PrusaSlicer-NonPlainar/lib/Slic3r/Print/SupportMaterial.pm

863 lines
37 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package Slic3r::Print::SupportMaterial;
use Moo;
use List::Util qw(sum min max);
use Slic3r::ExtrusionPath ':roles';
use Slic3r::Flow ':roles';
use Slic3r::Geometry qw(scale scaled_epsilon PI rad2deg deg2rad convex_hull);
use Slic3r::Geometry::Clipper qw(offset diff union union_ex intersection offset_ex offset2
intersection_pl offset2_ex diff_pl);
use Slic3r::Surface ':types';
has 'print_config' => (is => 'rw', required => 1);
has 'object_config' => (is => 'rw', required => 1);
has 'flow' => (is => 'rw', required => 1);
has 'first_layer_flow' => (is => 'rw', required => 1);
has 'interface_flow' => (is => 'rw', required => 1);
use constant DEBUG_CONTACT_ONLY => 0;
# increment used to reach MARGIN in steps to avoid trespassing thin objects
use constant MARGIN_STEP => MARGIN/3;
# generate a tree-like structure to save material
use constant PILLAR_SIZE => 2.5;
use constant PILLAR_SPACING => 10;
sub generate {
my ($self, $object) = @_;
# Determine the top surfaces of the support, defined as:
# contact = overhangs - clearance + margin
# This method is responsible for identifying what contact surfaces
# should the support material expose to the object in order to guarantee
# that it will be effective, regardless of how it's built below.
my ($contact, $overhang) = $self->contact_area($object);
# Determine the top surfaces of the object. We need these to determine
# the layer heights of support material and to clip support to the object
# silhouette.
my ($top) = $self->object_top($object, $contact);
# We now know the upper and lower boundaries for our support material object
# (@$contact_z and @$top_z), so we can generate intermediate layers.
my $support_z = $self->support_layers_z(
[ sort keys %$contact ],
[ sort keys %$top ],
max(map $_->height, @{$object->layers})
);
# If we wanted to apply some special logic to the first support layers lying on
# object's top surfaces this is the place to detect them
my $shape = [];
if ($self->object_config->support_material_pattern eq 'pillars') {
$self->generate_pillars_shape($contact, $support_z, $shape);
}
# Propagate contact layers downwards to generate interface layers
my ($interface) = $self->generate_interface_layers($support_z, $contact, $top);
$self->clip_with_object($interface, $support_z, $object);
$self->clip_with_shape($interface, $shape) if @$shape;
# Propagate contact layers and interface layers downwards to generate
# the main support layers.
my ($base) = $self->generate_base_layers($support_z, $contact, $interface, $top);
$self->clip_with_object($base, $support_z, $object);
$self->clip_with_shape($base, $shape) if @$shape;
# Install support layers into object.
for my $i (0 .. $#$support_z) {
$object->add_support_layer(
$i, # id
($i == 0) ? $support_z->[$i] : ($support_z->[$i] - $support_z->[$i-1]), # height
$support_z->[$i], # print_z
-1); # slice_z
if ($i >= 1) {
$object->support_layers->[-2]->set_upper_layer($object->support_layers->[-1]);
$object->support_layers->[-1]->set_lower_layer($object->support_layers->[-2]);
}
}
# Generate the actual toolpaths and save them into each layer.
$self->generate_toolpaths($object, $overhang, $contact, $interface, $base);
}
sub contact_area {
my ($self, $object) = @_;
# if user specified a custom angle threshold, convert it to radians
my $threshold_rad;
if ($self->object_config->support_material_threshold) {
$threshold_rad = deg2rad($self->object_config->support_material_threshold + 1); # +1 makes the threshold inclusive
Slic3r::debugf "Threshold angle = %d°\n", rad2deg($threshold_rad);
}
# determine contact areas
my %contact = (); # contact_z => [ polygons ]
my %overhang = (); # contact_z => [ polygons ] - this stores the actual overhang supported by each contact layer
for my $layer_id (0 .. $#{$object->layers}) {
# note $layer_id might != $layer->id when raft_layers > 0
# so $layer_id == 0 means first object layer
# and $layer->id == 0 means first print layer (including raft)
if ($self->object_config->raft_layers == 0) {
next if $layer_id == 0;
} elsif (!$self->object_config->support_material) {
# if we are only going to generate raft just check
# the 'overhangs' of the first object layer
last if $layer_id > 0;
}
my $layer = $object->get_layer($layer_id);
# detect overhangs and contact areas needed to support them
my (@overhang, @contact) = ();
if ($layer_id == 0) {
# this is the first object layer, so we're here just to get the object
# footprint for the raft
# we only consider contours and discard holes to get a more continuous raft
push @overhang, map $_->clone, map $_->contour, @{$layer->slices};
push @contact, @{offset(\@overhang, scale +MARGIN)};
} else {
my $lower_layer = $object->get_layer($layer_id-1);
foreach my $layerm (@{$layer->regions}) {
my $fw = $layerm->flow(FLOW_ROLE_EXTERNAL_PERIMETER)->scaled_width;
my $diff;
# If a threshold angle was specified, use a different logic for detecting overhangs.
if (defined $threshold_rad
|| $layer_id < $self->object_config->support_material_enforce_layers
|| ($self->object_config->raft_layers > 0 && $layer_id == 0)) {
my $d = defined $threshold_rad
? scale $lower_layer->height * ((cos $threshold_rad) / (sin $threshold_rad))
: 0;
$diff = diff(
offset([ map $_->p, @{$layerm->slices} ], -$d),
[ map @$_, @{$lower_layer->slices} ],
);
# only enforce spacing from the object ($fw/2) if the threshold angle
# is not too high: in that case, $d will be very small (as we need to catch
# very short overhangs), and such contact area would be eaten by the
# enforced spacing, resulting in high threshold angles to be almost ignored
$diff = diff(
offset($diff, $d - $fw/2),
[ map @$_, @{$lower_layer->slices} ],
) if $d > $fw/2;
} else {
$diff = diff(
[ map $_->p, @{$layerm->slices} ],
offset([ map @$_, @{$lower_layer->slices} ], +$fw*2),
);
# collapse very tiny spots
$diff = offset2($diff, -$fw/10, +$fw/10);
# $diff now contains the ring or stripe comprised between the boundary of
# lower slices and the centerline of the last perimeter in this overhanging layer.
# Void $diff means that there's no upper perimeter whose centerline is
# outside the lower slice boundary, thus no overhang
}
if ($self->object_config->dont_support_bridges) {
# compute the area of bridging perimeters
# Note: this is duplicate code from GCode.pm, we need to refactor
my $bridged_perimeters; # Polygons
{
my $bridge_flow = $layerm->flow(FLOW_ROLE_PERIMETER, 1);
my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $layerm->region->config->perimeter_extruder-1);
my $lower_grown_slices = offset([ map @$_, @{$lower_layer->slices} ], +scale($nozzle_diameter/2));
# TODO: split_at_first_point() could split a bridge mid-way
my @overhang_perimeters =
map { $_->isa('Slic3r::ExtrusionLoop') ? $_->polygon->split_at_first_point : $_->polyline->clone }
@{$layerm->perimeters};
# workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
$_->[0]->translate(1,0) for @overhang_perimeters;
@overhang_perimeters = @{diff_pl(
\@overhang_perimeters,
$lower_grown_slices,
)};
# only consider straight overhangs
@overhang_perimeters = grep $_->is_straight, @overhang_perimeters;
# only consider overhangs having endpoints inside layer's slices
foreach my $polyline (@overhang_perimeters) {
$polyline->extend_start($fw);
$polyline->extend_end($fw);
}
@overhang_perimeters = grep {
$layer->slices->contains_point($_->first_point) && $layer->slices->contains_point($_->last_point)
} @overhang_perimeters;
# convert bridging polylines into polygons by inflating them with their thickness
{
# since we're dealing with bridges, we can't assume width is larger than spacing,
# so we take the largest value and also apply safety offset to be ensure no gaps
# are left in between
my $w = max($bridge_flow->scaled_width, $bridge_flow->scaled_spacing);
$bridged_perimeters = union([
map @{$_->grow($w/2 + 10)}, @overhang_perimeters
]);
}
}
if (1) {
# remove the entire bridges and only support the unsupported edges
my @bridges = map $_->expolygon,
grep $_->bridge_angle != -1,
@{$layerm->fill_surfaces->filter_by_type(S_TYPE_BOTTOMBRIDGE)};
$diff = diff(
$diff,
[
(map @$_, @bridges),
@$bridged_perimeters,
],
1,
);
push @$diff, @{intersection(
[ map @{$_->grow(+scale MARGIN)}, @{$layerm->unsupported_bridge_edges} ],
[ map @$_, @bridges ],
)};
} else {
# just remove bridged areas
$diff = diff(
$diff,
[ map @$_, @{$layerm->bridged} ],
1,
);
}
}
next if !@$diff;
push @overhang, @$diff; # NOTE: this is not the full overhang as it misses the outermost half of the perimeter width!
# Let's define the required contact area by using a max gap of half the upper
# extrusion width and extending the area according to the configured margin.
# We increment the area in steps because we don't want our support to overflow
# on the other side of the object (if it's very thin).
{
my @slices_margin = @{offset([ map @$_, @{$lower_layer->slices} ], +$fw/2)};
for ($fw/2, map {scale MARGIN_STEP} 1..(MARGIN / MARGIN_STEP)) {
$diff = diff(
offset($diff, $_),
\@slices_margin,
);
}
}
push @contact, @$diff;
}
}
next if !@contact;
# now apply the contact areas to the layer were they need to be made
{
# get the average nozzle diameter used on this layer
my @nozzle_diameters = map $self->print_config->get_at('nozzle_diameter', $_),
map { $_->config->perimeter_extruder-1, $_->config->infill_extruder-1 }
@{$layer->regions};
my $nozzle_diameter = sum(@nozzle_diameters)/@nozzle_diameters;
my $contact_z = $layer->print_z - contact_distance($nozzle_diameter);
###$contact_z = $layer->print_z - $layer->height;
# ignore this contact area if it's too low
next if $contact_z < $self->object_config->get_value('first_layer_height');
$contact{$contact_z} = [ @contact ];
$overhang{$contact_z} = [ @overhang ];
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("contact_" . $contact_z . ".svg",
expolygons => union_ex(\@contact),
red_expolygons => union_ex(\@overhang),
);
}
}
}
return (\%contact, \%overhang);
}
sub object_top {
my ($self, $object, $contact) = @_;
# find object top surfaces
# we'll use them to clip our support and detect where does it stick
my %top = (); # print_z => [ expolygons ]
my $projection = [];
foreach my $layer (reverse @{$object->layers}) {
if (my @top = map @{$_->slices->filter_by_type(S_TYPE_TOP)}, @{$layer->regions}) {
# compute projection of the contact areas above this top layer
# first add all the 'new' contact areas to the current projection
# ('new' means all the areas that are lower than the last top layer
# we considered)
my $min_top = min(keys %top) // max(keys %$contact);
# use <= instead of just < because otherwise we'd ignore any contact regions
# having the same Z of top layers
push @$projection, map @{$contact->{$_}}, grep { $_ > $layer->print_z && $_ <= $min_top } keys %$contact;
# now find whether any projection falls onto this top surface
my $touching = intersection($projection, [ map $_->p, @top ]);
if (@$touching) {
# grow top surfaces so that interface and support generation are generated
# with some spacing from object - it looks we don't need the actual
# top shapes so this can be done here
$top{ $layer->print_z } = offset($touching, $self->flow->scaled_width);
}
# remove the areas that touched from the projection that will continue on
# next, lower, top surfaces
$projection = diff($projection, $touching);
}
}
return \%top;
}
sub support_layers_z {
my ($self, $contact_z, $top_z, $max_object_layer_height) = @_;
# quick table to check whether a given Z is a top surface
my %top = map { $_ => 1 } @$top_z;
# determine layer height for any non-contact layer
# we use max() to prevent many ultra-thin layers to be inserted in case
# layer_height > nozzle_diameter * 0.75
my $nozzle_diameter = $self->print_config->get_at('nozzle_diameter', $self->object_config->support_material_extruder-1);
my $support_material_height = max($max_object_layer_height, $nozzle_diameter * 0.75);
my @z = sort { $a <=> $b } @$contact_z, @$top_z, (map $_ + $nozzle_diameter, @$top_z);
# enforce first layer height
my $first_layer_height = $self->object_config->get_value('first_layer_height');
shift @z while @z && $z[0] <= $first_layer_height;
unshift @z, $first_layer_height;
# add raft layers by dividing the space between first layer and
# first contact layer evenly
if ($self->object_config->raft_layers > 1 && @z >= 2) {
# $z[1] is last raft layer (contact layer for the first layer object)
my $height = ($z[1] - $z[0]) / ($self->object_config->raft_layers - 1);
splice @z, 1, 0,
map { sprintf "%.2f", $_ }
map { $z[0] + $height * $_ }
0..($self->object_config->raft_layers - 1);
}
for (my $i = $#z; $i >= 0; $i--) {
my $target_height = $support_material_height;
if ($i > 0 && $top{ $z[$i-1] }) {
$target_height = $nozzle_diameter;
}
# enforce first layer height
if (($i == 0 && $z[$i] > $target_height + $first_layer_height)
|| ($z[$i] - $z[$i-1] > $target_height + Slic3r::Geometry::epsilon)) {
splice @z, $i, 0, ($z[$i] - $target_height);
$i++;
}
}
# remove duplicates and make sure all 0.x values have the leading 0
{
my %sl = map { 1 * $_ => 1 } @z;
@z = sort { $a <=> $b } keys %sl;
}
return \@z;
}
sub generate_interface_layers {
my ($self, $support_z, $contact, $top) = @_;
# let's now generate interface layers below contact areas
my %interface = (); # layer_id => [ polygons ]
my $interface_layers_num = $self->object_config->support_material_interface_layers;
for my $layer_id (0 .. $#$support_z) {
my $z = $support_z->[$layer_id];
my $this = $contact->{$z} // next;
# count contact layer as interface layer
for (my $i = $layer_id-1; $i >= 0 && $i > $layer_id-$interface_layers_num; $i--) {
$z = $support_z->[$i];
my @overlapping_layers = $self->overlapping_layers($i, $support_z);
my @overlapping_z = map $support_z->[$_], @overlapping_layers;
# Compute interface area on this layer as diff of upper contact area
# (or upper interface area) and layer slices.
# This diff is responsible of the contact between support material and
# the top surfaces of the object. We should probably offset the top
# surfaces vertically before performing the diff, but this needs
# investigation.
$this = $interface{$i} = diff(
[
@$this, # clipped projection of the current contact regions
@{ $interface{$i} || [] }, # interface regions already applied to this layer
],
[
(map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
(map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
],
1,
);
}
}
return \%interface;
}
sub generate_base_layers {
my ($self, $support_z, $contact, $interface, $top) = @_;
# let's now generate support layers under interface layers
my $base = {}; # layer_id => [ polygons ]
{
for my $i (reverse 0 .. $#$support_z-1) {
my $z = $support_z->[$i];
my @overlapping_layers = $self->overlapping_layers($i, $support_z);
my @overlapping_z = map $support_z->[$_], @overlapping_layers;
# in case we have no interface layers, look at upper contact
# (1 interface layer means we only have contact layer, so $interface->{$i+1} is empty)
my @upper_contact = ();
if ($self->object_config->support_material_interface_layers <= 1) {
@upper_contact = @{ $contact->{$support_z->[$i+1]} || [] };
}
$base->{$i} = diff(
[
@{ $base->{$i+1} || [] }, # support regions on upper layer
@{ $interface->{$i+1} || [] }, # interface regions on upper layer
@upper_contact, # contact regions on upper layer
],
[
(map @$_, map $top->{$_}, grep exists $top->{$_}, @overlapping_z), # top slices on this layer
(map @$_, map $interface->{$_}, grep exists $interface->{$_}, @overlapping_layers), # interface regions on this layer
(map @$_, map $contact->{$_}, grep exists $contact->{$_}, @overlapping_z), # contact regions on this layer
],
1,
);
}
}
return $base;
}
# This method removes object silhouette from support material
# (it's used with interface and base only). It removes a bit more,
# leaving a thin gap between object and support in the XY plane.
sub clip_with_object {
my ($self, $support, $support_z, $object) = @_;
foreach my $i (keys %$support) {
next if !@{$support->{$i}};
my $zmax = $support_z->[$i];
my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
my @layers = grep { $_->print_z > $zmin && ($_->print_z - $_->height) < $zmax }
@{$object->layers};
# $layer->slices contains the full shape of layer, thus including
# perimeter's width. $support contains the full shape of support
# material, thus including the width of its foremost extrusion.
# We leave a gap equal to a full extrusion width.
$support->{$i} = diff(
$support->{$i},
offset([ map @$_, map @{$_->slices}, @layers ], +$self->flow->scaled_width),
);
}
}
sub generate_toolpaths {
my ($self, $object, $overhang, $contact, $interface, $base) = @_;
my $flow = $self->flow;
my $interface_flow = $self->interface_flow;
# shape of contact area
my $contact_loops = 1;
my $circle_radius = 1.5 * $interface_flow->scaled_width;
my $circle_distance = 3 * $circle_radius;
my $circle = Slic3r::Polygon->new(map [ $circle_radius * cos $_, $circle_radius * sin $_ ],
(5*PI/3, 4*PI/3, PI, 2*PI/3, PI/3, 0));
Slic3r::debugf "Generating patterns\n";
# prepare fillers
my $pattern = $self->object_config->support_material_pattern;
my @angles = ($self->object_config->support_material_angle);
if ($pattern eq 'rectilinear-grid') {
$pattern = 'rectilinear';
push @angles, $angles[0] + 90;
} elsif ($pattern eq 'pillars') {
$pattern = 'honeycomb';
}
my %fillers = (
interface => $object->fill_maker->filler('rectilinear'),
support => $object->fill_maker->filler($pattern),
);
my $interface_angle = $self->object_config->support_material_angle + 90;
my $interface_spacing = $self->object_config->support_material_interface_spacing + $interface_flow->spacing;
my $interface_density = $interface_spacing == 0 ? 1 : $interface_flow->spacing / $interface_spacing;
my $support_spacing = $self->object_config->support_material_spacing + $flow->spacing;
my $support_density = $support_spacing == 0 ? 1 : $flow->spacing / $support_spacing;
my $process_layer = sub {
my ($layer_id) = @_;
my $layer = $object->support_layers->[$layer_id];
my $z = $layer->print_z;
# we redefine flows locally by applying this layer's height
my $_flow = $flow->clone;
my $_interface_flow = $interface_flow->clone;
$_flow->set_height($layer->height);
$_interface_flow->set_height($layer->height);
my $overhang = $overhang->{$z} || [];
my $contact = $contact->{$z} || [];
my $interface = $interface->{$layer_id} || [];
my $base = $base->{$layer_id} || [];
if (DEBUG_CONTACT_ONLY) {
$interface = [];
$base = [];
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("layer_" . $z . ".svg",
red_expolygons => union_ex($contact),
green_expolygons => union_ex($interface),
);
}
# islands
$layer->support_islands->append(@{union_ex([ @$interface, @$base, @$contact ])});
# contact
my $contact_infill = [];
if ($self->object_config->support_material_interface_layers == 0) {
# if no interface layers were requested we treat the contact layer
# exactly as a generic base layer
push @$base, @$contact;
} elsif (@$contact && $contact_loops > 0) {
# generate the outermost loop
# find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
$contact = offset($contact, -$_interface_flow->scaled_width/2);
my @loops0 = ();
{
# find centerline of the external loop of the contours
my @external_loops = @$contact;
# only consider the loops facing the overhang
{
my $overhang_with_margin = offset($overhang, +$_interface_flow->scaled_width/2);
@external_loops = grep {
@{intersection_pl(
[ $_->split_at_first_point ],
$overhang_with_margin,
)}
} @external_loops;
}
# apply a pattern to the loop
my @positions = map @{Slic3r::Polygon->new(@$_)->equally_spaced_points($circle_distance)}, @external_loops;
@loops0 = @{diff(
[ @external_loops ],
[ map { my $c = $circle->clone; $c->translate(@$_); $c } @positions ],
)};
}
# make more loops
my @loops = @loops0;
for my $i (2..$contact_loops) {
my $d = ($i-1) * $_interface_flow->scaled_spacing;
push @loops, @{offset2(\@loops0, -$d -0.5*$_interface_flow->scaled_spacing, +0.5*$_interface_flow->scaled_spacing)};
}
# clip such loops to the side oriented towards the object
@loops = @{intersection_pl(
[ map $_->split_at_first_point, @loops ],
offset($overhang, +scale MARGIN),
)};
# add the contact infill area to the interface area
# note that growing loops by $circle_radius ensures no tiny
# extrusions are left inside the circles; however it creates
# a very large gap between loops and contact_infill, so maybe another
# solution should be found to achieve both goals
$contact_infill = diff(
$contact,
[ map @{$_->grow($circle_radius*1.1)}, @loops ],
);
# transform loops into ExtrusionPath objects
my $mm3_per_mm = $_interface_flow->mm3_per_mm;
@loops = map Slic3r::ExtrusionPath->new(
polyline => $_,
role => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
mm3_per_mm => $mm3_per_mm,
width => $_interface_flow->width,
height => $layer->height,
), @loops;
$layer->support_interface_fills->append(@loops);
}
# interface and contact infill
if (@$interface || @$contact_infill) {
$fillers{interface}->angle($interface_angle);
# find centerline of the external loop
$interface = offset2($interface, +scaled_epsilon, -(scaled_epsilon + $_interface_flow->scaled_width/2));
# join regions by offsetting them to ensure they're merged
$interface = offset([ @$interface, @$contact_infill ], scaled_epsilon);
# turn base support into interface when it's contained in our holes
# (this way we get wider interface anchoring)
{
my @p = @$interface;
@$interface = ();
foreach my $p (@p) {
if ($p->is_clockwise) {
my $p2 = $p->clone;
$p2->make_counter_clockwise;
next if !@{diff([$p2], $base, 1)};
}
push @$interface, $p;
}
}
$base = diff($base, $interface);
my @paths = ();
foreach my $expolygon (@{union_ex($interface)}) {
my ($params, @p) = $fillers{interface}->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => $interface_density,
flow => $_interface_flow,
layer_height => $layer->height,
complete => 1,
);
my $mm3_per_mm = $params->{flow}->mm3_per_mm;
push @paths, map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL_INTERFACE,
mm3_per_mm => $mm3_per_mm,
width => $params->{flow}->width,
height => $layer->height,
), @p;
}
$layer->support_interface_fills->append(@paths);
}
# support or flange
if (@$base) {
my $filler = $fillers{support};
$filler->angle($angles[ ($layer_id) % @angles ]);
my $density = $support_density;
my $base_flow = $_flow;
# find centerline of the external loop/extrusions
my $to_infill = offset2_ex($base, +scaled_epsilon, -(scaled_epsilon + $_flow->scaled_width/2));
my @paths = ();
# base flange
if ($layer_id == 0) {
$filler = $fillers{interface};
$filler->angle($self->object_config->support_material_angle + 90);
$density = 0.5;
$base_flow = $self->first_layer_flow;
} else {
# draw a perimeter all around support infill
# TODO: use brim ordering algorithm
my $mm3_per_mm = $_flow->mm3_per_mm;
push @paths, map Slic3r::ExtrusionPath->new(
polyline => $_->split_at_first_point,
role => EXTR_ROLE_SUPPORTMATERIAL,
mm3_per_mm => $mm3_per_mm,
width => $_flow->width,
height => $layer->height,
), map @$_, @$to_infill;
# TODO: use offset2_ex()
$to_infill = offset_ex([ map @$_, @$to_infill ], -$_flow->scaled_spacing);
}
foreach my $expolygon (@$to_infill) {
my ($params, @p) = $filler->fill_surface(
Slic3r::Surface->new(expolygon => $expolygon, surface_type => S_TYPE_INTERNAL),
density => $density,
flow => $base_flow,
layer_height => $layer->height,
complete => 1,
);
my $mm3_per_mm = $params->{flow}->mm3_per_mm;
push @paths, map Slic3r::ExtrusionPath->new(
polyline => Slic3r::Polyline->new(@$_),
role => EXTR_ROLE_SUPPORTMATERIAL,
mm3_per_mm => $mm3_per_mm,
width => $params->{flow}->width,
height => $layer->height,
), @p;
}
$layer->support_fills->append(@paths);
}
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output("islands_" . $z . ".svg",
red_expolygons => union_ex($contact),
green_expolygons => union_ex($interface),
green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
);
}
};
Slic3r::parallelize(
threads => $self->print_config->threads,
items => [ 0 .. $#{$object->support_layers} ],
thread_cb => sub {
my $q = shift;
while (defined (my $layer_id = $q->dequeue)) {
$process_layer->($layer_id);
}
},
no_threads_cb => sub {
$process_layer->($_) for 0 .. $#{$object->support_layers};
},
);
}
sub generate_pillars_shape {
my ($self, $contact, $support_z, $shape) = @_;
# this prevents supplying an empty point set to BoundingBox constructor
return if !%$contact;
my $pillar_size = scale PILLAR_SIZE;
my $pillar_spacing = scale PILLAR_SPACING;
my $grid; # arrayref of polygons
{
my $pillar = Slic3r::Polygon->new(
[0,0],
[$pillar_size, 0],
[$pillar_size, $pillar_size],
[0, $pillar_size],
);
my @pillars = ();
my $bb = Slic3r::Geometry::BoundingBox->new_from_points([ map @$_, map @$_, values %$contact ]);
for (my $x = $bb->x_min; $x <= $bb->x_max-$pillar_size; $x += $pillar_spacing) {
for (my $y = $bb->y_min; $y <= $bb->y_max-$pillar_size; $y += $pillar_spacing) {
push @pillars, my $p = $pillar->clone;
$p->translate($x, $y);
}
}
$grid = union(\@pillars);
}
# add pillars to every layer
for my $i (0..$#$support_z) {
$shape->[$i] = [ @$grid ];
}
# build capitals
for my $i (0..$#$support_z) {
my $z = $support_z->[$i];
my $capitals = intersection(
$grid,
$contact->{$z} // [],
);
# work on one pillar at time (if any) to prevent the capitals from being merged
# but store the contact area supported by the capital because we need to make
# sure nothing is left
my $contact_supported_by_capitals = [];
foreach my $capital (@$capitals) {
# enlarge capital tops
$capital = offset([$capital], +($pillar_spacing - $pillar_size)/2);
push @$contact_supported_by_capitals, @$capital;
for (my $j = $i-1; $j >= 0; $j--) {
my $jz = $support_z->[$j];
$capital = offset($capital, -$self->interface_flow->scaled_width/2);
last if !@$capitals;
push @{ $shape->[$j] }, @$capital;
}
}
# Capitals will not generally cover the whole contact area because there will be
# remainders. For now we handle this situation by projecting such unsupported
# areas to the ground, just like we would do with a normal support.
my $contact_not_supported_by_capitals = diff(
$contact->{$z} // [],
$contact_supported_by_capitals,
);
if (@$contact_not_supported_by_capitals) {
for (my $j = $i-1; $j >= 0; $j--) {
push @{ $shape->[$j] }, @$contact_not_supported_by_capitals;
}
}
}
}
sub clip_with_shape {
my ($self, $support, $shape) = @_;
foreach my $i (keys %$support) {
# don't clip bottom layer with shape so that we
# can generate a continuous base flange
# also don't clip raft layers
next if $i == 0;
next if $i < $self->object_config->raft_layers;
$support->{$i} = intersection(
$support->{$i},
$shape->[$i],
);
}
}
# this method returns the indices of the layers overlapping with the given one
sub overlapping_layers {
my ($self, $i, $support_z) = @_;
my $zmax = $support_z->[$i];
my $zmin = ($i == 0) ? 0 : $support_z->[$i-1];
return grep {
my $zmax2 = $support_z->[$_];
my $zmin2 = ($_ == 0) ? 0 : $support_z->[$_-1];
$zmax > $zmin2 && $zmin < $zmax2;
} 0..$#$support_z;
}
# class method
sub contact_distance {
my ($nozzle_diameter) = @_;
return $nozzle_diameter * 1.5;
}
1;