|
static inline std::pair<double, size_t> minimum_crossover_cost(
|
|
const std::vector<FlipEdge> &edges,
|
|
const std::pair<size_t, size_t> &span1, const ConnectionCost &cost1,
|
|
const std::pair<size_t, size_t> &span2, const ConnectionCost &cost2,
|
|
const std::pair<size_t, size_t> &span3, const ConnectionCost &cost3,
|
|
const std::pair<size_t, size_t> &span4, const ConnectionCost &cost4,
|
|
const double cost_current)
|
|
{
|
|
auto connection_cost = [&edges](
|
|
const std::pair<size_t, size_t> &span1, const ConnectionCost &cost1, bool reversed1, bool flipped1,
|
|
const std::pair<size_t, size_t> &span2, const ConnectionCost &cost2, bool reversed2, bool flipped2,
|
|
const std::pair<size_t, size_t> &span3, const ConnectionCost &cost3, bool reversed3, bool flipped3,
|
|
const std::pair<size_t, size_t> &span4, const ConnectionCost &cost4, bool reversed4, bool flipped4) {
|
|
auto first_point = [&edges](const std::pair<size_t, size_t> &span, bool flipped) { return flipped ? edges[span.first].p2 : edges[span.first].p1; };
|
|
auto last_point = [&edges](const std::pair<size_t, size_t> &span, bool flipped) { return flipped ? edges[span.second - 1].p1 : edges[span.second - 1].p2; };
|
|
auto point = [first_point, last_point](const std::pair<size_t, size_t> &span, bool start, bool flipped) { return start ? first_point(span, flipped) : last_point(span, flipped); };
|
|
auto cost = [](const ConnectionCost &acost, bool flipped) {
|
|
assert(acost.cost >= 0. && acost.cost_flipped >= 0.);
|
|
return flipped ? acost.cost_flipped : acost.cost;
|
|
};
|
|
// Ignore reversed single segment spans.
|
|
auto simple_span_ignore = [](const std::pair<size_t, size_t>& span, bool reversed) {
|
|
return span.first + 1 == span.second && reversed;
|
|
};
|
|
assert(span1.first < span1.second);
|
|
assert(span2.first < span2.second);
|
|
assert(span3.first < span3.second);
|
|
assert(span4.first < span4.second);
|
|
return
|
|
simple_span_ignore(span1, reversed1) || simple_span_ignore(span2, reversed2) || simple_span_ignore(span3, reversed3) || simple_span_ignore(span4, reversed4) ?
|
|
// Don't perform unnecessary calculations simulating reversion of single segment spans.
|
|
std::numeric_limits<double>::max() :
|
|
// Calculate the cost of reverting chains and / or flipping segment orientations.
|
|
cost(cost1, flipped1) + cost(cost2, flipped2) + cost(cost3, flipped3) + cost(cost4, flipped4) +
|
|
(point(span2, ! reversed2, flipped2) - point(span1, reversed1, flipped1)).norm() +
|
|
(point(span3, ! reversed3, flipped3) - point(span2, reversed2, flipped2)).norm() +
|
|
(point(span4, ! reversed4, flipped4) - point(span3, reversed3, flipped3)).norm();
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
double c = connection_cost(span1, cost1, false, false, span2, cost2, false, false, span3, cost3, false, false, span4, cost4, false, false);
|
|
assert(std::abs(c - cost_current) < SCALED_EPSILON);
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
double cost_min = cost_current;
|
|
size_t flip_min = 0; // no flip, no improvement
|
|
for (size_t i = 0; i < (1 << 8); ++ i) {
|
|
// From the three combinations of 1,2,3 ordering, the other three are reversals of the first three.
|
|
size_t permutation = 0;
|
|
for (double c : {
|
|
(i == 0) ? cost_current :
|
|
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, cost2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span1, cost1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, cost2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, cost3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, cost4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span3, cost3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span2, cost2, (i & 1) != 0, (i & (1 << 1)) != 0, span4, cost4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, cost3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span3, cost3, (i & 1) != 0, (i & (1 << 1)) != 0, span1, cost1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, cost2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(span3, cost3, (i & 1) != 0, (i & (1 << 1)) != 0, span2, cost2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, cost1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, cost4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0)
|
|
}) {
|
|
if (c < cost_min) {
|
|
cost_min = c;
|
|
flip_min = i + (permutation << 8);
|
|
}
|
|
++ permutation;
|
|
}
|
|
}
|
|
return std::make_pair(cost_min, flip_min);
|
|
}
|
|
#endif
|
|
|
|
static inline void do_crossover(const std::vector<FlipEdge> &edges_in, std::vector<FlipEdge> &edges_out,
|
|
const std::pair<size_t, size_t> &span1, const std::pair<size_t, size_t> &span2, const std::pair<size_t, size_t> &span3,
|
|
size_t i)
|
|
{
|
|
assert(edges_in.size() == edges_out.size());
|
|
auto do_it = [&edges_in, &edges_out](
|
|
const std::pair<size_t, size_t> &span1, bool reversed1, bool flipped1,
|
|
const std::pair<size_t, size_t> &span2, bool reversed2, bool flipped2,
|
|
const std::pair<size_t, size_t> &span3, bool reversed3, bool flipped3) {
|
|
auto it_edges_out = edges_out.begin();
|
|
auto copy_span = [&edges_in, &it_edges_out](std::pair<size_t, size_t> span, bool reversed, bool flipped) {
|
|
assert(span.first < span.second);
|
|
auto it = it_edges_out;
|
|
if (reversed)
|
|
std::reverse_copy(edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out);
|
|
else
|
|
std::copy (edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out);
|
|
it_edges_out += span.second - span.first;
|
|
if (reversed != flipped) {
|
|
for (; it != it_edges_out; ++ it)
|
|
it->flip();
|
|
}
|
|
};
|
|
copy_span(span1, reversed1, flipped1);
|
|
copy_span(span2, reversed2, flipped2);
|
|
copy_span(span3, reversed3, flipped3);
|
|
};
|
|
switch (i >> 6) {
|
|
case 0:
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0);
|
|
break;
|
|
case 1:
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0);
|
|
break;
|
|
default:
|
|
assert((i >> 6) == 2);
|
|
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0);
|
|
}
|
|
assert(edges_in.size() == edges_out.size());
|
|
}
|
|
|
|
#if 0
|
|
static inline void do_crossover(const std::vector<FlipEdge> &edges_in, std::vector<FlipEdge> &edges_out,
|
|
const std::pair<size_t, size_t> &span1, const std::pair<size_t, size_t> &span2, const std::pair<size_t, size_t> &span3, const std::pair<size_t, size_t> &span4,
|
|
size_t i)
|
|
{
|
|
assert(edges_in.size() == edges_out.size());
|
|
auto do_it = [&edges_in, &edges_out](
|
|
const std::pair<size_t, size_t> &span1, bool reversed1, bool flipped1,
|
|
const std::pair<size_t, size_t> &span2, bool reversed2, bool flipped2,
|
|
const std::pair<size_t, size_t> &span3, bool reversed3, bool flipped3,
|
|
const std::pair<size_t, size_t> &span4, bool reversed4, bool flipped4) {
|
|
auto it_edges_out = edges_out.begin();
|
|
auto copy_span = [&edges_in, &it_edges_out](std::pair<size_t, size_t> span, bool reversed, bool flipped) {
|
|
assert(span.first < span.second);
|
|
auto it = it_edges_out;
|
|
if (reversed)
|
|
std::reverse_copy(edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out);
|
|
else
|
|
std::copy (edges_in.begin() + span.first, edges_in.begin() + span.second, it_edges_out);
|
|
it_edges_out += span.second - span.first;
|
|
if (reversed != flipped) {
|
|
for (; it != it_edges_out; ++ it)
|
|
it->flip();
|
|
}
|
|
};
|
|
copy_span(span1, reversed1, flipped1);
|
|
copy_span(span2, reversed2, flipped2);
|
|
copy_span(span3, reversed3, flipped3);
|
|
copy_span(span4, reversed4, flipped4);
|
|
};
|
|
switch (i >> 8) {
|
|
case 0:
|
|
assert(i != 0); // otherwise it would be a no-op
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 1:
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 2:
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 3:
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 4:
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 5:
|
|
do_it(span1, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 6:
|
|
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 7:
|
|
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span4, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 8:
|
|
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 9:
|
|
do_it(span2, (i & 1) != 0, (i & (1 << 1)) != 0, span4, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
case 10:
|
|
do_it(span3, (i & 1) != 0, (i & (1 << 1)) != 0, span1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
default:
|
|
assert((i >> 8) == 11);
|
|
do_it(span3, (i & 1) != 0, (i & (1 << 1)) != 0, span2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, span1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, span4, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0);
|
|
break;
|
|
}
|
|
assert(edges_in.size() == edges_out.size());
|
|
}
|
|
#endif
|
|
|
|
// Worst time complexity: O(min(n, 100) * (n * log n + n^2)
|
|
// Expected time complexity: O(min(n, 100) * (n * log n + k * n)
|
|
// where n is the number of edges and k is the number of connection_lengths candidates after the first one
|
|
// is found that improves the total cost.
|
|
//FIXME there are likley better heuristics to lower the time complexity.
|
|
static inline void reorder_by_two_exchanges_with_segment_flipping(std::vector<FlipEdge> &edges)
|
|
{
|
|
if (edges.size() < 2)
|
|
return;
|
|
|
|
std::vector<ConnectionCost> connections(edges.size());
|
|
std::vector<FlipEdge> edges_tmp(edges);
|
|
std::vector<std::pair<double, size_t>> connection_lengths(edges.size() - 1, std::pair<double, size_t>(0., 0));
|
|
std::vector<char> connection_tried(edges.size(), false);
|
|
const size_t max_iterations = std::min(edges.size(), size_t(100));
|
|
for (size_t iter = 0; iter < max_iterations; ++ iter) {
|
|
// Initialize connection costs and connection lengths.
|
|
for (size_t i = 1; i < edges.size(); ++ i) {
|
|
const FlipEdge &e1 = edges[i - 1];
|
|
const FlipEdge &e2 = edges[i];
|
|
ConnectionCost &c = connections[i];
|
|
c = connections[i - 1];
|
|
double l = (e2.p1 - e1.p2).norm();
|
|
c.cost += l;
|
|
c.cost_flipped += (e2.p2 - e1.p1).norm();
|
|
connection_lengths[i - 1] = std::make_pair(l, i);
|
|
}
|
|
std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair<double, size_t> &l, const std::pair<double, size_t> &r) { return l.first > r.first; });
|
|
std::fill(connection_tried.begin(), connection_tried.end(), false);
|
|
size_t crossover1_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover2_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover_flip_final = 0;
|
|
for (const std::pair<double, size_t>& first_crossover_candidate : connection_lengths) {
|
|
size_t longest_connection_idx = first_crossover_candidate.second;
|
|
connection_tried[longest_connection_idx] = true;
|
|
// Find the second crossover connection with the lowest total chain cost.
|
|
size_t crossover_pos_min = std::numeric_limits<size_t>::max();
|
|
double crossover_cost_min = connections.back().cost;
|
|
size_t crossover_flip_min = 0;
|
|
for (size_t j = 1; j < connections.size(); ++ j)
|
|
if (! connection_tried[j]) {
|
|
size_t a = j;
|
|
size_t b = longest_connection_idx;
|
|
if (a > b)
|
|
std::swap(a, b);
|
|
std::pair<double, size_t> cost_and_flip = minimum_crossover_cost(edges,
|
|
std::make_pair(size_t(0), a), connections[a - 1], std::make_pair(a, b), connections[b - 1] - connections[a], std::make_pair(b, edges.size()), connections.back() - connections[b],
|
|
connections.back().cost);
|
|
if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) {
|
|
crossover_pos_min = j;
|
|
crossover_cost_min = cost_and_flip.first;
|
|
crossover_flip_min = cost_and_flip.second;
|
|
assert(crossover_cost_min < connections.back().cost + EPSILON);
|
|
}
|
|
}
|
|
if (crossover_cost_min < connections.back().cost) {
|
|
// The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover.
|
|
crossover1_pos_final = longest_connection_idx;
|
|
crossover2_pos_final = crossover_pos_min;
|
|
crossover_flip_final = crossover_flip_min;
|
|
break;
|
|
} else {
|
|
// Continue with another long candidate edge.
|
|
}
|
|
}
|
|
if (crossover_flip_final > 0) {
|
|
// Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection.
|
|
// Perform a crossover.
|
|
if (crossover1_pos_final > crossover2_pos_final)
|
|
std::swap(crossover1_pos_final, crossover2_pos_final);
|
|
do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final), std::make_pair(crossover2_pos_final, edges.size()), crossover_flip_final);
|
|
edges.swap(edges_tmp);
|
|
} else {
|
|
// No valid pair of cross over positions was found improving the total cost. Giving up.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
// Currently not used, too slow.
|
|
static inline void reorder_by_three_exchanges_with_segment_flipping(std::vector<FlipEdge> &edges)
|
|
{
|
|
if (edges.size() < 3) {
|
|
reorder_by_two_exchanges_with_segment_flipping(edges);
|
|
return;
|
|
}
|
|
|
|
std::vector<ConnectionCost> connections(edges.size());
|
|
std::vector<FlipEdge> edges_tmp(edges);
|
|
std::vector<std::pair<double, size_t>> connection_lengths(edges.size() - 1, std::pair<double, size_t>(0., 0));
|
|
std::vector<char> connection_tried(edges.size(), false);
|
|
for (size_t iter = 0; iter < edges.size(); ++ iter) {
|
|
// Initialize connection costs and connection lengths.
|
|
for (size_t i = 1; i < edges.size(); ++ i) {
|
|
const FlipEdge &e1 = edges[i - 1];
|
|
const FlipEdge &e2 = edges[i];
|
|
ConnectionCost &c = connections[i];
|
|
c = connections[i - 1];
|
|
double l = (e2.p1 - e1.p2).norm();
|
|
c.cost += l;
|
|
c.cost_flipped += (e2.p2 - e1.p1).norm();
|
|
connection_lengths[i - 1] = std::make_pair(l, i);
|
|
}
|
|
std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair<double, size_t> &l, const std::pair<double, size_t> &r) { return l.first > r.first; });
|
|
std::fill(connection_tried.begin(), connection_tried.end(), false);
|
|
size_t crossover1_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover2_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover3_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover_flip_final = 0;
|
|
for (const std::pair<double, size_t> &first_crossover_candidate : connection_lengths) {
|
|
size_t longest_connection_idx = first_crossover_candidate.second;
|
|
connection_tried[longest_connection_idx] = true;
|
|
// Find the second crossover connection with the lowest total chain cost.
|
|
double crossover_cost_min = connections.back().cost;
|
|
for (size_t j = 1; j < connections.size(); ++ j)
|
|
if (! connection_tried[j]) {
|
|
for (size_t k = j + 1; k < connections.size(); ++ k)
|
|
if (! connection_tried[k]) {
|
|
size_t a = longest_connection_idx;
|
|
size_t b = j;
|
|
size_t c = k;
|
|
if (a > c)
|
|
std::swap(a, c);
|
|
if (a > b)
|
|
std::swap(a, b);
|
|
if (b > c)
|
|
std::swap(b, c);
|
|
std::pair<double, size_t> cost_and_flip = minimum_crossover_cost(edges,
|
|
std::make_pair(size_t(0), a), connections[a - 1], std::make_pair(a, b), connections[b - 1] - connections[a],
|
|
std::make_pair(b, c), connections[c - 1] - connections[b], std::make_pair(c, edges.size()), connections.back() - connections[c],
|
|
connections.back().cost);
|
|
if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) {
|
|
crossover_cost_min = cost_and_flip.first;
|
|
crossover1_pos_final = a;
|
|
crossover2_pos_final = b;
|
|
crossover3_pos_final = c;
|
|
crossover_flip_final = cost_and_flip.second;
|
|
assert(crossover_cost_min < connections.back().cost + EPSILON);
|
|
}
|
|
}
|
|
}
|
|
if (crossover_flip_final > 0) {
|
|
// The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover.
|
|
break;
|
|
} else {
|
|
// Continue with another long candidate edge.
|
|
}
|
|
}
|
|
if (crossover_flip_final > 0) {
|
|
// Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection.
|
|
// Perform a crossover.
|
|
do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final),
|
|
std::make_pair(crossover2_pos_final, crossover3_pos_final), std::make_pair(crossover3_pos_final, edges.size()), crossover_flip_final);
|
|
edges.swap(edges_tmp);
|
|
} else {
|
|
// No valid pair of cross over positions was found improving the total cost. Giving up.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign> Matrixd;
|
|
|
|
class FourOptCosts {
|
|
public:
|
|
FourOptCosts(const ConnectionCost &c1, const ConnectionCost &c2, const ConnectionCost &c3, const ConnectionCost &c4) : costs { &c1, &c2, &c3, &c4 } {}
|
|
|
|
double operator()(size_t piece_idx, bool flipped) const { return flipped ? costs[piece_idx]->cost_flipped : costs[piece_idx]->cost; }
|
|
|
|
private:
|
|
const ConnectionCost* costs[4];
|
|
};
|
|
|
|
#if 0
|
|
static inline std::pair<double, size_t> minimum_crossover_cost(
|
|
const FourOptCosts &segment_costs,
|
|
const Matrixd &segment_end_point_distance_matrix,
|
|
const double cost_current)
|
|
{
|
|
// Distance from the end of span1 to the start of span2.
|
|
auto end_point_distance = [&segment_end_point_distance_matrix](size_t span1, bool reversed1, bool flipped1, size_t span2, bool reversed2, bool flipped2) {
|
|
return segment_end_point_distance_matrix(span1 * 4 + (! reversed1) * 2 + flipped1, span2 * 4 + reversed2 * 2 + flipped2);
|
|
};
|
|
auto connection_cost = [&segment_costs, end_point_distance](
|
|
const size_t span1, bool reversed1, bool flipped1,
|
|
const size_t span2, bool reversed2, bool flipped2,
|
|
const size_t span3, bool reversed3, bool flipped3,
|
|
const size_t span4, bool reversed4, bool flipped4) {
|
|
// Calculate the cost of reverting chains and / or flipping segment orientations.
|
|
return segment_costs(span1, flipped1) + segment_costs(span2, flipped2) + segment_costs(span3, flipped3) + segment_costs(span4, flipped4) +
|
|
end_point_distance(span1, reversed1, flipped1, span2, reversed2, flipped2) +
|
|
end_point_distance(span2, reversed2, flipped2, span3, reversed3, flipped3) +
|
|
end_point_distance(span3, reversed3, flipped3, span4, reversed4, flipped4);
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
double c = connection_cost(0, false, false, 1, false, false, 2, false, false, 3, false, false);
|
|
assert(std::abs(c - cost_current) < SCALED_EPSILON);
|
|
}
|
|
#endif /* NDEBUG */
|
|
|
|
double cost_min = cost_current;
|
|
size_t flip_min = 0; // no flip, no improvement
|
|
for (size_t i = 0; i < (1 << 8); ++ i) {
|
|
// From the three combinations of 1,2,3 ordering, the other three are reversals of the first three.
|
|
size_t permutation = 0;
|
|
for (double c : {
|
|
(i == 0) ? cost_current :
|
|
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 1, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(0, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 1, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 2, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 3, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 2, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(1, (i & 1) != 0, (i & (1 << 1)) != 0, 3, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 2, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(2, (i & 1) != 0, (i & (1 << 1)) != 0, 0, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 1, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0),
|
|
connection_cost(2, (i & 1) != 0, (i & (1 << 1)) != 0, 1, (i & (1 << 2)) != 0, (i & (1 << 3)) != 0, 0, (i & (1 << 4)) != 0, (i & (1 << 5)) != 0, 3, (i & (1 << 6)) != 0, (i & (1 << 7)) != 0)
|
|
}) {
|
|
if (c < cost_min) {
|
|
cost_min = c;
|
|
flip_min = i + (permutation << 8);
|
|
}
|
|
++ permutation;
|
|
}
|
|
}
|
|
return std::make_pair(cost_min, flip_min);
|
|
}
|
|
|
|
// Currently not used, too slow.
|
|
static inline void reorder_by_three_exchanges_with_segment_flipping2(std::vector<FlipEdge> &edges)
|
|
{
|
|
if (edges.size() < 3) {
|
|
reorder_by_two_exchanges_with_segment_flipping(edges);
|
|
return;
|
|
}
|
|
|
|
std::vector<ConnectionCost> connections(edges.size());
|
|
std::vector<FlipEdge> edges_tmp(edges);
|
|
std::vector<std::pair<double, size_t>> connection_lengths(edges.size() - 1, std::pair<double, size_t>(0., 0));
|
|
std::vector<char> connection_tried(edges.size(), false);
|
|
for (size_t iter = 0; iter < edges.size(); ++ iter) {
|
|
// Initialize connection costs and connection lengths.
|
|
for (size_t i = 1; i < edges.size(); ++ i) {
|
|
const FlipEdge &e1 = edges[i - 1];
|
|
const FlipEdge &e2 = edges[i];
|
|
ConnectionCost &c = connections[i];
|
|
c = connections[i - 1];
|
|
double l = (e2.p1 - e1.p2).norm();
|
|
c.cost += l;
|
|
c.cost_flipped += (e2.p2 - e1.p1).norm();
|
|
connection_lengths[i - 1] = std::make_pair(l, i);
|
|
}
|
|
std::sort(connection_lengths.begin(), connection_lengths.end(), [](const std::pair<double, size_t> &l, const std::pair<double, size_t> &r) { return l.first > r.first; });
|
|
std::fill(connection_tried.begin(), connection_tried.end(), false);
|
|
size_t crossover1_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover2_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover3_pos_final = std::numeric_limits<size_t>::max();
|
|
size_t crossover_flip_final = 0;
|
|
// Distances between the end points of the four pieces of the current segment sequence.
|
|
#ifdef NDEBUG
|
|
Matrixd segment_end_point_distance_matrix(4 * 4, 4 * 4);
|
|
#else /* NDEBUG */
|
|
Matrixd segment_end_point_distance_matrix = Matrixd::Constant(4 * 4, 4 * 4, std::numeric_limits<double>::max());
|
|
#endif /* NDEBUG */
|
|
for (const std::pair<double, size_t> &first_crossover_candidate : connection_lengths) {
|
|
size_t longest_connection_idx = first_crossover_candidate.second;
|
|
connection_tried[longest_connection_idx] = true;
|
|
// Find the second crossover connection with the lowest total chain cost.
|
|
double crossover_cost_min = connections.back().cost;
|
|
for (size_t j = 1; j < connections.size(); ++ j)
|
|
if (! connection_tried[j]) {
|
|
for (size_t k = j + 1; k < connections.size(); ++ k)
|
|
if (! connection_tried[k]) {
|
|
size_t a = longest_connection_idx;
|
|
size_t b = j;
|
|
size_t c = k;
|
|
if (a > c)
|
|
std::swap(a, c);
|
|
if (a > b)
|
|
std::swap(a, b);
|
|
if (b > c)
|
|
std::swap(b, c);
|
|
const Vec2d* endpts[16] = {
|
|
&edges[0].p1, &edges[0].p2, &edges[a - 1].p2, &edges[a - 1].p1,
|
|
&edges[a].p1, &edges[a].p2, &edges[b - 1].p2, &edges[b - 1].p1,
|
|
&edges[b].p1, &edges[b].p2, &edges[c - 1].p2, &edges[c - 1].p1,
|
|
&edges[c].p1, &edges[c].p2, &edges.back().p2, &edges.back().p1 };
|
|
for (size_t v = 0; v < 16; ++ v) {
|
|
const Vec2d &p1 = *endpts[v];
|
|
for (size_t u = (v & (~3)) + 4; u < 16; ++ u)
|
|
segment_end_point_distance_matrix(u, v) = segment_end_point_distance_matrix(v, u) = (*endpts[u] - p1).norm();
|
|
}
|
|
FourOptCosts segment_costs(connections[a - 1], connections[b - 1] - connections[a], connections[c - 1] - connections[b], connections.back() - connections[c]);
|
|
std::pair<double, size_t> cost_and_flip = minimum_crossover_cost(segment_costs, segment_end_point_distance_matrix, connections.back().cost);
|
|
if (cost_and_flip.second > 0 && cost_and_flip.first < crossover_cost_min) {
|
|
crossover_cost_min = cost_and_flip.first;
|
|
crossover1_pos_final = a;
|
|
crossover2_pos_final = b;
|
|
crossover3_pos_final = c;
|
|
crossover_flip_final = cost_and_flip.second;
|
|
assert(crossover_cost_min < connections.back().cost + EPSILON);
|
|
}
|
|
}
|
|
}
|
|
if (crossover_flip_final > 0) {
|
|
// The cost of the chain with the proposed two crossovers has a lower total cost than the current chain. Apply the crossover.
|
|
break;
|
|
} else {
|
|
// Continue with another long candidate edge.
|
|
}
|
|
}
|
|
if (crossover_flip_final > 0) {
|
|
// Pair of cross over positions and flip / reverse constellation has been found, which improves the total cost of the connection.
|
|
// Perform a crossover.
|
|
do_crossover(edges, edges_tmp, std::make_pair(size_t(0), crossover1_pos_final), std::make_pair(crossover1_pos_final, crossover2_pos_final),
|
|
std::make_pair(crossover2_pos_final, crossover3_pos_final), std::make_pair(crossover3_pos_final, edges.size()), crossover_flip_final);
|
|
edges.swap(edges_tmp);
|
|
} else {
|
|
// No valid pair of cross over positions was found improving the total cost. Giving up.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Flip the sequences of polylines to lower the total length of connecting lines.
|
|
// Used by the infill generator if the infill is not connected with perimeter lines
|
|
// and to order the brim lines.
|
|
static inline void improve_ordering_by_two_exchanges_with_segment_flipping(Polylines &polylines, bool fixed_start)
|
|
{
|
|
#ifndef NDEBUG
|
|
auto cost = [&polylines]() {
|
|
double sum = 0.;
|
|
for (size_t i = 1; i < polylines.size(); ++i)
|
|
sum += (polylines[i].first_point() - polylines[i - 1].last_point()).cast<double>().norm();
|
|
return sum;
|
|
};
|
|
double cost_initial = cost();
|
|
|
|
static int iRun = 0;
|
|
++ iRun;
|
|
#ifdef DEBUG_SVG_OUTPUT
|
|
svg_draw_polyline_chain("improve_ordering_by_two_exchanges_with_segment_flipping-initial", iRun, polylines);
|
|
#endif /* DEBUG_SVG_OUTPUT */
|
|
#endif /* NDEBUG */
|
|
|
|
std::vector<FlipEdge> edges;
|
|
edges.reserve(polylines.size());
|
|
std::transform(polylines.begin(), polylines.end(), std::back_inserter(edges),
|
|
[&polylines](const Polyline &pl){ return FlipEdge(pl.first_point().cast<double>(), pl.last_point().cast<double>(), &pl - polylines.data()); });
|
|
#if 1
|
|
reorder_by_two_exchanges_with_segment_flipping(edges);
|
|
#else
|
|
// reorder_by_three_exchanges_with_segment_flipping(edges);
|
|
reorder_by_three_exchanges_with_segment_flipping2(edges);
|
|
#endif
|
|
Polylines out;
|
|
out.reserve(polylines.size());
|
|
for (const FlipEdge &edge : edges) {
|
|
Polyline &pl = polylines[edge.source_index];
|
|
out.emplace_back(std::move(pl));
|
|
if (edge.p2 == pl.first_point().cast<double>()) {
|
|
// Polyline is flipped.
|
|
out.back().reverse();
|
|
} else {
|
|
// Polyline is not flipped.
|
|
assert(edge.p1 == pl.first_point().cast<double>());
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
double cost_final = cost();
|
|
#ifdef DEBUG_SVG_OUTPUT
|
|
svg_draw_polyline_chain("improve_ordering_by_two_exchanges_with_segment_flipping-final", iRun, out);
|
|
#endif /* DEBUG_SVG_OUTPUT */
|
|
assert(cost_final <= cost_initial);
|
|
#endif /* NDEBUG */
|
|
}
|
|
|
|
// Used to optimize order of infill lines and brim lines.
|
|
Polylines chain_polylines(Polylines &&polylines, const Point *start_near)
|
|
{
|
|
#ifdef DEBUG_SVG_OUTPUT
|
|
static int iRun = 0;
|
|
++ iRun;
|
|
svg_draw_polyline_chain("chain_polylines-initial", iRun, polylines);
|
|
#endif /* DEBUG_SVG_OUTPUT */
|
|
|
|
Polylines out;
|
|
if (! polylines.empty()) {
|
|
auto segment_end_point = [&polylines](size_t idx, bool first_point) -> const Point& { return first_point ? polylines[idx].first_point() : polylines[idx].last_point(); };
|
|
std::vector<std::pair<size_t, bool>> ordered = chain_segments_greedy2<Point, decltype(segment_end_point)>(segment_end_point, polylines.size(), start_near);
|
|
out.reserve(polylines.size());
|
|
for (auto &segment_and_reversal : ordered) {
|
|
out.emplace_back(std::move(polylines[segment_and_reversal.first]));
|
|
if (segment_and_reversal.second)
|
|
out.back().reverse();
|
|
}
|
|
if (out.size() > 1 && start_near == nullptr) {
|
|
improve_ordering_by_two_exchanges_with_segment_flipping(out, start_near != nullptr);
|
|
//improve_ordering_by_segment_flipping(out, start_near != nullptr);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_SVG_OUTPUT
|
|
svg_draw_polyline_chain("chain_polylines-final", iRun, out);
|
|
#endif /* DEBUG_SVG_OUTPUT */
|
|
return out;
|
|
}
|
|
|
|
template<class T> static inline T chain_path_items(const Points &points, const T &items)
|
|
{
|
|
auto segment_end_point = [&points](size_t idx, bool /* first_point */) -> const Point& { return points[idx]; };
|
|
std::vector<std::pair<size_t, bool>> ordered = chain_segments_greedy<Point, decltype(segment_end_point)>(segment_end_point, points.size(), nullptr);
|
|
T out;
|
|
out.reserve(items.size());
|
|
for (auto &segment_and_reversal : ordered)
|
|
out.emplace_back(items[segment_and_reversal.first]);
|
|
return out;
|
|
}
|
|
|
|
ClipperLib::PolyNodes chain_clipper_polynodes(const Points &points, const ClipperLib::PolyNodes &items)
|
|
{
|
|
return chain_path_items(points, items);
|
|
}
|
|
|
|
std::vector<const PrintInstance*> chain_print_object_instances(const Print &print)
|
|
{
|
|
// Order objects using a nearest neighbor search.
|
|
Points object_reference_points;
|
|
std::vector<std::pair<size_t, size_t>> instances;
|
|
for (size_t i = 0; i < print.objects().size(); ++ i) {
|
|
const PrintObject &object = *print.objects()[i];
|
|
for (size_t j = 0; j < object.instances().size(); ++ j) {
|
|
// Sliced PrintObjects are centered, object.instances()[j].shift is the center of the PrintObject in G-code coordinates.
|
|
object_reference_points.emplace_back(object.instances()[j].shift);
|
|
instances.emplace_back(i, j);
|
|
}
|
|
}
|
|
auto segment_end_point = [&object_reference_points](size_t idx, bool /* first_point */) -> const Point& { return object_reference_points[idx]; };
|
|
std::vector<std::pair<size_t, bool>> ordered = chain_segments_greedy<Point, decltype(segment_end_point)>(segment_end_point, instances.size(), nullptr);
|
|
std::vector<const PrintInstance*> out;
|
|
out.reserve(instances.size());
|
|
for (auto &segment_and_reversal : ordered) {
|
|
const std::pair<size_t, size_t> &inst = instances[segment_and_reversal.first];
|
|
out.emplace_back(&print.objects()[inst.first]->instances()[inst.second]);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
Polylines chain_lines(const std::vector<Line> &lines, const double point_distance_epsilon)
|
|
{
|
|
// Create line end point lookup.
|
|
struct LineEnd {
|
|
LineEnd(const Line *line, bool start) : line(line), start(start) {}
|
|
const Line *line;
|
|
// Is it the start or end point?
|
|
bool start;
|
|
const Point& point() const { return start ? line->a : line->b; }
|
|
const Point& other_point() const { return start ? line->b : line->a; }
|
|
LineEnd other_end() const { return LineEnd(line, ! start); }
|
|
bool operator==(const LineEnd &rhs) const { return this->line == rhs.line && this->start == rhs.start; }
|
|
};
|
|
struct LineEndAccessor {
|
|
const Point* operator()(const LineEnd &pt) const { return &pt.point(); }
|
|
};
|
|
typedef ClosestPointInRadiusLookup<LineEnd, LineEndAccessor> ClosestPointLookupType;
|
|
ClosestPointLookupType closest_end_point_lookup(point_distance_epsilon);
|
|
for (const Line &line : lines) {
|
|
closest_end_point_lookup.insert(LineEnd(&line, true));
|
|
closest_end_point_lookup.insert(LineEnd(&line, false));
|
|
}
|
|
|
|
// Chain the lines.
|
|
std::vector<char> line_consumed(lines.size(), false);
|
|
static const double point_distance_epsilon2 = point_distance_epsilon * point_distance_epsilon;
|
|
Polylines out;
|
|
for (const Line &seed : lines)
|
|
if (! line_consumed[&seed - lines.data()]) {
|
|
line_consumed[&seed - lines.data()] = true;
|
|
closest_end_point_lookup.erase(LineEnd(&seed, false));
|
|
closest_end_point_lookup.erase(LineEnd(&seed, true));
|
|
Polyline pl { seed.a, seed.b };
|
|
for (size_t round = 0; round < 2; ++ round) {
|
|
for (;;) {
|
|
auto [line_end, dist2] = closest_end_point_lookup.find(pl.last_point());
|
|
if (line_end == nullptr || dist2 >= point_distance_epsilon2)
|
|
// Cannot extent in this direction.
|
|
break;
|
|
// Average the last point.
|
|
pl.points.back() = (0.5 * (pl.points.back().cast<double>() + line_end->point().cast<double>())).cast<coord_t>();
|
|
// and extend with the new line segment.
|
|
pl.points.emplace_back(line_end->other_point());
|
|
closest_end_point_lookup.erase(*line_end);
|
|
closest_end_point_lookup.erase(line_end->other_end());
|
|
line_consumed[line_end->line - lines.data()] = true;
|
|
}
|
|
// reverse and try the oter direction.
|
|
pl.reverse();
|
|
}
|
|
out.emplace_back(std::move(pl));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
} // namespace Slic3r
|