PrusaSlicer-NonPlainar/lib/Slic3r/GUI/3DScene.pm
bubnikv f9cdda7bfd Delayed loading of the opengl texture for the G-code preview legend,
as the opengl context may not be ready on some platforms (Linux)
at the time the window gets its focus for the first time.

Changed the G-code preview invalidation to trigger when the print
gets invalidated. At that time the 3D path preview switches to the old
preview, if there is anything valid left.
2018-02-15 14:37:53 +01:00

2049 lines
79 KiB
Perl
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Implements pure perl packages
#
# Slic3r::GUI::3DScene::Base;
# Slic3r::GUI::3DScene;
#
# Slic3r::GUI::Plater::3D derives from Slic3r::GUI::3DScene,
# Slic3r::GUI::Plater::3DPreview,
# Slic3r::GUI::Plater::ObjectCutDialog and Slic3r::GUI::Plater::ObjectPartsPanel
# own $self->{canvas} of the Slic3r::GUI::3DScene type.
#
# Therefore the 3DScene supports renderng of STLs, extrusions and cutting planes,
# and camera manipulation.
package Slic3r::GUI::3DScene::Base;
use strict;
use warnings;
use Wx qw(wxTheApp :timer :bitmap :icon :dialog);
use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS EVT_CHAR EVT_TIMER);
# must load OpenGL *before* Wx::GLCanvas
use OpenGL qw(:glconstants :glfunctions :glufunctions :gluconstants);
use base qw(Wx::GLCanvas Class::Accessor);
use Math::Trig qw(asin tan);
use List::Util qw(reduce min max first);
use Slic3r::Geometry qw(X Y normalize scale unscale scaled_epsilon);
use Slic3r::Geometry::Clipper qw(offset_ex intersection_pl JT_ROUND);
use Wx::GLCanvas qw(:all);
use Slic3r::Geometry qw(PI);
# _dirty: boolean flag indicating, that the screen has to be redrawn on EVT_IDLE.
# volumes: reference to vector of Slic3r::GUI::3DScene::Volume.
# _camera_type: 'perspective' or 'ortho'
__PACKAGE__->mk_accessors( qw(_quat _dirty init
enable_picking
enable_moving
use_plain_shader
on_viewport_changed
on_hover
on_select
on_double_click
on_right_click
on_move
on_model_update
volumes
_sphi _stheta
cutting_plane_z
cut_lines_vertices
bed_shape
bed_triangles
bed_grid_lines
bed_polygon
background
origin
_mouse_pos
_hover_volume_idx
_drag_volume_idx
_drag_start_pos
_drag_volume_center_offset
_drag_start_xy
_dragged
_layer_height_edited
_camera_type
_camera_target
_camera_distance
_zoom
_legend_enabled
) );
use constant TRACKBALLSIZE => 0.8;
use constant TURNTABLE_MODE => 1;
use constant GROUND_Z => -0.02;
# For mesh selection: Not selected - bright yellow.
use constant DEFAULT_COLOR => [1,1,0];
# For mesh selection: Selected - bright green.
use constant SELECTED_COLOR => [0,1,0,1];
# For mesh selection: Mouse hovers over the object, but object not selected yet - dark green.
use constant HOVER_COLOR => [0.4,0.9,0,1];
# phi / theta angles to orient the camera.
use constant VIEW_DEFAULT => [45.0,45.0];
use constant VIEW_LEFT => [90.0,90.0];
use constant VIEW_RIGHT => [-90.0,90.0];
use constant VIEW_TOP => [0.0,0.0];
use constant VIEW_BOTTOM => [0.0,180.0];
use constant VIEW_FRONT => [0.0,90.0];
use constant VIEW_REAR => [180.0,90.0];
use constant MANIPULATION_IDLE => 0;
use constant MANIPULATION_DRAGGING => 1;
use constant MANIPULATION_LAYER_HEIGHT => 2;
use constant GIMBALL_LOCK_THETA_MAX => 170;
use constant VARIABLE_LAYER_THICKNESS_BAR_WIDTH => 70;
use constant VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT => 22;
# make OpenGL::Array thread-safe
{
no warnings 'redefine';
*OpenGL::Array::CLONE_SKIP = sub { 1 };
}
sub new {
my ($class, $parent) = @_;
# We can only enable multi sample anti aliasing wih wxWidgets 3.0.3 and with a hacked Wx::GLCanvas,
# which exports some new WX_GL_XXX constants, namely WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES.
my $can_multisample =
! wxTheApp->{app_config}->get('use_legacy_opengl') &&
Wx::wxVERSION >= 3.000003 &&
defined Wx::GLCanvas->can('WX_GL_SAMPLE_BUFFERS') &&
defined Wx::GLCanvas->can('WX_GL_SAMPLES');
my $attrib = [WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 24];
if ($can_multisample) {
# Request a window with multi sampled anti aliasing. This is a new feature in Wx 3.0.3 (backported from 3.1.0).
# Use eval to avoid compilation, if the subs WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES are missing.
eval 'push(@$attrib, (WX_GL_SAMPLE_BUFFERS, 1, WX_GL_SAMPLES, 4));';
}
# wxWidgets expect the attrib list to be ended by zero.
push(@$attrib, 0);
# we request a depth buffer explicitely because it looks like it's not created by
# default on Linux, causing transparency issues
my $self = $class->SUPER::new($parent, -1, Wx::wxDefaultPosition, Wx::wxDefaultSize, 0, "", $attrib);
if (Wx::wxVERSION >= 3.000003) {
# Wx 3.0.3 contains an ugly hack to support some advanced OpenGL attributes through the attribute list.
# The attribute list is transferred between the wxGLCanvas and wxGLContext constructors using a single static array s_wglContextAttribs.
# Immediatelly force creation of the OpenGL context to consume the static variable s_wglContextAttribs.
$self->GetContext();
}
$self->{can_multisample} = $can_multisample;
$self->background(1);
$self->_quat((0, 0, 0, 1));
$self->_stheta(45);
$self->_sphi(45);
$self->_zoom(1);
$self->_legend_enabled(0);
$self->use_plain_shader(0);
# Collection of GLVolume objects
$self->volumes(Slic3r::GUI::_3DScene::GLVolume::Collection->new);
# 3D point in model space
$self->_camera_type('ortho');
# $self->_camera_type('perspective');
$self->_camera_target(Slic3r::Pointf3->new(0,0,0));
$self->_camera_distance(0.);
$self->layer_editing_enabled(0);
$self->{layer_height_edit_band_width} = 2.;
$self->{layer_height_edit_strength} = 0.005;
$self->{layer_height_edit_last_object_id} = -1;
$self->{layer_height_edit_last_z} = 0.;
$self->{layer_height_edit_last_action} = 0;
$self->reset_objects;
EVT_PAINT($self, sub {
my $dc = Wx::PaintDC->new($self);
$self->Render($dc);
});
EVT_SIZE($self, sub { $self->_dirty(1) });
EVT_IDLE($self, sub {
return unless $self->_dirty;
return if !$self->IsShownOnScreen;
$self->Resize( $self->GetSizeWH );
$self->Refresh;
});
EVT_MOUSEWHEEL($self, \&mouse_wheel_event);
EVT_MOUSE_EVENTS($self, \&mouse_event);
# EVT_KEY_DOWN($self, sub {
EVT_CHAR($self, sub {
my ($s, $event) = @_;
if ($event->HasModifiers) {
$event->Skip;
} else {
my $key = $event->GetKeyCode;
if ($key == ord('0')) {
$self->select_view('iso');
} elsif ($key == ord('1')) {
$self->select_view('top');
} elsif ($key == ord('2')) {
$self->select_view('bottom');
} elsif ($key == ord('3')) {
$self->select_view('front');
} elsif ($key == ord('4')) {
$self->select_view('rear');
} elsif ($key == ord('5')) {
$self->select_view('left');
} elsif ($key == ord('6')) {
$self->select_view('right');
} else {
$event->Skip;
}
}
});
$self->{layer_height_edit_timer_id} = &Wx::NewId();
$self->{layer_height_edit_timer} = Wx::Timer->new($self, $self->{layer_height_edit_timer_id});
EVT_TIMER($self, $self->{layer_height_edit_timer_id}, sub {
my ($self, $event) = @_;
return if $self->_layer_height_edited != 1;
return if $self->{layer_height_edit_last_object_id} == -1;
$self->_variable_layer_thickness_action(undef);
});
return $self;
}
sub set_legend_enabled {
my ($self, $value) = @_;
$self->_legend_enabled($value);
}
sub Destroy {
my ($self) = @_;
$self->{layer_height_edit_timer}->Stop;
$self->DestroyGL;
return $self->SUPER::Destroy;
}
sub layer_editing_enabled {
my ($self, $value) = @_;
if (@_ == 2) {
$self->{layer_editing_enabled} = $value;
if ($value) {
if (! $self->{layer_editing_initialized}) {
# Enabling the layer editing for the first time. This triggers compilation of the necessary OpenGL shaders.
# If compilation fails, a message box is shown with the error codes.
$self->SetCurrent($self->GetContext);
my $shader = new Slic3r::GUI::_3DScene::GLShader;
my $error_message;
if (! $shader->load($self->_fragment_shader_variable_layer_height, $self->_vertex_shader_variable_layer_height)) {
# Compilation or linking of the shaders failed.
$error_message = "Cannot compile an OpenGL Shader, therefore the Variable Layer Editing will be disabled.\n\n"
. $shader->last_error;
$shader = undef;
} else {
$self->{layer_height_edit_shader} = $shader;
($self->{layer_preview_z_texture_id}) = glGenTextures_p(1);
glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
glBindTexture(GL_TEXTURE_2D, 0);
}
if (defined($error_message)) {
# Don't enable the layer editing tool.
$self->{layer_editing_enabled} = 0;
# 2 means failed
$self->{layer_editing_initialized} = 2;
# Show the error message.
Wx::MessageBox($error_message, "Slic3r Error", wxOK | wxICON_EXCLAMATION, $self);
} else {
$self->{layer_editing_initialized} = 1;
}
} elsif ($self->{layer_editing_initialized} == 2) {
# Initilization failed before. Don't try to initialize and disable layer editing.
$self->{layer_editing_enabled} = 0;
}
}
}
return $self->{layer_editing_enabled};
}
sub layer_editing_allowed {
my ($self) = @_;
# Allow layer editing if either the shaders were not initialized yet and we don't know
# whether it will be possible to initialize them,
# or if the initialization was done already and it failed.
return ! (defined($self->{layer_editing_initialized}) && $self->{layer_editing_initialized} == 2);
}
sub _first_selected_object_id_for_variable_layer_height_editing {
my ($self) = @_;
for my $i (0..$#{$self->volumes}) {
if ($self->volumes->[$i]->selected) {
my $object_id = int($self->volumes->[$i]->select_group_id / 1000000);
# Objects with object_id >= 1000 have a specific meaning, for example the wipe tower proxy.
return ($object_id >= $self->{print}->object_count) ? -1 : $object_id
if $object_id < 10000;
}
}
return -1;
}
# Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen.
sub _variable_layer_thickness_bar_rect_screen {
my ($self) = @_;
my ($cw, $ch) = $self->GetSizeWH;
return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0, $cw, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT);
}
sub _variable_layer_thickness_bar_rect_viewport {
my ($self) = @_;
my ($cw, $ch) = $self->GetSizeWH;
return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom, $cw/(2*$self->_zoom), $ch/(2*$self->_zoom));
}
# Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen.
sub _variable_layer_thickness_reset_rect_screen {
my ($self) = @_;
my ($cw, $ch) = $self->GetSizeWH;
return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, $cw, $ch);
}
sub _variable_layer_thickness_reset_rect_viewport {
my ($self) = @_;
my ($cw, $ch) = $self->GetSizeWH;
return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, -$ch/(2*$self->_zoom), $cw/(2*$self->_zoom), (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom);
}
sub _variable_layer_thickness_bar_rect_mouse_inside {
my ($self, $mouse_evt) = @_;
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom;
}
sub _variable_layer_thickness_reset_rect_mouse_inside {
my ($self, $mouse_evt) = @_;
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_reset_rect_screen;
return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom;
}
sub _variable_layer_thickness_bar_mouse_cursor_z_relative {
my ($self) = @_;
my $mouse_pos = $self->ScreenToClientPoint(Wx::GetMousePosition());
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
return ($mouse_pos->x >= $bar_left && $mouse_pos->x <= $bar_right && $mouse_pos->y >= $bar_top && $mouse_pos->y <= $bar_bottom) ?
# Inside the bar.
($bar_bottom - $mouse_pos->y - 1.) / ($bar_bottom - $bar_top - 1) :
# Outside the bar.
-1000.;
}
sub _variable_layer_thickness_action {
my ($self, $mouse_event, $do_modification) = @_;
# A volume is selected. Test, whether hovering over a layer thickness bar.
return if $self->{layer_height_edit_last_object_id} == -1;
if (defined($mouse_event)) {
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
$self->{layer_height_edit_last_z} = unscale($self->{print}->get_object($self->{layer_height_edit_last_object_id})->size->z)
* ($bar_bottom - $mouse_event->GetY - 1.) / ($bar_bottom - $bar_top);
$self->{layer_height_edit_last_action} = $mouse_event->ShiftDown ? ($mouse_event->RightIsDown ? 3 : 2) : ($mouse_event->RightIsDown ? 0 : 1);
}
# Mark the volume as modified, so Print will pick its layer height profile? Where to mark it?
# Start a timer to refresh the print? schedule_background_process() ?
# The PrintObject::adjust_layer_height_profile() call adjusts the profile of its associated ModelObject, it does not modify the profile of the PrintObject itself.
$self->{print}->get_object($self->{layer_height_edit_last_object_id})->adjust_layer_height_profile(
$self->{layer_height_edit_last_z},
$self->{layer_height_edit_strength},
$self->{layer_height_edit_band_width},
$self->{layer_height_edit_last_action});
$self->volumes->[$self->{layer_height_edit_last_object_id}]->generate_layer_height_texture(
$self->{print}->get_object($self->{layer_height_edit_last_object_id}), 1);
$self->Refresh;
# Automatic action on mouse down with the same coordinate.
$self->{layer_height_edit_timer}->Start(100, wxTIMER_CONTINUOUS);
}
sub mouse_event {
my ($self, $e) = @_;
my $pos = Slic3r::Pointf->new($e->GetPositionXY);
my $object_idx_selected = $self->{layer_height_edit_last_object_id} = ($self->layer_editing_enabled && $self->{print}) ? $self->_first_selected_object_id_for_variable_layer_height_editing : -1;
if ($e->Entering && &Wx::wxMSW) {
# wxMSW needs focus in order to catch mouse wheel events
$self->SetFocus;
$self->_drag_start_xy(undef);
} elsif ($e->LeftDClick) {
if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
} elsif ($self->on_double_click) {
$self->on_double_click->();
}
} elsif ($e->LeftDown || $e->RightDown) {
# If user pressed left or right button we first check whether this happened
# on a volume or not.
my $volume_idx = $self->_hover_volume_idx // -1;
$self->_layer_height_edited(0);
if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
# A volume is selected and the mouse is hovering over a layer thickness bar.
# Start editing the layer height.
$self->_layer_height_edited(1);
$self->_variable_layer_thickness_action($e);
} elsif ($object_idx_selected != -1 && $self->_variable_layer_thickness_reset_rect_mouse_inside($e)) {
$self->{print}->get_object($object_idx_selected)->reset_layer_height_profile;
# Index 2 means no editing, just wait for mouse up event.
$self->_layer_height_edited(2);
$self->Refresh;
$self->Update;
} else {
# Select volume in this 3D canvas.
# Don't deselect a volume if layer editing is enabled. We want the object to stay selected
# during the scene manipulation.
if ($self->enable_picking && ($volume_idx != -1 || ! $self->layer_editing_enabled)) {
$self->deselect_volumes;
$self->select_volume($volume_idx);
if ($volume_idx != -1) {
my $group_id = $self->volumes->[$volume_idx]->select_group_id;
my @volumes;
if ($group_id != -1) {
$self->select_volume($_)
for grep $self->volumes->[$_]->select_group_id == $group_id,
0..$#{$self->volumes};
}
}
$self->Refresh;
$self->Update;
}
# propagate event through callback
$self->on_select->($volume_idx)
if $self->on_select;
if ($volume_idx != -1) {
if ($e->LeftDown && $self->enable_moving) {
# The mouse_to_3d gets the Z coordinate from the Z buffer at the screen coordinate $pos->x,y,
# an converts the screen space coordinate to unscaled object space.
my $pos3d = $self->mouse_to_3d(@$pos);
# Only accept the initial position, if it is inside the volume bounding box.
my $volume_bbox = $self->volumes->[$volume_idx]->transformed_bounding_box;
$volume_bbox->offset(1.);
if ($volume_bbox->contains_point($pos3d)) {
# The dragging operation is initiated.
$self->_drag_volume_idx($volume_idx);
$self->_drag_start_pos($pos3d);
# Remember the shift to to the object center. The object center will later be used
# to limit the object placement close to the bed.
$self->_drag_volume_center_offset($pos3d->vector_to($volume_bbox->center));
}
} elsif ($e->RightDown) {
# if right clicking on volume, propagate event through callback
$self->on_right_click->($e->GetPosition)
if $self->on_right_click;
}
}
}
} elsif ($e->Dragging && $e->LeftIsDown && ! $self->_layer_height_edited && defined($self->_drag_volume_idx)) {
# Get new position at the same Z of the initial click point.
my $cur_pos = Slic3r::Linef3->new(
$self->mouse_to_3d($e->GetX, $e->GetY, 0),
$self->mouse_to_3d($e->GetX, $e->GetY, 1))
->intersect_plane($self->_drag_start_pos->z);
# Clip the new position, so the object center remains close to the bed.
{
$cur_pos->translate(@{$self->_drag_volume_center_offset});
my $cur_pos2 = Slic3r::Point->new(scale($cur_pos->x), scale($cur_pos->y));
if (! $self->bed_polygon->contains_point($cur_pos2)) {
my $ip = $self->bed_polygon->point_projection($cur_pos2);
$cur_pos->set_x(unscale($ip->x));
$cur_pos->set_y(unscale($ip->y));
}
$cur_pos->translate(@{$self->_drag_volume_center_offset->negative});
}
# Calculate the translation vector.
my $vector = $self->_drag_start_pos->vector_to($cur_pos);
# Get the volume being dragged.
my $volume = $self->volumes->[$self->_drag_volume_idx];
# Get all volumes belonging to the same group, if any.
my @volumes = ($volume->drag_group_id == -1) ?
($volume) :
grep $_->drag_group_id == $volume->drag_group_id, @{$self->volumes};
# Apply new temporary volume origin and ignore Z.
$_->translate($vector->x, $vector->y, 0) for @volumes;
$self->_drag_start_pos($cur_pos);
$self->_dragged(1);
$self->Refresh;
$self->Update;
} elsif ($e->Dragging) {
if ($self->_layer_height_edited && $object_idx_selected != -1) {
$self->_variable_layer_thickness_action($e) if ($self->_layer_height_edited == 1);
} elsif ($e->LeftIsDown) {
# if dragging over blank area with left button, rotate
if (defined $self->_drag_start_pos) {
my $orig = $self->_drag_start_pos;
if (TURNTABLE_MODE) {
# Turntable mode is enabled by default.
$self->_sphi($self->_sphi + ($pos->x - $orig->x) * TRACKBALLSIZE);
$self->_stheta($self->_stheta - ($pos->y - $orig->y) * TRACKBALLSIZE); #-
$self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX;
$self->_stheta(0) if $self->_stheta < 0;
} else {
my $size = $self->GetClientSize;
my @quat = trackball(
$orig->x / ($size->width / 2) - 1,
1 - $orig->y / ($size->height / 2), #/
$pos->x / ($size->width / 2) - 1,
1 - $pos->y / ($size->height / 2), #/
);
$self->_quat(mulquats($self->_quat, \@quat));
}
$self->on_viewport_changed->() if $self->on_viewport_changed;
$self->Refresh;
$self->Update;
}
$self->_drag_start_pos($pos);
} elsif ($e->MiddleIsDown || $e->RightIsDown) {
# If dragging over blank area with right button, pan.
if (defined $self->_drag_start_xy) {
# get point in model space at Z = 0
my $cur_pos = $self->mouse_to_3d($e->GetX, $e->GetY, 0);
my $orig = $self->mouse_to_3d($self->_drag_start_xy->x, $self->_drag_start_xy->y, 0);
$self->_camera_target->translate(@{$orig->vector_to($cur_pos)->negative});
$self->on_viewport_changed->() if $self->on_viewport_changed;
$self->Refresh;
$self->Update;
}
$self->_drag_start_xy($pos);
}
} elsif ($e->LeftUp || $e->MiddleUp || $e->RightUp) {
if ($self->_layer_height_edited) {
$self->_layer_height_edited(undef);
$self->{layer_height_edit_timer}->Stop;
$self->on_model_update->()
if ($object_idx_selected != -1 && $self->on_model_update);
} elsif ($self->on_move && defined($self->_drag_volume_idx) && $self->_dragged) {
# get all volumes belonging to the same group, if any
my @volume_idxs;
my $group_id = $self->volumes->[$self->_drag_volume_idx]->drag_group_id;
if ($group_id == -1) {
@volume_idxs = ($self->_drag_volume_idx);
} else {
@volume_idxs = grep $self->volumes->[$_]->drag_group_id == $group_id,
0..$#{$self->volumes};
}
$self->on_move->(@volume_idxs);
}
$self->_drag_volume_idx(undef);
$self->_drag_start_pos(undef);
$self->_drag_start_xy(undef);
$self->_dragged(undef);
} elsif ($e->Moving) {
$self->_mouse_pos($pos);
# Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor
# hovers over.
if ($self->enable_picking) {
$self->Update;
$self->Refresh;
}
} else {
$e->Skip();
}
}
sub mouse_wheel_event {
my ($self, $e) = @_;
if ($e->MiddleIsDown) {
# Ignore the wheel events if the middle button is pressed.
return;
}
if ($self->layer_editing_enabled && $self->{print}) {
my $object_idx_selected = $self->_first_selected_object_id_for_variable_layer_height_editing;
if ($object_idx_selected != -1) {
# A volume is selected. Test, whether hovering over a layer thickness bar.
if ($self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
# Adjust the width of the selection.
$self->{layer_height_edit_band_width} = max(min($self->{layer_height_edit_band_width} * (1 + 0.1 * $e->GetWheelRotation() / $e->GetWheelDelta()), 10.), 1.5);
$self->Refresh;
return;
}
}
}
# Calculate the zoom delta and apply it to the current zoom factor
my $zoom = $e->GetWheelRotation() / $e->GetWheelDelta();
$zoom = max(min($zoom, 4), -4);
$zoom /= 10;
$zoom = $self->_zoom / (1-$zoom);
# Don't allow to zoom too far outside the scene.
my $zoom_min = $self->get_zoom_to_bounding_box_factor($self->max_bounding_box);
$zoom_min *= 0.4 if defined $zoom_min;
$zoom = $zoom_min if defined $zoom_min && $zoom < $zoom_min;
$self->_zoom($zoom);
# In order to zoom around the mouse point we need to translate
# the camera target
my $size = Slic3r::Pointf->new($self->GetSizeWH);
my $pos = Slic3r::Pointf->new($e->GetX, $size->y - $e->GetY); #-
$self->_camera_target->translate(
# ($pos - $size/2) represents the vector from the viewport center
# to the mouse point. By multiplying it by $zoom we get the new,
# transformed, length of such vector.
# Since we want that point to stay fixed, we move our camera target
# in the opposite direction by the delta of the length of such vector
# ($zoom - 1). We then scale everything by 1/$self->_zoom since
# $self->_camera_target is expressed in terms of model units.
-($pos->x - $size->x/2) * ($zoom) / $self->_zoom,
-($pos->y - $size->y/2) * ($zoom) / $self->_zoom,
0,
) if 0;
$self->on_viewport_changed->() if $self->on_viewport_changed;
$self->Resize($self->GetSizeWH) if $self->IsShownOnScreen;
$self->Refresh;
}
# Reset selection.
sub reset_objects {
my ($self) = @_;
if ($self->GetContext) {
$self->SetCurrent($self->GetContext);
$self->volumes->release_geometry;
}
$self->volumes->erase;
$self->_dirty(1);
}
# Setup camera to view all objects.
sub set_viewport_from_scene {
my ($self, $scene) = @_;
$self->_sphi($scene->_sphi);
$self->_stheta($scene->_stheta);
$self->_camera_target($scene->_camera_target);
$self->_zoom($scene->_zoom);
$self->_quat($scene->_quat);
$self->_dirty(1);
}
# Set the camera to a default orientation,
# zoom to volumes.
sub select_view {
my ($self, $direction) = @_;
my $dirvec;
if (ref($direction)) {
$dirvec = $direction;
} else {
if ($direction eq 'iso') {
$dirvec = VIEW_DEFAULT;
} elsif ($direction eq 'left') {
$dirvec = VIEW_LEFT;
} elsif ($direction eq 'right') {
$dirvec = VIEW_RIGHT;
} elsif ($direction eq 'top') {
$dirvec = VIEW_TOP;
} elsif ($direction eq 'bottom') {
$dirvec = VIEW_BOTTOM;
} elsif ($direction eq 'front') {
$dirvec = VIEW_FRONT;
} elsif ($direction eq 'rear') {
$dirvec = VIEW_REAR;
}
}
my $bb = $self->volumes_bounding_box;
if (! $bb->empty) {
$self->_sphi($dirvec->[0]);
$self->_stheta($dirvec->[1]);
# Avoid gimball lock.
$self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX;
$self->_stheta(0) if $self->_stheta < 0;
# View everything.
$self->zoom_to_bounding_box($bb);
$self->on_viewport_changed->() if $self->on_viewport_changed;
$self->Refresh;
}
}
sub get_zoom_to_bounding_box_factor {
my ($self, $bb) = @_;
return undef if ($bb->empty);
my $max_size = max(@{$bb->size}) * 2;
return ($max_size == 0) ? undef : min($self->GetSizeWH) / $max_size;
}
sub zoom_to_bounding_box {
my ($self, $bb) = @_;
# Calculate the zoom factor needed to adjust viewport to bounding box.
my $zoom = $self->get_zoom_to_bounding_box_factor($bb);
if (defined $zoom) {
$self->_zoom($zoom);
# center view around bounding box center
$self->_camera_target($bb->center);
$self->on_viewport_changed->() if $self->on_viewport_changed;
}
}
sub zoom_to_bed {
my ($self) = @_;
if ($self->bed_shape) {
$self->zoom_to_bounding_box($self->bed_bounding_box);
}
}
sub zoom_to_volume {
my ($self, $volume_idx) = @_;
my $volume = $self->volumes->[$volume_idx];
my $bb = $volume->transformed_bounding_box;
$self->zoom_to_bounding_box($bb);
}
sub zoom_to_volumes {
my ($self) = @_;
$self->zoom_to_bounding_box($self->volumes_bounding_box);
}
sub volumes_bounding_box {
my ($self) = @_;
my $bb = Slic3r::Geometry::BoundingBoxf3->new;
$bb->merge($_->transformed_bounding_box) for @{$self->volumes};
return $bb;
}
sub bed_bounding_box {
my ($self) = @_;
my $bb = Slic3r::Geometry::BoundingBoxf3->new;
if ($self->bed_shape) {
$bb->merge_point(Slic3r::Pointf3->new(@$_, 0)) for @{$self->bed_shape};
}
return $bb;
}
sub max_bounding_box {
my ($self) = @_;
my $bb = $self->bed_bounding_box;
$bb->merge($self->volumes_bounding_box);
return $bb;
}
# Used by ObjectCutDialog and ObjectPartsPanel to generate a rectangular ground plane
# to support the scene objects.
sub set_auto_bed_shape {
my ($self, $bed_shape) = @_;
# draw a default square bed around object center
my $max_size = max(@{ $self->volumes_bounding_box->size });
my $center = $self->volumes_bounding_box->center;
$self->set_bed_shape([
[ $center->x - $max_size, $center->y - $max_size ], #--
[ $center->x + $max_size, $center->y - $max_size ], #--
[ $center->x + $max_size, $center->y + $max_size ], #++
[ $center->x - $max_size, $center->y + $max_size ], #++
]);
# Set the origin for painting of the coordinate system axes.
$self->origin(Slic3r::Pointf->new(@$center[X,Y]));
}
# Set the bed shape to a single closed 2D polygon (array of two element arrays),
# triangulate the bed and store the triangles into $self->bed_triangles,
# fills the $self->bed_grid_lines and sets $self->origin.
# Sets $self->bed_polygon to limit the object placement.
sub set_bed_shape {
my ($self, $bed_shape) = @_;
$self->bed_shape($bed_shape);
# triangulate bed
my $expolygon = Slic3r::ExPolygon->new([ map [map scale($_), @$_], @$bed_shape ]);
my $bed_bb = $expolygon->bounding_box;
{
my @points = ();
foreach my $triangle (@{ $expolygon->triangulate }) {
push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$triangle;
}
$self->bed_triangles(OpenGL::Array->new_list(GL_FLOAT, @points));
}
{
my @polylines = ();
for (my $x = $bed_bb->x_min; $x <= $bed_bb->x_max; $x += scale 10) {
push @polylines, Slic3r::Polyline->new([$x,$bed_bb->y_min], [$x,$bed_bb->y_max]);
}
for (my $y = $bed_bb->y_min; $y <= $bed_bb->y_max; $y += scale 10) {
push @polylines, Slic3r::Polyline->new([$bed_bb->x_min,$y], [$bed_bb->x_max,$y]);
}
# clip with a slightly grown expolygon because our lines lay on the contours and
# may get erroneously clipped
my @lines = map Slic3r::Line->new(@$_[0,-1]),
@{intersection_pl(\@polylines, [ @{$expolygon->offset(+scaled_epsilon)} ])};
# append bed contours
push @lines, map @{$_->lines}, @$expolygon;
my @points = ();
foreach my $line (@lines) {
push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$line; #))
}
$self->bed_grid_lines(OpenGL::Array->new_list(GL_FLOAT, @points));
}
# Set the origin for painting of the coordinate system axes.
$self->origin(Slic3r::Pointf->new(0,0));
$self->bed_polygon(offset_ex([$expolygon->contour], $bed_bb->radius * 1.7, JT_ROUND, scale(0.5))->[0]->contour->clone);
}
sub deselect_volumes {
my ($self) = @_;
$_->set_selected(0) for @{$self->volumes};
}
sub select_volume {
my ($self, $volume_idx) = @_;
$self->volumes->[$volume_idx]->set_selected(1)
if $volume_idx != -1;
}
sub SetCuttingPlane {
my ($self, $z, $expolygons) = @_;
$self->cutting_plane_z($z);
# grow slices in order to display them better
$expolygons = offset_ex([ map @$_, @$expolygons ], scale 0.1);
my @verts = ();
foreach my $line (map @{$_->lines}, map @$_, @$expolygons) {
push @verts, (
unscale($line->a->x), unscale($line->a->y), $z, #))
unscale($line->b->x), unscale($line->b->y), $z, #))
);
}
$self->cut_lines_vertices(OpenGL::Array->new_list(GL_FLOAT, @verts));
}
# Given an axis and angle, compute quaternion.
sub axis_to_quat {
my ($ax, $phi) = @_;
my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax));
my @q = map { $_ * (1 / $lena) } @$ax;
@q = map { $_ * sin($phi / 2.0) } @q;
$q[$#q + 1] = cos($phi / 2.0);
return @q;
}
# Project a point on the virtual trackball.
# If it is inside the sphere, map it to the sphere, if it outside map it
# to a hyperbola.
sub project_to_sphere {
my ($r, $x, $y) = @_;
my $d = sqrt($x * $x + $y * $y);
if ($d < $r * 0.70710678118654752440) { # Inside sphere
return sqrt($r * $r - $d * $d);
} else { # On hyperbola
my $t = $r / 1.41421356237309504880;
return $t * $t / $d;
}
}
sub cross {
my ($v1, $v2) = @_;
return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1],
@$v1[2] * @$v2[0] - @$v1[0] * @$v2[2],
@$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]);
}
# Simulate a track-ball. Project the points onto the virtual trackball,
# then figure out the axis of rotation, which is the cross product of
# P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a
# deformed trackball-- is a trackball in the center, but is deformed
# into a hyperbolic sheet of rotation away from the center.
# It is assumed that the arguments to this routine are in the range
# (-1.0 ... 1.0).
sub trackball {
my ($p1x, $p1y, $p2x, $p2y) = @_;
if ($p1x == $p2x && $p1y == $p2y) {
# zero rotation
return (0.0, 0.0, 0.0, 1.0);
}
# First, figure out z-coordinates for projection of P1 and P2 to
# deformed sphere
my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y));
my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y));
# axis of rotation (cross product of P1 and P2)
my @a = cross(\@p2, \@p1);
# Figure out how much to rotate around that axis.
my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1);
my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE);
# Avoid problems with out-of-control values...
$t = 1.0 if ($t > 1.0);
$t = -1.0 if ($t < -1.0);
my $phi = 2.0 * asin($t);
return axis_to_quat(\@a, $phi);
}
# Build a rotation matrix, given a quaternion rotation.
sub quat_to_rotmatrix {
my ($q) = @_;
my @m = ();
$m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]);
$m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]);
$m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]);
$m[3] = 0.0;
$m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]);
$m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]);
$m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]);
$m[7] = 0.0;
$m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]);
$m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]);
$m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]);
$m[11] = 0.0;
$m[12] = 0.0;
$m[13] = 0.0;
$m[14] = 0.0;
$m[15] = 1.0;
return @m;
}
sub mulquats {
my ($q1, $rq) = @_;
return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1],
@$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2],
@$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0],
@$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2])
}
# Convert the screen space coordinate to an object space coordinate.
# If the Z screen space coordinate is not provided, a depth buffer value is substituted.
sub mouse_to_3d {
my ($self, $x, $y, $z) = @_;
my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items
my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items
my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items
$y = $viewport[3] - $y;
$z //= glReadPixels_p($x, $y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT);
my @projected = gluUnProject_p($x, $y, $z, @mview, @proj, @viewport);
return Slic3r::Pointf3->new(@projected);
}
sub GetContext {
my ($self) = @_;
return $self->{context} ||= Wx::GLContext->new($self);
}
sub SetCurrent {
my ($self, $context) = @_;
return $self->SUPER::SetCurrent($context);
}
sub UseVBOs {
my ($self) = @_;
if (! defined ($self->{use_VBOs})) {
my $use_legacy = wxTheApp->{app_config}->get('use_legacy_opengl');
if ($use_legacy eq '1') {
# Disable OpenGL 2.0 rendering.
$self->{use_VBOs} = 0;
# Don't enable the layer editing tool.
$self->{layer_editing_enabled} = 0;
# 2 means failed
$self->{layer_editing_initialized} = 2;
return 0;
}
# This is a special path for wxWidgets on GTK, where an OpenGL context is initialized
# first when an OpenGL widget is shown for the first time. How ugly.
return 0 if (! $self->init && $^O eq 'linux');
# Don't use VBOs if anything fails.
$self->{use_VBOs} = 0;
if ($self->GetContext) {
$self->SetCurrent($self->GetContext);
Slic3r::GUI::_3DScene::_glew_init;
my @gl_version = split(/\./, glGetString(GL_VERSION));
$self->{use_VBOs} = int($gl_version[0]) >= 2;
# print "UseVBOs $self OpenGL major: $gl_version[0], minor: $gl_version[1]. Use VBOs: ", $self->{use_VBOs}, "\n";
}
}
return $self->{use_VBOs};
}
sub Resize {
my ($self, $x, $y) = @_;
return unless $self->GetContext;
$self->_dirty(0);
$self->SetCurrent($self->GetContext);
glViewport(0, 0, $x, $y);
$x /= $self->_zoom;
$y /= $self->_zoom;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if ($self->_camera_type eq 'ortho') {
#FIXME setting the size of the box 10x larger than necessary
# is only a workaround for an incorrectly set camera.
# This workaround harms Z-buffer accuracy!
# my $depth = 1.05 * $self->max_bounding_box->radius();
my $depth = 10.0 * $self->max_bounding_box->radius();
glOrtho(
-$x/2, $x/2, -$y/2, $y/2,
-$depth, $depth,
);
} else {
die "Invalid camera type: ", $self->_camera_type, "\n" if ($self->_camera_type ne 'perspective');
my $bbox_r = $self->max_bounding_box->radius();
my $fov = PI * 45. / 180.;
my $fov_tan = tan(0.5 * $fov);
my $cam_distance = 0.5 * $bbox_r / $fov_tan;
$self->_camera_distance($cam_distance);
my $nr = $cam_distance - $bbox_r * 1.1;
my $fr = $cam_distance + $bbox_r * 1.1;
$nr = 1 if ($nr < 1);
$fr = $nr + 1 if ($fr < $nr + 1);
my $h2 = $fov_tan * $nr;
my $w2 = $h2 * $x / $y;
glFrustum(-$w2, $w2, -$h2, $h2, $nr, $fr);
}
glMatrixMode(GL_MODELVIEW);
}
sub InitGL {
my $self = shift;
return if $self->init;
return unless $self->GetContext;
$self->init(1);
# This is a special path for wxWidgets on GTK, where an OpenGL context is initialized
# first when an OpenGL widget is shown for the first time. How ugly.
# In that case the volumes are wainting to be moved to Vertex Buffer Objects
# after the OpenGL context is being initialized.
$self->volumes->finalize_geometry(1)
if ($^O eq 'linux' && $self->UseVBOs);
glClearColor(0, 0, 0, 1);
glColor3f(1, 0, 0);
glEnable(GL_DEPTH_TEST);
glClearDepth(1.0);
glDepthFunc(GL_LEQUAL);
glEnable(GL_CULL_FACE);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
# Set antialiasing/multisampling
glDisable(GL_LINE_SMOOTH);
glDisable(GL_POLYGON_SMOOTH);
# See "GL_MULTISAMPLE and GL_ARRAY_BUFFER_ARB messages on failed launch"
# https://github.com/alexrj/Slic3r/issues/4085
eval {
# Disable the multi sampling by default, so the picking by color will work correctly.
glDisable(GL_MULTISAMPLE);
};
# Disable multi sampling if the eval failed.
$self->{can_multisample} = 0 if $@;
# ambient lighting
glLightModelfv_p(GL_LIGHT_MODEL_AMBIENT, 0.3, 0.3, 0.3, 1);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
# light from camera
glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0);
glLightfv_p(GL_LIGHT1, GL_SPECULAR, 0.3, 0.3, 0.3, 1);
glLightfv_p(GL_LIGHT1, GL_DIFFUSE, 0.2, 0.2, 0.2, 1);
# Enables Smooth Color Shading; try GL_FLAT for (lack of) fun.
glShadeModel(GL_SMOOTH);
# glMaterialfv_p(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, 0.5, 0.3, 0.3, 1);
# glMaterialfv_p(GL_FRONT_AND_BACK, GL_SPECULAR, 1, 1, 1, 1);
# glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50);
# glMaterialfv_p(GL_FRONT_AND_BACK, GL_EMISSION, 0.1, 0, 0, 0.9);
# A handy trick -- have surface material mirror the color.
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_MULTISAMPLE) if ($self->{can_multisample});
if ($self->UseVBOs) {
my $shader = new Slic3r::GUI::_3DScene::GLShader;
if (! $shader->load($self->_fragment_shader_Gouraud, $self->_vertex_shader_Gouraud)) {
# if (! $shader->load($self->_fragment_shader_Phong, $self->_vertex_shader_Phong)) {
print "Compilaton of path shader failed: \n" . $shader->last_error . "\n";
$shader = undef;
} else {
$self->{plain_shader} = $shader;
}
}
}
sub DestroyGL {
my $self = shift;
if ($self->GetContext) {
$self->SetCurrent($self->GetContext);
if ($self->{plain_shader}) {
$self->{plain_shader}->release;
delete $self->{plain_shader};
}
if ($self->{layer_height_edit_shader}) {
$self->{layer_height_edit_shader}->release;
delete $self->{layer_height_edit_shader};
}
$self->volumes->release_geometry;
}
}
sub Render {
my ($self, $dc) = @_;
# prevent calling SetCurrent() when window is not shown yet
return unless $self->IsShownOnScreen;
return unless my $context = $self->GetContext;
$self->SetCurrent($context);
$self->InitGL;
glClearColor(1, 1, 1, 1);
glClearDepth(1);
glDepthFunc(GL_LESS);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
{
# Shift the perspective camera.
my $camera_pos = Slic3r::Pointf3->new(0,0,-$self->_camera_distance);
glTranslatef(@$camera_pos);
}
if (TURNTABLE_MODE) {
# Turntable mode is enabled by default.
glRotatef(-$self->_stheta, 1, 0, 0); # pitch
glRotatef($self->_sphi, 0, 0, 1); # yaw
} else {
my @rotmat = quat_to_rotmatrix($self->quat);
glMultMatrixd_p(@rotmat[0..15]);
}
glTranslatef(@{ $self->_camera_target->negative });
# light from above
glLightfv_p(GL_LIGHT0, GL_POSITION, -0.5, -0.5, 1, 0);
glLightfv_p(GL_LIGHT0, GL_SPECULAR, 0.2, 0.2, 0.2, 1);
glLightfv_p(GL_LIGHT0, GL_DIFFUSE, 0.5, 0.5, 0.5, 1);
# Head light
glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0);
if ($self->enable_picking) {
# Render the object for picking.
# FIXME This cannot possibly work in a multi-sampled context as the color gets mangled by the anti-aliasing.
# Better to use software ray-casting on a bounding-box hierarchy.
glPushAttrib(GL_ENABLE_BIT);
glDisable(GL_MULTISAMPLE) if ($self->{can_multisample});
glDisable(GL_LIGHTING);
glDisable(GL_BLEND);
$self->draw_volumes(1);
glFlush();
glFinish();
if (my $pos = $self->_mouse_pos) {
my $col = [ glReadPixels_p($pos->x, $self->GetSize->GetHeight - $pos->y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE) ];
my $volume_idx = $col->[0] + $col->[1]*256 + $col->[2]*256*256;
$self->_hover_volume_idx(undef);
$_->set_hover(0) for @{$self->volumes};
if ($volume_idx <= $#{$self->volumes}) {
$self->_hover_volume_idx($volume_idx);
$self->volumes->[$volume_idx]->set_hover(1);
my $group_id = $self->volumes->[$volume_idx]->select_group_id;
if ($group_id != -1) {
$_->set_hover(1) for grep { $_->select_group_id == $group_id } @{$self->volumes};
}
$self->on_hover->($volume_idx) if $self->on_hover;
}
}
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glFlush();
glFinish();
glPopAttrib();
}
# draw fixed background
if ($self->background) {
glDisable(GL_LIGHTING);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
# Draws a bluish bottom to top gradient over the complete screen.
glDisable(GL_DEPTH_TEST);
glBegin(GL_QUADS);
glColor3f(0.0,0.0,0.0);
glVertex3f(-1.0,-1.0, 1.0);
glVertex3f( 1.0,-1.0, 1.0);
glColor3f(10/255,98/255,144/255);
glVertex3f( 1.0, 1.0, 1.0);
glVertex3f(-1.0, 1.0, 1.0);
glEnd();
glPopMatrix();
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
glEnable(GL_LIGHTING);
}
# draw ground and axes
glDisable(GL_LIGHTING);
# draw ground
my $ground_z = GROUND_Z;
if ($self->bed_triangles) {
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnableClientState(GL_VERTEX_ARRAY);
glColor4f(0.8, 0.6, 0.5, 0.4);
glNormal3d(0,0,1);
glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_triangles->ptr());
glDrawArrays(GL_TRIANGLES, 0, $self->bed_triangles->elements / 3);
glDisableClientState(GL_VERTEX_ARRAY);
# we need depth test for grid, otherwise it would disappear when looking
# the object from below
glEnable(GL_DEPTH_TEST);
# draw grid
glLineWidth(3);
glColor4f(0.2, 0.2, 0.2, 0.4);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_grid_lines->ptr());
glDrawArrays(GL_LINES, 0, $self->bed_grid_lines->elements / 3);
glDisableClientState(GL_VERTEX_ARRAY);
glDisable(GL_BLEND);
}
my $volumes_bb = $self->volumes_bounding_box;
{
# draw axes
# disable depth testing so that axes are not covered by ground
glDisable(GL_DEPTH_TEST);
my $origin = $self->origin;
my $axis_len = max(
0.3 * max(@{ $self->bed_bounding_box->size }),
2 * max(@{ $volumes_bb->size }),
);
glLineWidth(2);
glBegin(GL_LINES);
# draw line for x axis
glColor3f(1, 0, 0);
glVertex3f(@$origin, $ground_z);
glVertex3f($origin->x + $axis_len, $origin->y, $ground_z); #,,
# draw line for y axis
glColor3f(0, 1, 0);
glVertex3f(@$origin, $ground_z);
glVertex3f($origin->x, $origin->y + $axis_len, $ground_z); #++
glEnd();
# draw line for Z axis
# (re-enable depth test so that axis is correctly shown when objects are behind it)
glEnable(GL_DEPTH_TEST);
glBegin(GL_LINES);
glColor3f(0, 0, 1);
glVertex3f(@$origin, $ground_z);
glVertex3f(@$origin, $ground_z+$axis_len);
glEnd();
}
glEnable(GL_LIGHTING);
# draw objects
if (! $self->use_plain_shader) {
$self->draw_volumes;
} elsif ($self->UseVBOs) {
$self->{plain_shader}->enable if $self->{plain_shader};
$self->volumes->render_VBOs;
$self->{plain_shader}->disable;
} else {
$self->volumes->render_legacy;
}
# draw cutting plane
if (defined $self->cutting_plane_z) {
my $plane_z = $self->cutting_plane_z;
my $bb = $volumes_bb;
glDisable(GL_CULL_FACE);
glDisable(GL_LIGHTING);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glBegin(GL_QUADS);
glColor4f(0.8, 0.8, 0.8, 0.5);
glVertex3f($bb->x_min-20, $bb->y_min-20, $plane_z);
glVertex3f($bb->x_max+20, $bb->y_min-20, $plane_z);
glVertex3f($bb->x_max+20, $bb->y_max+20, $plane_z);
glVertex3f($bb->x_min-20, $bb->y_max+20, $plane_z);
glEnd();
glEnable(GL_CULL_FACE);
glDisable(GL_BLEND);
}
# draw gcode preview legend
$self->draw_legend;
$self->draw_active_object_annotations;
$self->SwapBuffers();
# Calling glFinish has a performance penalty, but it seems to fix some OpenGL driver hang-up with extremely large scenes.
# glFinish();
}
sub draw_volumes {
# $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking.
my ($self, $fakecolor) = @_;
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative;
foreach my $volume_idx (0..$#{$self->volumes}) {
my $volume = $self->volumes->[$volume_idx];
my $shader_active = 0;
my $object_id = int($volume->select_group_id / 1000000);
if ($self->layer_editing_enabled && ! $fakecolor && $volume->selected && $self->{layer_height_edit_shader} &&
$volume->has_layer_height_texture && $object_id < $self->{print}->object_count) {
# Update the height texture if the ModelObject::layer_height_texture is invalid.
$volume->generate_layer_height_texture($self->{print}->get_object($object_id), 0);
$self->{layer_height_edit_shader}->enable;
$self->{layer_height_edit_shader}->set_uniform('z_to_texture_row', $volume->layer_height_texture_z_to_row_id);
$self->{layer_height_edit_shader}->set_uniform('z_texture_row_to_normalized', 1. / $volume->layer_height_texture_height);
$self->{layer_height_edit_shader}->set_uniform('z_cursor', $volume->bounding_box->z_max * $z_cursor_relative);
$self->{layer_height_edit_shader}->set_uniform('z_cursor_band_width', $self->{layer_height_edit_band_width});
glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
# glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_LEVEL, 0);
# glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $volume->layer_height_texture_width, $volume->layer_height_texture_height,
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
# glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
# glPixelStorei(GL_UNPACK_ROW_LENGTH, $self->{layer_preview_z_texture_width});
glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $volume->layer_height_texture_width, $volume->layer_height_texture_height,
GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level0);
glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level1);
$shader_active = 1;
} elsif ($fakecolor) {
# Object picking mode. Render the object with a color encoding the object index.
my $r = ($volume_idx & 0x000000FF) >> 0;
my $g = ($volume_idx & 0x0000FF00) >> 8;
my $b = ($volume_idx & 0x00FF0000) >> 16;
glColor4f($r/255.0, $g/255.0, $b/255.0, 1);
} elsif ($volume->selected) {
glColor4f(@{ &SELECTED_COLOR });
} elsif ($volume->hover) {
glColor4f(@{ &HOVER_COLOR });
} else {
glColor4f(@{ $volume->color });
}
$volume->render;
if ($shader_active) {
glBindTexture(GL_TEXTURE_2D, 0);
$self->{layer_height_edit_shader}->disable;
}
}
glDisableClientState(GL_NORMAL_ARRAY);
glDisable(GL_BLEND);
if (defined $self->cutting_plane_z) {
glLineWidth(2);
glColor3f(0, 0, 0);
glVertexPointer_c(3, GL_FLOAT, 0, $self->cut_lines_vertices->ptr());
glDrawArrays(GL_LINES, 0, $self->cut_lines_vertices->elements / 3);
glVertexPointer_c(3, GL_FLOAT, 0, 0);
}
glDisableClientState(GL_VERTEX_ARRAY);
}
sub _load_image_set_texture {
my ($self, $file_name) = @_;
# Load a PNG with an alpha channel.
my $img = Wx::Image->new;
$img->LoadFile(Slic3r::var($file_name), wxBITMAP_TYPE_PNG);
# Get RGB & alpha raw data from wxImage, interleave them into a Perl array.
my @rgb = unpack 'C*', $img->GetData();
my @alpha = $img->HasAlpha ? unpack 'C*', $img->GetAlpha() : (255) x (int(@rgb) / 3);
my $n_pixels = int(@alpha);
my @data = (0)x($n_pixels * 4);
for (my $i = 0; $i < $n_pixels; $i += 1) {
$data[$i*4 ] = $rgb[$i*3];
$data[$i*4+1] = $rgb[$i*3+1];
$data[$i*4+2] = $rgb[$i*3+2];
$data[$i*4+3] = $alpha[$i];
}
# Initialize a raw bitmap data.
my $params = {
loaded => 1,
valid => $n_pixels > 0,
width => $img->GetWidth,
height => $img->GetHeight,
data => OpenGL::Array->new_list(GL_UNSIGNED_BYTE, @data),
texture_id => glGenTextures_p(1)
};
# Create and initialize a texture with the raw data.
glBindTexture(GL_TEXTURE_2D, $params->{texture_id});
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $params->{width}, $params->{height}, 0, GL_RGBA, GL_UNSIGNED_BYTE, $params->{data}->ptr);
glBindTexture(GL_TEXTURE_2D, 0);
return $params;
}
sub _variable_layer_thickness_load_overlay_image {
my ($self) = @_;
$self->{layer_preview_annotation} = $self->_load_image_set_texture('variable_layer_height_tooltip.png')
if (! $self->{layer_preview_annotation}->{loaded});
return $self->{layer_preview_annotation}->{valid};
}
sub _variable_layer_thickness_load_reset_image {
my ($self) = @_;
$self->{layer_preview_reset_image} = $self->_load_image_set_texture('variable_layer_height_reset.png')
if (! $self->{layer_preview_reset_image}->{loaded});
return $self->{layer_preview_reset_image}->{valid};
}
# Paint the tooltip.
sub _render_image {
my ($self, $image, $l, $r, $b, $t) = @_;
$self->_render_texture($image->{texture_id}, $l, $r, $b, $t);
}
sub _render_texture {
my ($self, $tex_id, $l, $r, $b, $t) = @_;
glColor4f(1.,1.,1.,1.);
glDisable(GL_LIGHTING);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, $tex_id);
glBegin(GL_QUADS);
glTexCoord2d(0.,1.); glVertex3f($l, $b, 0);
glTexCoord2d(1.,1.); glVertex3f($r, $b, 0);
glTexCoord2d(1.,0.); glVertex3f($r, $t, 0);
glTexCoord2d(0.,0.); glVertex3f($l, $t, 0);
glEnd();
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glEnable(GL_LIGHTING);
}
sub draw_active_object_annotations {
# $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking.
my ($self) = @_;
return if (! $self->{layer_height_edit_shader} || ! $self->layer_editing_enabled);
# Find the selected volume, over which the layer editing is active.
my $volume;
foreach my $volume_idx (0..$#{$self->volumes}) {
my $v = $self->volumes->[$volume_idx];
if ($v->selected && $v->has_layer_height_texture) {
$volume = $v;
last;
}
}
return if (! $volume);
# If the active object was not allocated at the Print, go away. This should only be a momentary case between an object addition / deletion
# and an update by Platter::async_apply_config.
my $object_idx = int($volume->select_group_id / 1000000);
return if $object_idx >= $self->{print}->object_count;
# The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth),
# where x, y is the window size divided by $self->_zoom.
my ($bar_left, $bar_bottom, $bar_right, $bar_top) = $self->_variable_layer_thickness_bar_rect_viewport;
my ($reset_left, $reset_bottom, $reset_right, $reset_top) = $self->_variable_layer_thickness_reset_rect_viewport;
my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative;
$self->{layer_height_edit_shader}->enable;
$self->{layer_height_edit_shader}->set_uniform('z_to_texture_row', $volume->layer_height_texture_z_to_row_id);
$self->{layer_height_edit_shader}->set_uniform('z_texture_row_to_normalized', 1. / $volume->layer_height_texture_height);
$self->{layer_height_edit_shader}->set_uniform('z_cursor', $volume->bounding_box->z_max * $z_cursor_relative);
$self->{layer_height_edit_shader}->set_uniform('z_cursor_band_width', $self->{layer_height_edit_band_width});
glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $volume->layer_height_texture_width, $volume->layer_height_texture_height,
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $volume->layer_height_texture_width, $volume->layer_height_texture_height,
GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level0);
glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $volume->layer_height_texture_width / 2, $volume->layer_height_texture_height / 2,
GL_RGBA, GL_UNSIGNED_BYTE, $volume->layer_height_texture_data_ptr_level1);
# Render the color bar.
glDisable(GL_DEPTH_TEST);
# The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth),
# where x, y is the window size divided by $self->_zoom.
glPushMatrix();
glLoadIdentity();
# Paint the overlay.
glBegin(GL_QUADS);
glVertex3f($bar_left, $bar_bottom, 0);
glVertex3f($bar_right, $bar_bottom, 0);
glVertex3f($bar_right, $bar_top, $volume->bounding_box->z_max);
glVertex3f($bar_left, $bar_top, $volume->bounding_box->z_max);
glEnd();
glBindTexture(GL_TEXTURE_2D, 0);
$self->{layer_height_edit_shader}->disable;
# Paint the tooltip.
if ($self->_variable_layer_thickness_load_overlay_image) {
my $gap = 10/$self->_zoom;
my ($l, $r, $b, $t) = ($bar_left - $self->{layer_preview_annotation}->{width}/$self->_zoom - $gap, $bar_left - $gap, $reset_bottom + $self->{layer_preview_annotation}->{height}/$self->_zoom + $gap, $reset_bottom + $gap);
$self->_render_image($self->{layer_preview_annotation}, $l, $r, $t, $b);
}
# Paint the reset button.
if ($self->_variable_layer_thickness_load_reset_image) {
$self->_render_image($self->{layer_preview_reset_image}, $reset_left, $reset_right, $reset_bottom, $reset_top);
}
# Paint the graph.
#FIXME show some kind of legend.
my $print_object = $self->{print}->get_object($object_idx);
my $max_z = unscale($print_object->size->z);
my $profile = $print_object->model_object->layer_height_profile;
my $layer_height = $print_object->config->get('layer_height');
my $layer_height_max = 10000000000.;
{
# Get a maximum layer height value.
#FIXME This is a duplicate code of Slicing.cpp.
my $nozzle_diameters = $print_object->print->config->get('nozzle_diameter');
my $layer_heights_min = $print_object->print->config->get('min_layer_height');
my $layer_heights_max = $print_object->print->config->get('max_layer_height');
for (my $i = 0; $i < scalar(@{$nozzle_diameters}); $i += 1) {
my $lh_min = ($layer_heights_min->[$i] == 0.) ? 0.07 : max(0.01, $layer_heights_min->[$i]);
my $lh_max = ($layer_heights_max->[$i] == 0.) ? (0.75 * $nozzle_diameters->[$i]) : $layer_heights_max->[$i];
$layer_height_max = min($layer_height_max, max($lh_min, $lh_max));
}
}
# Make the vertical bar a bit wider so the layer height curve does not touch the edge of the bar region.
$layer_height_max *= 1.12;
# Baseline
glColor3f(0., 0., 0.);
glBegin(GL_LINE_STRIP);
glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / $layer_height_max, $bar_bottom);
glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / $layer_height_max, $bar_top);
glEnd();
# Curve
glColor3f(0., 0., 1.);
glBegin(GL_LINE_STRIP);
for (my $i = 0; $i < int(@{$profile}); $i += 2) {
my $z = $profile->[$i];
my $h = $profile->[$i+1];
glVertex3f($bar_left + $h * ($bar_right - $bar_left) / $layer_height_max, $bar_bottom + $z * ($bar_top - $bar_bottom) / $max_z, $z);
}
glEnd();
# Revert the matrices.
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
sub draw_legend {
my ($self) = @_;
if ($self->_legend_enabled)
{
# If the legend texture has not been loaded into the GPU, do it now.
my $tex_id = Slic3r::GUI::_3DScene::finalize_legend_texture;
if ($tex_id > 0)
{
my $tex_w = Slic3r::GUI::_3DScene::get_legend_texture_width;
my $tex_h = Slic3r::GUI::_3DScene::get_legend_texture_height;
if (($tex_w > 0) && ($tex_h > 0))
{
glDisable(GL_DEPTH_TEST);
glPushMatrix();
glLoadIdentity();
my ($cw, $ch) = $self->GetSizeWH;
my $l = (-0.5 * $cw) / $self->_zoom;
my $t = (0.5 * $ch) / $self->_zoom;
my $r = $l + $tex_w / $self->_zoom;
my $b = $t - $tex_h / $self->_zoom;
$self->_render_texture($tex_id, $l, $r, $b, $t);
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
}
}
}
sub opengl_info
{
my ($self, %params) = @_;
my %tag = Slic3r::tags($params{format});
my $gl_version = glGetString(GL_VERSION);
my $gl_vendor = glGetString(GL_VENDOR);
my $gl_renderer = glGetString(GL_RENDERER);
my $glsl_version = glGetString(GL_SHADING_LANGUAGE_VERSION);
my $out = '';
$out .= "$tag{h2start}OpenGL installation$tag{h2end}$tag{eol}";
$out .= " $tag{bstart}Using POGL$tag{bend} v$OpenGL::BUILD_VERSION$tag{eol}";
$out .= " $tag{bstart}GL version: $tag{bend}${gl_version}$tag{eol}";
$out .= " $tag{bstart}vendor: $tag{bend}${gl_vendor}$tag{eol}";
$out .= " $tag{bstart}renderer: $tag{bend}${gl_renderer}$tag{eol}";
$out .= " $tag{bstart}GLSL version: $tag{bend}${glsl_version}$tag{eol}";
# Check for other OpenGL extensions
$out .= "$tag{h2start}Installed extensions (* implemented in the module):$tag{h2end}$tag{eol}";
my $extensions = glGetString(GL_EXTENSIONS);
my @extensions = split(' ',$extensions);
foreach my $ext (sort @extensions) {
my $stat = glpCheckExtension($ext);
$out .= sprintf("%s ${ext}$tag{eol}", $stat?' ':'*');
$out .= sprintf(" ${stat}$tag{eol}") if ($stat && $stat !~ m|^$ext |);
}
return $out;
}
sub _report_opengl_state
{
my ($self, $comment) = @_;
my $err = glGetError();
return 0 if ($err == 0);
# gluErrorString() hangs. Don't use it.
# my $errorstr = gluErrorString();
my $errorstr = '';
if ($err == 0x0500) {
$errorstr = 'GL_INVALID_ENUM';
} elsif ($err == GL_INVALID_VALUE) {
$errorstr = 'GL_INVALID_VALUE';
} elsif ($err == GL_INVALID_OPERATION) {
$errorstr = 'GL_INVALID_OPERATION';
} elsif ($err == GL_STACK_OVERFLOW) {
$errorstr = 'GL_STACK_OVERFLOW';
} elsif ($err == GL_OUT_OF_MEMORY) {
$errorstr = 'GL_OUT_OF_MEMORY';
} else {
$errorstr = 'unknown';
}
if (defined($comment)) {
printf("OpenGL error at %s, nr %d (0x%x): %s\n", $comment, $err, $err, $errorstr);
} else {
printf("OpenGL error nr %d (0x%x): %s\n", $err, $err, $errorstr);
}
}
sub _vertex_shader_Gouraud {
return <<'VERTEX';
#version 110
#define INTENSITY_CORRECTION 0.7
#define LIGHT_TOP_DIR -0.6/1.31, 0.6/1.31, 1./1.31
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.5 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SHININESS 50.
#define LIGHT_FRONT_DIR 1./1.43, 0.2/1.43, 1./1.43
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SHININESS 50.
#define INTENSITY_AMBIENT 0.3
varying float intensity_specular;
varying float intensity_tainted;
void main()
{
vec3 eye, normal, lightDir, viewVector, halfVector;
float NdotL, NdotHV;
eye = vec3(0., 0., 1.);
// First transform the normal into eye space and normalize the result.
normal = normalize(gl_NormalMatrix * gl_Normal);
// Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space.
// Also since we're talking about a directional light, the position field is actually direction.
lightDir = vec3(LIGHT_TOP_DIR);
halfVector = normalize(lightDir + eye);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
NdotL = max(dot(normal, lightDir), 0.0);
intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity_specular = 0.;
if (NdotL > 0.0)
intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source.
lightDir = vec3(LIGHT_FRONT_DIR);
// halfVector = normalize(lightDir + eye);
NdotL = max(dot(normal, lightDir), 0.0);
intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE;
// compute the specular term if NdotL is larger than zero
// if (NdotL > 0.0)
// intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_FRONT_SHININESS);
gl_Position = ftransform();
}
VERTEX
}
sub _fragment_shader_Gouraud {
return <<'FRAGMENT';
#version 110
varying float intensity_specular;
varying float intensity_tainted;
uniform vec4 uniform_color;
void main()
{
gl_FragColor =
vec4(intensity_specular, intensity_specular, intensity_specular, 0.) + uniform_color * intensity_tainted;
gl_FragColor.a = uniform_color.a;
}
FRAGMENT
}
sub _vertex_shader_Phong {
return <<'VERTEX';
#version 110
varying vec3 normal;
varying vec3 eye;
void main(void)
{
eye = normalize(vec3(gl_ModelViewMatrix * gl_Vertex));
normal = normalize(gl_NormalMatrix * gl_Normal);
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
VERTEX
}
sub _fragment_shader_Phong {
return <<'FRAGMENT';
#version 110
#define INTENSITY_CORRECTION 0.7
#define LIGHT_TOP_DIR -0.6/1.31, 0.6/1.31, 1./1.31
#define LIGHT_TOP_DIFFUSE (0.8 * INTENSITY_CORRECTION)
#define LIGHT_TOP_SPECULAR (0.5 * INTENSITY_CORRECTION)
//#define LIGHT_TOP_SHININESS 50.
#define LIGHT_TOP_SHININESS 10.
#define LIGHT_FRONT_DIR 1./1.43, 0.2/1.43, 1./1.43
#define LIGHT_FRONT_DIFFUSE (0.3 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SPECULAR (0.0 * INTENSITY_CORRECTION)
#define LIGHT_FRONT_SHININESS 50.
#define INTENSITY_AMBIENT 0.0
varying vec3 normal;
varying vec3 eye;
uniform vec4 uniform_color;
void main() {
float intensity_specular = 0.;
float intensity_tainted = 0.;
float intensity = max(dot(normal,vec3(LIGHT_TOP_DIR)), 0.0);
// if the vertex is lit compute the specular color
if (intensity > 0.0) {
intensity_tainted = LIGHT_TOP_DIFFUSE * intensity;
// compute the half vector
vec3 h = normalize(vec3(LIGHT_TOP_DIR) + eye);
// compute the specular term into spec
intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(h, normal), 0.0), LIGHT_TOP_SHININESS);
}
intensity = max(dot(normal,vec3(LIGHT_FRONT_DIR)), 0.0);
// if the vertex is lit compute the specular color
if (intensity > 0.0) {
intensity_tainted += LIGHT_FRONT_DIFFUSE * intensity;
// compute the half vector
// vec3 h = normalize(vec3(LIGHT_FRONT_DIR) + eye);
// compute the specular term into spec
// intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(h,normal), 0.0), LIGHT_FRONT_SHININESS);
}
gl_FragColor = max(
vec4(intensity_specular, intensity_specular, intensity_specular, 0.) + uniform_color * intensity_tainted,
INTENSITY_AMBIENT * uniform_color);
gl_FragColor.a = uniform_color.a;
}
FRAGMENT
}
sub _vertex_shader_variable_layer_height {
return <<'VERTEX';
#version 110
#define LIGHT_TOP_DIR 0., 1., 0.
#define LIGHT_TOP_DIFFUSE 0.2
#define LIGHT_TOP_SPECULAR 0.3
#define LIGHT_TOP_SHININESS 50.
#define LIGHT_FRONT_DIR 0., 0., 1.
#define LIGHT_FRONT_DIFFUSE 0.5
#define LIGHT_FRONT_SPECULAR 0.3
#define LIGHT_FRONT_SHININESS 50.
#define INTENSITY_AMBIENT 0.1
uniform float z_to_texture_row;
varying float intensity_specular;
varying float intensity_tainted;
varying float object_z;
void main()
{
vec3 eye, normal, lightDir, viewVector, halfVector;
float NdotL, NdotHV;
// eye = gl_ModelViewMatrixInverse[3].xyz;
eye = vec3(0., 0., 1.);
// First transform the normal into eye space and normalize the result.
normal = normalize(gl_NormalMatrix * gl_Normal);
// Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space.
// Also since we're talking about a directional light, the position field is actually direction.
lightDir = vec3(LIGHT_TOP_DIR);
halfVector = normalize(lightDir + eye);
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
NdotL = max(dot(normal, lightDir), 0.0);
intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
intensity_specular = 0.;
// if (NdotL > 0.0)
// intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_TOP_SHININESS);
// Perform the same lighting calculation for the 2nd light source.
lightDir = vec3(LIGHT_FRONT_DIR);
halfVector = normalize(lightDir + eye);
NdotL = max(dot(normal, lightDir), 0.0);
intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE;
// compute the specular term if NdotL is larger than zero
if (NdotL > 0.0)
intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), LIGHT_FRONT_SHININESS);
// Scaled to widths of the Z texture.
object_z = gl_Vertex.z / gl_Vertex.w;
gl_Position = ftransform();
}
VERTEX
}
sub _fragment_shader_variable_layer_height {
return <<'FRAGMENT';
#version 110
#define M_PI 3.1415926535897932384626433832795
// 2D texture (1D texture split by the rows) of color along the object Z axis.
uniform sampler2D z_texture;
// Scaling from the Z texture rows coordinate to the normalized texture row coordinate.
uniform float z_to_texture_row;
uniform float z_texture_row_to_normalized;
varying float intensity_specular;
varying float intensity_tainted;
varying float object_z;
uniform float z_cursor;
uniform float z_cursor_band_width;
void main()
{
float object_z_row = z_to_texture_row * object_z;
// Index of the row in the texture.
float z_texture_row = floor(object_z_row);
// Normalized coordinate from 0. to 1.
float z_texture_col = object_z_row - z_texture_row;
float z_blend = 0.25 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) * 1.8 / z_cursor_band_width))) + 0.25;
// Calculate level of detail from the object Z coordinate.
// This makes the slowly sloping surfaces to be show with high detail (with stripes),
// and the vertical surfaces to be shown with low detail (no stripes)
float z_in_cells = object_z_row * 190.;
// Gradient of Z projected on the screen.
float dx_vtc = dFdx(z_in_cells);
float dy_vtc = dFdy(z_in_cells);
float lod = clamp(0.5 * log2(max(dx_vtc*dx_vtc, dy_vtc*dy_vtc)), 0., 1.);
// Sample the Z texture. Texture coordinates are normalized to <0, 1>.
vec4 color =
(1. - lod) * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5 )), -10000.) +
lod * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row * 2. + 1.)), 10000.);
// Mix the final color.
gl_FragColor =
vec4(intensity_specular, intensity_specular, intensity_specular, 1.) +
(1. - z_blend) * intensity_tainted * color +
z_blend * vec4(1., 1., 0., 0.);
// and reset the transparency.
gl_FragColor.a = 1.;
}
FRAGMENT
}
# The 3D canvas to display objects and tool paths.
package Slic3r::GUI::3DScene;
use base qw(Slic3r::GUI::3DScene::Base);
use OpenGL qw(:glconstants :gluconstants :glufunctions);
use List::Util qw(first min max);
use Slic3r::Geometry qw(scale unscale epsilon);
use Slic3r::Print::State ':steps';
__PACKAGE__->mk_accessors(qw(
color_by
select_by
drag_by
));
sub new {
my $class = shift;
my $self = $class->SUPER::new(@_);
$self->color_by('volume'); # object | volume
$self->select_by('object'); # object | volume | instance
$self->drag_by('instance'); # object | instance
return $self;
}
sub load_object {
my ($self, $model, $print, $obj_idx, $instance_idxs) = @_;
$self->SetCurrent($self->GetContext) if $self->UseVBOs;
my $model_object;
if ($model->isa('Slic3r::Model::Object')) {
$model_object = $model;
$model = $model_object->model;
$obj_idx = 0;
} else {
$model_object = $model->get_object($obj_idx);
}
$instance_idxs ||= [0..$#{$model_object->instances}];
my $volume_indices = $self->volumes->load_object(
$model_object, $obj_idx, $instance_idxs, $self->color_by, $self->select_by, $self->drag_by,
$self->UseVBOs);
return @{$volume_indices};
}
# Create 3D thick extrusion lines for a skirt and brim.
# Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes.
sub load_print_toolpaths {
my ($self, $print, $colors) = @_;
$self->SetCurrent($self->GetContext) if $self->UseVBOs;
Slic3r::GUI::_3DScene::_load_print_toolpaths($print, $self->volumes, $colors, $self->UseVBOs)
if ($print->step_done(STEP_SKIRT) && $print->step_done(STEP_BRIM));
}
# Create 3D thick extrusion lines for object forming extrusions.
# Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
# one for perimeters, one for infill and one for supports.
sub load_print_object_toolpaths {
my ($self, $object, $colors) = @_;
$self->SetCurrent($self->GetContext) if $self->UseVBOs;
Slic3r::GUI::_3DScene::_load_print_object_toolpaths($object, $self->volumes, $colors, $self->UseVBOs);
}
# Create 3D thick extrusion lines for wipe tower extrusions.
sub load_wipe_tower_toolpaths {
my ($self, $print, $colors) = @_;
$self->SetCurrent($self->GetContext) if $self->UseVBOs;
Slic3r::GUI::_3DScene::_load_wipe_tower_toolpaths($print, $self->volumes, $colors, $self->UseVBOs)
if ($print->step_done(STEP_WIPE_TOWER));
}
sub load_gcode_preview {
my ($self, $print, $gcode_preview_data, $colors) = @_;
$self->SetCurrent($self->GetContext) if $self->UseVBOs;
Slic3r::GUI::_3DScene::load_gcode_preview($print, $gcode_preview_data, $self->volumes, $colors, $self->UseVBOs);
}
sub set_toolpaths_range {
my ($self, $min_z, $max_z) = @_;
$self->volumes->set_range($min_z, $max_z);
}
sub reset_legend_texture {
Slic3r::GUI::_3DScene::reset_legend_texture();
}
1;