686 lines
32 KiB
C++
686 lines
32 KiB
C++
#ifndef slic3r_3DScene_hpp_
|
|
#define slic3r_3DScene_hpp_
|
|
|
|
#include "libslic3r/libslic3r.h"
|
|
#include "libslic3r/Point.hpp"
|
|
#include "libslic3r/Line.hpp"
|
|
#include "libslic3r/TriangleMesh.hpp"
|
|
#include "libslic3r/Utils.hpp"
|
|
#include "libslic3r/Model.hpp"
|
|
|
|
#include <functional>
|
|
|
|
#ifndef NDEBUG
|
|
#define HAS_GLSAFE
|
|
#endif
|
|
|
|
#ifdef HAS_GLSAFE
|
|
extern void glAssertRecentCallImpl(const char *file_name, unsigned int line, const char *function_name);
|
|
inline void glAssertRecentCall() { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); }
|
|
#define glsafe(cmd) do { cmd; glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
|
|
#define glcheck() do { glAssertRecentCallImpl(__FILE__, __LINE__, __FUNCTION__); } while (false)
|
|
#else
|
|
inline void glAssertRecentCall() { }
|
|
#define glsafe(cmd) cmd
|
|
#define glcheck()
|
|
#endif
|
|
|
|
namespace Slic3r {
|
|
namespace GUI {
|
|
class Bed3D;
|
|
struct Camera;
|
|
class GLToolbar;
|
|
} // namespace GUI
|
|
|
|
class SLAPrintObject;
|
|
enum SLAPrintObjectStep : unsigned int;
|
|
class DynamicPrintConfig;
|
|
class ExtrusionPath;
|
|
class ExtrusionMultiPath;
|
|
class ExtrusionLoop;
|
|
class ExtrusionEntity;
|
|
class ExtrusionEntityCollection;
|
|
|
|
// A container for interleaved arrays of 3D vertices and normals,
|
|
// possibly indexed by triangles and / or quads.
|
|
class GLIndexedVertexArray {
|
|
public:
|
|
GLIndexedVertexArray() :
|
|
vertices_and_normals_interleaved_VBO_id(0),
|
|
triangle_indices_VBO_id(0),
|
|
quad_indices_VBO_id(0)
|
|
{}
|
|
GLIndexedVertexArray(const GLIndexedVertexArray &rhs) :
|
|
vertices_and_normals_interleaved(rhs.vertices_and_normals_interleaved),
|
|
triangle_indices(rhs.triangle_indices),
|
|
quad_indices(rhs.quad_indices),
|
|
vertices_and_normals_interleaved_VBO_id(0),
|
|
triangle_indices_VBO_id(0),
|
|
quad_indices_VBO_id(0)
|
|
{ assert(! rhs.has_VBOs()); }
|
|
GLIndexedVertexArray(GLIndexedVertexArray &&rhs) :
|
|
vertices_and_normals_interleaved(std::move(rhs.vertices_and_normals_interleaved)),
|
|
triangle_indices(std::move(rhs.triangle_indices)),
|
|
quad_indices(std::move(rhs.quad_indices)),
|
|
vertices_and_normals_interleaved_VBO_id(0),
|
|
triangle_indices_VBO_id(0),
|
|
quad_indices_VBO_id(0)
|
|
{ assert(! rhs.has_VBOs()); }
|
|
|
|
~GLIndexedVertexArray() { release_geometry(); }
|
|
|
|
GLIndexedVertexArray& operator=(const GLIndexedVertexArray &rhs)
|
|
{
|
|
assert(vertices_and_normals_interleaved_VBO_id == 0);
|
|
assert(triangle_indices_VBO_id == 0);
|
|
assert(quad_indices_VBO_id == 0);
|
|
assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
|
|
assert(rhs.triangle_indices_VBO_id == 0);
|
|
assert(rhs.quad_indices_VBO_id == 0);
|
|
this->vertices_and_normals_interleaved = rhs.vertices_and_normals_interleaved;
|
|
this->triangle_indices = rhs.triangle_indices;
|
|
this->quad_indices = rhs.quad_indices;
|
|
this->m_bounding_box = rhs.m_bounding_box;
|
|
this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size;
|
|
this->triangle_indices_size = rhs.triangle_indices_size;
|
|
this->quad_indices_size = rhs.quad_indices_size;
|
|
return *this;
|
|
}
|
|
|
|
GLIndexedVertexArray& operator=(GLIndexedVertexArray &&rhs)
|
|
{
|
|
assert(vertices_and_normals_interleaved_VBO_id == 0);
|
|
assert(triangle_indices_VBO_id == 0);
|
|
assert(quad_indices_VBO_id == 0);
|
|
assert(rhs.vertices_and_normals_interleaved_VBO_id == 0);
|
|
assert(rhs.triangle_indices_VBO_id == 0);
|
|
assert(rhs.quad_indices_VBO_id == 0);
|
|
this->vertices_and_normals_interleaved = std::move(rhs.vertices_and_normals_interleaved);
|
|
this->triangle_indices = std::move(rhs.triangle_indices);
|
|
this->quad_indices = std::move(rhs.quad_indices);
|
|
this->m_bounding_box = std::move(rhs.m_bounding_box);
|
|
this->vertices_and_normals_interleaved_size = rhs.vertices_and_normals_interleaved_size;
|
|
this->triangle_indices_size = rhs.triangle_indices_size;
|
|
this->quad_indices_size = rhs.quad_indices_size;
|
|
return *this;
|
|
}
|
|
|
|
// Vertices and their normals, interleaved to be used by void glInterleavedArrays(GL_N3F_V3F, 0, x)
|
|
std::vector<float> vertices_and_normals_interleaved;
|
|
std::vector<int> triangle_indices;
|
|
std::vector<int> quad_indices;
|
|
|
|
// When the geometry data is loaded into the graphics card as Vertex Buffer Objects,
|
|
// the above mentioned std::vectors are cleared and the following variables keep their original length.
|
|
size_t vertices_and_normals_interleaved_size{ 0 };
|
|
size_t triangle_indices_size{ 0 };
|
|
size_t quad_indices_size{ 0 };
|
|
|
|
// IDs of the Vertex Array Objects, into which the geometry has been loaded.
|
|
// Zero if the VBOs are not sent to GPU yet.
|
|
unsigned int vertices_and_normals_interleaved_VBO_id{ 0 };
|
|
unsigned int triangle_indices_VBO_id{ 0 };
|
|
unsigned int quad_indices_VBO_id{ 0 };
|
|
|
|
void load_mesh_full_shading(const TriangleMesh &mesh);
|
|
void load_mesh(const TriangleMesh& mesh) { this->load_mesh_full_shading(mesh); }
|
|
|
|
inline bool has_VBOs() const { return vertices_and_normals_interleaved_VBO_id != 0; }
|
|
|
|
inline void reserve(size_t sz) {
|
|
this->vertices_and_normals_interleaved.reserve(sz * 6);
|
|
this->triangle_indices.reserve(sz * 3);
|
|
this->quad_indices.reserve(sz * 4);
|
|
}
|
|
|
|
inline void push_geometry(float x, float y, float z, float nx, float ny, float nz) {
|
|
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
|
|
if (this->vertices_and_normals_interleaved_VBO_id != 0)
|
|
return;
|
|
|
|
if (this->vertices_and_normals_interleaved.size() + 6 > this->vertices_and_normals_interleaved.capacity())
|
|
this->vertices_and_normals_interleaved.reserve(next_highest_power_of_2(this->vertices_and_normals_interleaved.size() + 6));
|
|
this->vertices_and_normals_interleaved.emplace_back(nx);
|
|
this->vertices_and_normals_interleaved.emplace_back(ny);
|
|
this->vertices_and_normals_interleaved.emplace_back(nz);
|
|
this->vertices_and_normals_interleaved.emplace_back(x);
|
|
this->vertices_and_normals_interleaved.emplace_back(y);
|
|
this->vertices_and_normals_interleaved.emplace_back(z);
|
|
|
|
this->vertices_and_normals_interleaved_size = this->vertices_and_normals_interleaved.size();
|
|
m_bounding_box.merge(Vec3f(x, y, z).cast<double>());
|
|
};
|
|
|
|
inline void push_geometry(double x, double y, double z, double nx, double ny, double nz) {
|
|
push_geometry(float(x), float(y), float(z), float(nx), float(ny), float(nz));
|
|
}
|
|
|
|
inline void push_geometry(const Vec3d& p, const Vec3d& n) {
|
|
push_geometry(p(0), p(1), p(2), n(0), n(1), n(2));
|
|
}
|
|
|
|
inline void push_triangle(int idx1, int idx2, int idx3) {
|
|
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
|
|
if (this->vertices_and_normals_interleaved_VBO_id != 0)
|
|
return;
|
|
|
|
if (this->triangle_indices.size() + 3 > this->vertices_and_normals_interleaved.capacity())
|
|
this->triangle_indices.reserve(next_highest_power_of_2(this->triangle_indices.size() + 3));
|
|
this->triangle_indices.emplace_back(idx1);
|
|
this->triangle_indices.emplace_back(idx2);
|
|
this->triangle_indices.emplace_back(idx3);
|
|
this->triangle_indices_size = this->triangle_indices.size();
|
|
};
|
|
|
|
inline void push_quad(int idx1, int idx2, int idx3, int idx4) {
|
|
assert(this->vertices_and_normals_interleaved_VBO_id == 0);
|
|
if (this->vertices_and_normals_interleaved_VBO_id != 0)
|
|
return;
|
|
|
|
if (this->quad_indices.size() + 4 > this->vertices_and_normals_interleaved.capacity())
|
|
this->quad_indices.reserve(next_highest_power_of_2(this->quad_indices.size() + 4));
|
|
this->quad_indices.emplace_back(idx1);
|
|
this->quad_indices.emplace_back(idx2);
|
|
this->quad_indices.emplace_back(idx3);
|
|
this->quad_indices.emplace_back(idx4);
|
|
this->quad_indices_size = this->quad_indices.size();
|
|
};
|
|
|
|
// Finalize the initialization of the geometry & indices,
|
|
// upload the geometry and indices to OpenGL VBO objects
|
|
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
|
|
void finalize_geometry(bool opengl_initialized);
|
|
// Release the geometry data, release OpenGL VBOs.
|
|
void release_geometry();
|
|
|
|
void render() const;
|
|
void render(const std::pair<size_t, size_t>& tverts_range, const std::pair<size_t, size_t>& qverts_range) const;
|
|
|
|
// Is there any geometry data stored?
|
|
bool empty() const { return vertices_and_normals_interleaved_size == 0; }
|
|
|
|
void clear() {
|
|
this->vertices_and_normals_interleaved.clear();
|
|
this->triangle_indices.clear();
|
|
this->quad_indices.clear();
|
|
this->m_bounding_box.reset();
|
|
vertices_and_normals_interleaved_size = 0;
|
|
triangle_indices_size = 0;
|
|
quad_indices_size = 0;
|
|
}
|
|
|
|
// Shrink the internal storage to tighly fit the data stored.
|
|
void shrink_to_fit() {
|
|
this->vertices_and_normals_interleaved.shrink_to_fit();
|
|
this->triangle_indices.shrink_to_fit();
|
|
this->quad_indices.shrink_to_fit();
|
|
}
|
|
|
|
const BoundingBoxf3& bounding_box() const { return m_bounding_box; }
|
|
|
|
// Return an estimate of the memory consumed by this class.
|
|
size_t cpu_memory_used() const { return sizeof(*this) + vertices_and_normals_interleaved.capacity() * sizeof(float) + triangle_indices.capacity() * sizeof(int) + quad_indices.capacity() * sizeof(int); }
|
|
// Return an estimate of the memory held by GPU vertex buffers.
|
|
size_t gpu_memory_used() const
|
|
{
|
|
size_t memsize = 0;
|
|
if (this->vertices_and_normals_interleaved_VBO_id != 0)
|
|
memsize += this->vertices_and_normals_interleaved_size * 4;
|
|
if (this->triangle_indices_VBO_id != 0)
|
|
memsize += this->triangle_indices_size * 4;
|
|
if (this->quad_indices_VBO_id != 0)
|
|
memsize += this->quad_indices_size * 4;
|
|
return memsize;
|
|
}
|
|
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
|
|
|
|
private:
|
|
BoundingBoxf3 m_bounding_box;
|
|
};
|
|
|
|
class GLVolume {
|
|
public:
|
|
static const float SELECTED_COLOR[4];
|
|
static const float HOVER_SELECT_COLOR[4];
|
|
static const float HOVER_DESELECT_COLOR[4];
|
|
static const float OUTSIDE_COLOR[4];
|
|
static const float SELECTED_OUTSIDE_COLOR[4];
|
|
static const float DISABLED_COLOR[4];
|
|
static const float MODEL_COLOR[4][4];
|
|
static const float SLA_SUPPORT_COLOR[4];
|
|
static const float SLA_PAD_COLOR[4];
|
|
|
|
enum EHoverState : unsigned char
|
|
{
|
|
HS_None,
|
|
HS_Select,
|
|
HS_Deselect
|
|
};
|
|
|
|
GLVolume(float r = 1.f, float g = 1.f, float b = 1.f, float a = 1.f);
|
|
GLVolume(const float *rgba) : GLVolume(rgba[0], rgba[1], rgba[2], rgba[3]) {}
|
|
|
|
private:
|
|
Geometry::Transformation m_instance_transformation;
|
|
Geometry::Transformation m_volume_transformation;
|
|
|
|
// Shift in z required by sla supports+pad
|
|
double m_sla_shift_z;
|
|
// Bounding box of this volume, in unscaled coordinates.
|
|
mutable BoundingBoxf3 m_transformed_bounding_box;
|
|
// Whether or not is needed to recalculate the transformed bounding box.
|
|
mutable bool m_transformed_bounding_box_dirty;
|
|
// Convex hull of the volume, if any.
|
|
std::shared_ptr<const TriangleMesh> m_convex_hull;
|
|
// Bounding box of this volume, in unscaled coordinates.
|
|
mutable BoundingBoxf3 m_transformed_convex_hull_bounding_box;
|
|
// Whether or not is needed to recalculate the transformed convex hull bounding box.
|
|
mutable bool m_transformed_convex_hull_bounding_box_dirty;
|
|
|
|
public:
|
|
// Color of the triangles / quads held by this volume.
|
|
float color[4];
|
|
// Color used to render this volume.
|
|
float render_color[4];
|
|
struct CompositeID {
|
|
CompositeID(int object_id, int volume_id, int instance_id) : object_id(object_id), volume_id(volume_id), instance_id(instance_id) {}
|
|
CompositeID() : object_id(-1), volume_id(-1), instance_id(-1) {}
|
|
// Object ID, which is equal to the index of the respective ModelObject in Model.objects array.
|
|
int object_id;
|
|
// Volume ID, which is equal to the index of the respective ModelVolume in ModelObject.volumes array.
|
|
// If negative, it is an index of a geometry produced by the PrintObject for the respective ModelObject,
|
|
// and which has no associated ModelVolume in ModelObject.volumes. For example, SLA supports.
|
|
// Volume with a negative volume_id cannot be picked independently, it will pick the associated instance.
|
|
int volume_id;
|
|
// Instance ID, which is equal to the index of the respective ModelInstance in ModelObject.instances array.
|
|
int instance_id;
|
|
bool operator==(const CompositeID &rhs) const { return object_id == rhs.object_id && volume_id == rhs.volume_id && instance_id == rhs.instance_id; }
|
|
bool operator!=(const CompositeID &rhs) const { return ! (*this == rhs); }
|
|
bool operator< (const CompositeID &rhs) const
|
|
{ return object_id < rhs.object_id || (object_id == rhs.object_id && (volume_id < rhs.volume_id || (volume_id == rhs.volume_id && instance_id < rhs.instance_id))); }
|
|
};
|
|
CompositeID composite_id;
|
|
// Fingerprint of the source geometry. For ModelVolumes, it is the ModelVolume::ID and ModelInstanceID,
|
|
// for generated volumes it is the timestamp generated by PrintState::invalidate() or PrintState::set_done(),
|
|
// and the associated ModelInstanceID.
|
|
// Valid geometry_id should always be positive.
|
|
std::pair<size_t, size_t> geometry_id;
|
|
// An ID containing the extruder ID (used to select color).
|
|
int extruder_id;
|
|
|
|
// Various boolean flags.
|
|
struct {
|
|
// Is this object selected?
|
|
bool selected : 1;
|
|
// Is this object disabled from selection?
|
|
bool disabled : 1;
|
|
// Is this object printable?
|
|
bool printable : 1;
|
|
// Whether or not this volume is active for rendering
|
|
bool is_active : 1;
|
|
// Whether or not to use this volume when applying zoom_to_volumes()
|
|
bool zoom_to_volumes : 1;
|
|
// Wheter or not this volume is enabled for outside print volume detection in shader.
|
|
bool shader_outside_printer_detection_enabled : 1;
|
|
// Wheter or not this volume is outside print volume.
|
|
bool is_outside : 1;
|
|
// Wheter or not this volume has been generated from a modifier
|
|
bool is_modifier : 1;
|
|
// Wheter or not this volume has been generated from the wipe tower
|
|
bool is_wipe_tower : 1;
|
|
// Wheter or not this volume has been generated from an extrusion path
|
|
bool is_extrusion_path : 1;
|
|
// Wheter or not to always render this volume using its own alpha
|
|
bool force_transparent : 1;
|
|
// Whether or not always use the volume's own color (not using SELECTED/HOVER/DISABLED/OUTSIDE)
|
|
bool force_native_color : 1;
|
|
};
|
|
|
|
// Is mouse or rectangle selection over this object to select/deselect it ?
|
|
EHoverState hover;
|
|
|
|
// Interleaved triangles & normals with indexed triangles & quads.
|
|
GLIndexedVertexArray indexed_vertex_array;
|
|
// Ranges of triangle and quad indices to be rendered.
|
|
std::pair<size_t, size_t> tverts_range;
|
|
std::pair<size_t, size_t> qverts_range;
|
|
|
|
// If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
|
|
// of the extrusions per layer.
|
|
std::vector<coordf_t> print_zs;
|
|
// Offset into qverts & tverts, or offsets into indices stored into an OpenGL name_index_buffer.
|
|
std::vector<size_t> offsets;
|
|
|
|
// Bounding box of this volume, in unscaled coordinates.
|
|
const BoundingBoxf3& bounding_box() const { return this->indexed_vertex_array.bounding_box(); }
|
|
|
|
void set_render_color(float r, float g, float b, float a);
|
|
void set_render_color(const float* rgba, unsigned int size);
|
|
// Sets render color in dependence of current state
|
|
void set_render_color();
|
|
// set color according to model volume
|
|
void set_color_from_model_volume(const ModelVolume *model_volume);
|
|
|
|
const Geometry::Transformation& get_instance_transformation() const { return m_instance_transformation; }
|
|
void set_instance_transformation(const Geometry::Transformation& transformation) { m_instance_transformation = transformation; set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_instance_offset() const { return m_instance_transformation.get_offset(); }
|
|
double get_instance_offset(Axis axis) const { return m_instance_transformation.get_offset(axis); }
|
|
|
|
void set_instance_offset(const Vec3d& offset) { m_instance_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_offset(Axis axis, double offset) { m_instance_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_instance_rotation() const { return m_instance_transformation.get_rotation(); }
|
|
double get_instance_rotation(Axis axis) const { return m_instance_transformation.get_rotation(axis); }
|
|
|
|
void set_instance_rotation(const Vec3d& rotation) { m_instance_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_rotation(Axis axis, double rotation) { m_instance_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
|
|
|
|
Vec3d get_instance_scaling_factor() const { return m_instance_transformation.get_scaling_factor(); }
|
|
double get_instance_scaling_factor(Axis axis) const { return m_instance_transformation.get_scaling_factor(axis); }
|
|
|
|
void set_instance_scaling_factor(const Vec3d& scaling_factor) { m_instance_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_scaling_factor(Axis axis, double scaling_factor) { m_instance_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_instance_mirror() const { return m_instance_transformation.get_mirror(); }
|
|
double get_instance_mirror(Axis axis) const { return m_instance_transformation.get_mirror(axis); }
|
|
|
|
void set_instance_mirror(const Vec3d& mirror) { m_instance_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
|
|
void set_instance_mirror(Axis axis, double mirror) { m_instance_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Geometry::Transformation& get_volume_transformation() const { return m_volume_transformation; }
|
|
void set_volume_transformation(const Geometry::Transformation& transformation) { m_volume_transformation = transformation; set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_volume_offset() const { return m_volume_transformation.get_offset(); }
|
|
double get_volume_offset(Axis axis) const { return m_volume_transformation.get_offset(axis); }
|
|
|
|
void set_volume_offset(const Vec3d& offset) { m_volume_transformation.set_offset(offset); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_offset(Axis axis, double offset) { m_volume_transformation.set_offset(axis, offset); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_volume_rotation() const { return m_volume_transformation.get_rotation(); }
|
|
double get_volume_rotation(Axis axis) const { return m_volume_transformation.get_rotation(axis); }
|
|
|
|
void set_volume_rotation(const Vec3d& rotation) { m_volume_transformation.set_rotation(rotation); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_rotation(Axis axis, double rotation) { m_volume_transformation.set_rotation(axis, rotation); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_volume_scaling_factor() const { return m_volume_transformation.get_scaling_factor(); }
|
|
double get_volume_scaling_factor(Axis axis) const { return m_volume_transformation.get_scaling_factor(axis); }
|
|
|
|
void set_volume_scaling_factor(const Vec3d& scaling_factor) { m_volume_transformation.set_scaling_factor(scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_scaling_factor(Axis axis, double scaling_factor) { m_volume_transformation.set_scaling_factor(axis, scaling_factor); set_bounding_boxes_as_dirty(); }
|
|
|
|
const Vec3d& get_volume_mirror() const { return m_volume_transformation.get_mirror(); }
|
|
double get_volume_mirror(Axis axis) const { return m_volume_transformation.get_mirror(axis); }
|
|
|
|
void set_volume_mirror(const Vec3d& mirror) { m_volume_transformation.set_mirror(mirror); set_bounding_boxes_as_dirty(); }
|
|
void set_volume_mirror(Axis axis, double mirror) { m_volume_transformation.set_mirror(axis, mirror); set_bounding_boxes_as_dirty(); }
|
|
|
|
double get_sla_shift_z() const { return m_sla_shift_z; }
|
|
void set_sla_shift_z(double z) { m_sla_shift_z = z; }
|
|
|
|
void set_convex_hull(std::shared_ptr<const TriangleMesh> convex_hull) { m_convex_hull = std::move(convex_hull); }
|
|
void set_convex_hull(const TriangleMesh &convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(convex_hull); }
|
|
void set_convex_hull(TriangleMesh &&convex_hull) { m_convex_hull = std::make_shared<const TriangleMesh>(std::move(convex_hull)); }
|
|
|
|
int object_idx() const { return this->composite_id.object_id; }
|
|
int volume_idx() const { return this->composite_id.volume_id; }
|
|
int instance_idx() const { return this->composite_id.instance_id; }
|
|
|
|
Transform3d world_matrix() const;
|
|
bool is_left_handed() const;
|
|
|
|
const BoundingBoxf3& transformed_bounding_box() const;
|
|
// non-caching variant
|
|
BoundingBoxf3 transformed_convex_hull_bounding_box(const Transform3d &trafo) const;
|
|
// caching variant
|
|
const BoundingBoxf3& transformed_convex_hull_bounding_box() const;
|
|
// convex hull
|
|
const TriangleMesh* convex_hull() const { return m_convex_hull.get(); }
|
|
|
|
bool empty() const { return this->indexed_vertex_array.empty(); }
|
|
|
|
void set_range(double low, double high);
|
|
|
|
void render() const;
|
|
#if !ENABLE_SLOPE_RENDERING
|
|
void render(int color_id, int detection_id, int worldmatrix_id) const;
|
|
#endif // !ENABLE_SLOPE_RENDERING
|
|
|
|
void finalize_geometry(bool opengl_initialized) { this->indexed_vertex_array.finalize_geometry(opengl_initialized); }
|
|
void release_geometry() { this->indexed_vertex_array.release_geometry(); }
|
|
|
|
void set_bounding_boxes_as_dirty() { m_transformed_bounding_box_dirty = true; m_transformed_convex_hull_bounding_box_dirty = true; }
|
|
|
|
bool is_sla_support() const;
|
|
bool is_sla_pad() const;
|
|
|
|
// Return an estimate of the memory consumed by this class.
|
|
size_t cpu_memory_used() const {
|
|
//FIXME what to do wih m_convex_hull?
|
|
return sizeof(*this) - sizeof(this->indexed_vertex_array) + this->indexed_vertex_array.cpu_memory_used() + this->print_zs.capacity() * sizeof(coordf_t) + this->offsets.capacity() * sizeof(size_t);
|
|
}
|
|
// Return an estimate of the memory held by GPU vertex buffers.
|
|
size_t gpu_memory_used() const { return this->indexed_vertex_array.gpu_memory_used(); }
|
|
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
|
|
};
|
|
|
|
typedef std::vector<GLVolume*> GLVolumePtrs;
|
|
typedef std::pair<GLVolume*, std::pair<unsigned int, double>> GLVolumeWithIdAndZ;
|
|
typedef std::vector<GLVolumeWithIdAndZ> GLVolumeWithIdAndZList;
|
|
|
|
class GLVolumeCollection
|
|
{
|
|
public:
|
|
enum ERenderType : unsigned char
|
|
{
|
|
Opaque,
|
|
Transparent,
|
|
All
|
|
};
|
|
|
|
private:
|
|
// min and max vertex of the print box volume
|
|
float m_print_box_min[3];
|
|
float m_print_box_max[3];
|
|
|
|
// z range for clipping in shaders
|
|
float m_z_range[2];
|
|
|
|
// plane coeffs for clipping in shaders
|
|
float m_clipping_plane[4];
|
|
|
|
#if ENABLE_SLOPE_RENDERING
|
|
struct Slope
|
|
{
|
|
// toggle for slope rendering
|
|
bool active{ false };
|
|
// [0] = yellow, [1] = red
|
|
std::array<float, 2> z_range;
|
|
};
|
|
|
|
Slope m_slope;
|
|
#endif // ENABLE_SLOPE_RENDERING
|
|
|
|
public:
|
|
GLVolumePtrs volumes;
|
|
|
|
#if ENABLE_SLOPE_RENDERING
|
|
GLVolumeCollection() { set_default_slope_z_range(); }
|
|
#else
|
|
GLVolumeCollection() = default;
|
|
#endif // ENABLE_SLOPE_RENDERING
|
|
~GLVolumeCollection() { clear(); }
|
|
|
|
std::vector<int> load_object(
|
|
const ModelObject *model_object,
|
|
int obj_idx,
|
|
const std::vector<int> &instance_idxs,
|
|
const std::string &color_by,
|
|
bool opengl_initialized);
|
|
|
|
int load_object_volume(
|
|
const ModelObject *model_object,
|
|
int obj_idx,
|
|
int volume_idx,
|
|
int instance_idx,
|
|
const std::string &color_by,
|
|
bool opengl_initialized);
|
|
|
|
// Load SLA auxiliary GLVolumes (for support trees or pad).
|
|
void load_object_auxiliary(
|
|
const SLAPrintObject *print_object,
|
|
int obj_idx,
|
|
// pairs of <instance_idx, print_instance_idx>
|
|
const std::vector<std::pair<size_t, size_t>>& instances,
|
|
SLAPrintObjectStep milestone,
|
|
// Timestamp of the last change of the milestone
|
|
size_t timestamp,
|
|
bool opengl_initialized);
|
|
|
|
int load_wipe_tower_preview(
|
|
int obj_idx, float pos_x, float pos_y, float width, float depth, float height, float rotation_angle, bool size_unknown, float brim_width, bool opengl_initialized);
|
|
|
|
GLVolume* new_toolpath_volume(const float *rgba, size_t reserve_vbo_floats = 0);
|
|
GLVolume* new_nontoolpath_volume(const float *rgba, size_t reserve_vbo_floats = 0);
|
|
|
|
// Render the volumes by OpenGL.
|
|
void render(ERenderType type, bool disable_cullface, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = std::function<bool(const GLVolume&)>()) const;
|
|
|
|
// Finalize the initialization of the geometry & indices,
|
|
// upload the geometry and indices to OpenGL VBO objects
|
|
// and shrink the allocated data, possibly relasing it if it has been loaded into the VBOs.
|
|
void finalize_geometry(bool opengl_initialized) { for (auto* v : volumes) v->finalize_geometry(opengl_initialized); }
|
|
// Release the geometry data assigned to the volumes.
|
|
// If OpenGL VBOs were allocated, an OpenGL context has to be active to release them.
|
|
void release_geometry() { for (auto *v : volumes) v->release_geometry(); }
|
|
// Clear the geometry
|
|
void clear() { for (auto *v : volumes) delete v; volumes.clear(); }
|
|
|
|
bool empty() const { return volumes.empty(); }
|
|
void set_range(double low, double high) { for (GLVolume *vol : this->volumes) vol->set_range(low, high); }
|
|
|
|
void set_print_box(float min_x, float min_y, float min_z, float max_x, float max_y, float max_z) {
|
|
m_print_box_min[0] = min_x; m_print_box_min[1] = min_y; m_print_box_min[2] = min_z;
|
|
m_print_box_max[0] = max_x; m_print_box_max[1] = max_y; m_print_box_max[2] = max_z;
|
|
}
|
|
|
|
void set_z_range(float min_z, float max_z) { m_z_range[0] = min_z; m_z_range[1] = max_z; }
|
|
void set_clipping_plane(const double* coeffs) { m_clipping_plane[0] = coeffs[0]; m_clipping_plane[1] = coeffs[1]; m_clipping_plane[2] = coeffs[2]; m_clipping_plane[3] = coeffs[3]; }
|
|
|
|
#if ENABLE_SLOPE_RENDERING
|
|
bool is_slope_active() const { return m_slope.active; }
|
|
void set_slope_active(bool active) { m_slope.active = active; }
|
|
|
|
const std::array<float, 2>& get_slope_z_range() const { return m_slope.z_range; }
|
|
void set_slope_z_range(const std::array<float, 2>& range) { m_slope.z_range = range; }
|
|
void set_default_slope_z_range() { m_slope.z_range = { -::cos(Geometry::deg2rad(90.0f - 45.0f)), -::cos(Geometry::deg2rad(90.0f - 70.0f)) }; }
|
|
#endif // ENABLE_SLOPE_RENDERING
|
|
|
|
// returns true if all the volumes are completely contained in the print volume
|
|
// returns the containment state in the given out_state, if non-null
|
|
bool check_outside_state(const DynamicPrintConfig* config, ModelInstance::EPrintVolumeState* out_state);
|
|
void reset_outside_state();
|
|
|
|
void update_colors_by_extruder(const DynamicPrintConfig* config);
|
|
|
|
// Returns a vector containing the sorted list of all the print_zs of the volumes contained in this collection
|
|
std::vector<double> get_current_print_zs(bool active_only) const;
|
|
|
|
// Return an estimate of the memory consumed by this class.
|
|
size_t cpu_memory_used() const;
|
|
// Return an estimate of the memory held by GPU vertex buffers.
|
|
size_t gpu_memory_used() const;
|
|
size_t total_memory_used() const { return this->cpu_memory_used() + this->gpu_memory_used(); }
|
|
// Return CPU, GPU and total memory log line.
|
|
std::string log_memory_info() const;
|
|
|
|
bool has_toolpaths_to_export() const;
|
|
// Export the geometry of the GLVolumes toolpaths of this collection into the file with the given path, in obj format
|
|
void export_toolpaths_to_obj(const char* filename) const;
|
|
|
|
private:
|
|
GLVolumeCollection(const GLVolumeCollection &other);
|
|
GLVolumeCollection& operator=(const GLVolumeCollection &);
|
|
};
|
|
|
|
GLVolumeWithIdAndZList volumes_to_render(const GLVolumePtrs& volumes, GLVolumeCollection::ERenderType type, const Transform3d& view_matrix, std::function<bool(const GLVolume&)> filter_func = nullptr);
|
|
|
|
class GLModel
|
|
{
|
|
protected:
|
|
GLVolume m_volume;
|
|
std::string m_filename;
|
|
|
|
public:
|
|
GLModel();
|
|
virtual ~GLModel();
|
|
|
|
// init() / init_from_file() shall be called with the OpenGL context active!
|
|
bool init() { return on_init(); }
|
|
bool init_from_file(const std::string& filename) { return on_init_from_file(filename); }
|
|
|
|
void center_around(const Vec3d& center) { m_volume.set_volume_offset(center - m_volume.bounding_box().center()); }
|
|
void set_color(const float* color, unsigned int size);
|
|
|
|
const Vec3d& get_offset() const;
|
|
void set_offset(const Vec3d& offset);
|
|
const Vec3d& get_rotation() const;
|
|
void set_rotation(const Vec3d& rotation);
|
|
const Vec3d& get_scale() const;
|
|
void set_scale(const Vec3d& scale);
|
|
|
|
const std::string& get_filename() const { return m_filename; }
|
|
const BoundingBoxf3& get_bounding_box() const { return m_volume.bounding_box(); }
|
|
const BoundingBoxf3& get_transformed_bounding_box() const { return m_volume.transformed_bounding_box(); }
|
|
|
|
void reset();
|
|
|
|
void render() const;
|
|
|
|
protected:
|
|
virtual bool on_init() { return false; }
|
|
virtual bool on_init_from_file(const std::string& filename) { return false; }
|
|
};
|
|
|
|
class GLArrow : public GLModel
|
|
{
|
|
protected:
|
|
bool on_init() override;
|
|
};
|
|
|
|
class GLCurvedArrow : public GLModel
|
|
{
|
|
unsigned int m_resolution;
|
|
|
|
public:
|
|
explicit GLCurvedArrow(unsigned int resolution);
|
|
|
|
protected:
|
|
bool on_init() override;
|
|
};
|
|
|
|
class GLBed : public GLModel
|
|
{
|
|
protected:
|
|
bool on_init_from_file(const std::string& filename) override;
|
|
};
|
|
|
|
struct _3DScene
|
|
{
|
|
static void thick_lines_to_verts(const Lines& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, double top_z, GLVolume& volume);
|
|
static void thick_lines_to_verts(const Lines3& lines, const std::vector<double>& widths, const std::vector<double>& heights, bool closed, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const Polyline &polyline, float width, float height, float print_z, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionPath& extrusion_path, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionLoop& extrusion_loop, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionMultiPath& extrusion_multi_path, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionEntityCollection& extrusion_entity_collection, float print_z, const Point& copy, GLVolume& volume);
|
|
static void extrusionentity_to_verts(const ExtrusionEntity* extrusion_entity, float print_z, const Point& copy, GLVolume& volume);
|
|
static void polyline3_to_verts(const Polyline3& polyline, double width, double height, GLVolume& volume);
|
|
static void point3_to_verts(const Vec3crd& point, double width, double height, GLVolume& volume);
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|