PrusaSlicer-NonPlainar/src/avrdude/avr910.c
2019-06-25 18:16:49 +02:00

778 lines
18 KiB
C

/*
* avrdude - A Downloader/Uploader for AVR device programmers
* Copyright (C) 2003-2004 Theodore A. Roth <troth@openavr.org>
* Copyright 2007 Joerg Wunsch <j@uriah.heep.sax.de>
* Copyright 2008 Klaus Leidinger <klaus@mikrocontroller-projekte.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* $Id$ */
/*
* avrdude interface for Atmel Low Cost Serial programmers which adher to the
* protocol described in application note avr910.
*/
#include "ac_cfg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <ctype.h>
#include <unistd.h>
#if !defined(WIN32NATIVE)
# include <sys/time.h>
#endif
#include "avrdude.h"
#include "libavrdude.h"
#include "avr910.h"
/*
* Private data for this programmer.
*/
struct pdata
{
char has_auto_incr_addr;
unsigned char devcode;
unsigned int buffersize;
unsigned char test_blockmode;
unsigned char use_blockmode;
};
#define PDATA(pgm) ((struct pdata *)(pgm->cookie))
static void avr910_setup(PROGRAMMER * pgm)
{
if ((pgm->cookie = malloc(sizeof(struct pdata))) == 0) {
avrdude_message(MSG_INFO, "%s: avr910_setup(): Out of memory allocating private data\n",
progname);
exit(1);
}
memset(pgm->cookie, 0, sizeof(struct pdata));
PDATA(pgm)->test_blockmode = 1;
}
static void avr910_teardown(PROGRAMMER * pgm)
{
free(pgm->cookie);
}
static int avr910_send(PROGRAMMER * pgm, char * buf, size_t len)
{
return serial_send(&pgm->fd, (unsigned char *)buf, len);
}
static int avr910_recv(PROGRAMMER * pgm, char * buf, size_t len)
{
int rv;
rv = serial_recv(&pgm->fd, (unsigned char *)buf, len);
if (rv < 0) {
avrdude_message(MSG_INFO, "%s: avr910_recv(): programmer is not responding\n",
progname);
return 1;
}
return 0;
}
static int avr910_drain(PROGRAMMER * pgm, int display)
{
return serial_drain(&pgm->fd, display);
}
static int avr910_vfy_cmd_sent(PROGRAMMER * pgm, char * errmsg)
{
char c;
avr910_recv(pgm, &c, 1);
if (c != '\r') {
avrdude_message(MSG_INFO, "%s: error: programmer did not respond to command: %s\n",
progname, errmsg);
return 1;
}
return 0;
}
/*
* issue the 'chip erase' command to the AVR device
*/
static int avr910_chip_erase(PROGRAMMER * pgm, AVRPART * p)
{
avr910_send(pgm, "e", 1);
if (avr910_vfy_cmd_sent(pgm, "chip erase") < 0)
return -1;
/*
* avr910 firmware may not delay long enough
*/
usleep (p->chip_erase_delay);
return 0;
}
static int avr910_enter_prog_mode(PROGRAMMER * pgm)
{
avr910_send(pgm, "P", 1);
return avr910_vfy_cmd_sent(pgm, "enter prog mode");
}
static int avr910_leave_prog_mode(PROGRAMMER * pgm)
{
avr910_send(pgm, "L", 1);
return avr910_vfy_cmd_sent(pgm, "leave prog mode");
}
/*
* issue the 'program enable' command to the AVR device
*/
static int avr910_program_enable(PROGRAMMER * pgm, AVRPART * p)
{
return -1;
}
/*
* initialize the AVR device and prepare it to accept commands
*/
static int avr910_initialize(PROGRAMMER * pgm, AVRPART * p)
{
char id[8];
char sw[2];
char hw[2];
char buf[10];
char type;
char c;
AVRPART * part;
/* Get the programmer identifier. Programmer returns exactly 7 chars
_without_ the null.*/
avr910_send(pgm, "S", 1);
memset (id, 0, sizeof(id));
avr910_recv(pgm, id, sizeof(id)-1);
/* Get the HW and SW versions to see if the programmer is present. */
avr910_send(pgm, "V", 1);
avr910_recv(pgm, sw, sizeof(sw));
avr910_send(pgm, "v", 1);
avr910_recv(pgm, hw, sizeof(hw));
/* Get the programmer type (serial or parallel). Expect serial. */
avr910_send(pgm, "p", 1);
avr910_recv(pgm, &type, 1);
avrdude_message(MSG_INFO, "Found programmer: Id = \"%s\"; type = %c\n", id, type);
avrdude_message(MSG_INFO, " Software Version = %c.%c; ", sw[0], sw[1]);
avrdude_message(MSG_INFO, "Hardware Version = %c.%c\n", hw[0], hw[1]);
/* See if programmer supports autoincrement of address. */
avr910_send(pgm, "a", 1);
avr910_recv(pgm, &PDATA(pgm)->has_auto_incr_addr, 1);
if (PDATA(pgm)->has_auto_incr_addr == 'Y')
avrdude_message(MSG_INFO, "Programmer supports auto addr increment.\n");
/* Check support for buffered memory access, ignore if not available */
if (PDATA(pgm)->test_blockmode == 1) {
avr910_send(pgm, "b", 1);
avr910_recv(pgm, &c, 1);
if (c == 'Y') {
avr910_recv(pgm, &c, 1);
PDATA(pgm)->buffersize = (unsigned int)(unsigned char)c<<8;
avr910_recv(pgm, &c, 1);
PDATA(pgm)->buffersize += (unsigned int)(unsigned char)c;
avrdude_message(MSG_INFO, "Programmer supports buffered memory access with "
"buffersize = %u bytes.\n",
PDATA(pgm)->buffersize);
PDATA(pgm)->use_blockmode = 1;
} else {
PDATA(pgm)->use_blockmode = 0;
}
} else {
PDATA(pgm)->use_blockmode = 0;
}
if (PDATA(pgm)->devcode == 0) {
char devtype_1st;
int dev_supported = 0;
/* Get list of devices that the programmer supports. */
avr910_send(pgm, "t", 1);
avrdude_message(MSG_INFO, "\nProgrammer supports the following devices:\n");
devtype_1st = 0;
while (1) {
avr910_recv(pgm, &c, 1);
if (devtype_1st == 0)
devtype_1st = c;
if (c == 0)
break;
part = locate_part_by_avr910_devcode(part_list, c);
avrdude_message(MSG_INFO, " Device code: 0x%02x = %s\n", c, part ? part->desc : "(unknown)");
/* FIXME: Need to lookup devcode and report the device. */
if (p->avr910_devcode == c)
dev_supported = 1;
};
avrdude_message(MSG_INFO, "\n");
if (!dev_supported) {
avrdude_message(MSG_INFO, "%s: %s: selected device is not supported by programmer: %s\n",
progname, ovsigck? "warning": "error", p->id);
if (!ovsigck)
return -1;
}
/* If the user forced the selection, use the first device
type that is supported by the programmer. */
buf[1] = ovsigck? devtype_1st: p->avr910_devcode;
} else {
/* devcode overridden by -x devcode= option */
buf[1] = (char)(PDATA(pgm)->devcode);
}
/* Tell the programmer which part we selected. */
buf[0] = 'T';
/* buf[1] has been set up above */
avr910_send(pgm, buf, 2);
avr910_vfy_cmd_sent(pgm, "select device");
avrdude_message(MSG_NOTICE, "%s: avr910_devcode selected: 0x%02x\n",
progname, (unsigned)buf[1]);
avr910_enter_prog_mode(pgm);
return 0;
}
static void avr910_disable(PROGRAMMER * pgm)
{
/* Do nothing. */
return;
}
static void avr910_enable(PROGRAMMER * pgm)
{
/* Do nothing. */
return;
}
/*
* transmit an AVR device command and return the results; 'cmd' and
* 'res' must point to at least a 4 byte data buffer
*/
static int avr910_cmd(PROGRAMMER * pgm, const unsigned char *cmd,
unsigned char *res)
{
char buf[5];
/* FIXME: Insert version check here */
buf[0] = '.'; /* New Universal Command */
buf[1] = cmd[0];
buf[2] = cmd[1];
buf[3] = cmd[2];
buf[4] = cmd[3];
avr910_send (pgm, buf, 5);
avr910_recv (pgm, buf, 2);
res[0] = 0x00; /* Dummy value */
res[1] = cmd[0];
res[2] = cmd[1];
res[3] = buf[0];
return 0;
}
static int avr910_parseextparms(PROGRAMMER * pgm, LISTID extparms)
{
LNODEID ln;
const char *extended_param;
int rv = 0;
for (ln = lfirst(extparms); ln; ln = lnext(ln)) {
extended_param = ldata(ln);
if (strncmp(extended_param, "devcode=", strlen("devcode=")) == 0) {
int devcode;
if (sscanf(extended_param, "devcode=%i", &devcode) != 1 ||
devcode <= 0 || devcode > 255) {
avrdude_message(MSG_INFO, "%s: avr910_parseextparms(): invalid devcode '%s'\n",
progname, extended_param);
rv = -1;
continue;
}
avrdude_message(MSG_NOTICE2, "%s: avr910_parseextparms(): devcode overwritten as 0x%02x\n",
progname, devcode);
PDATA(pgm)->devcode = devcode;
continue;
}
if (strncmp(extended_param, "no_blockmode", strlen("no_blockmode")) == 0) {
avrdude_message(MSG_NOTICE2, "%s: avr910_parseextparms(-x): no testing for Blockmode\n",
progname);
PDATA(pgm)->test_blockmode = 0;
continue;
}
avrdude_message(MSG_INFO, "%s: avr910_parseextparms(): invalid extended parameter '%s'\n",
progname, extended_param);
rv = -1;
}
return rv;
}
static int avr910_open(PROGRAMMER * pgm, char * port)
{
union pinfo pinfo;
/*
* If baudrate was not specified use 19.200 Baud
*/
if(pgm->baudrate == 0) {
pgm->baudrate = 19200;
}
strcpy(pgm->port, port);
pinfo.baud = pgm->baudrate;
if (serial_open(port, pinfo, &pgm->fd)==-1) {
return -1;
}
/*
* drain any extraneous input
*/
avr910_drain (pgm, 0);
return 0;
}
static void avr910_close(PROGRAMMER * pgm)
{
avr910_leave_prog_mode(pgm);
serial_close(&pgm->fd);
pgm->fd.ifd = -1;
}
static void avr910_display(PROGRAMMER * pgm, const char * p)
{
return;
}
static void avr910_set_addr(PROGRAMMER * pgm, unsigned long addr)
{
char cmd[3];
cmd[0] = 'A';
cmd[1] = (addr >> 8) & 0xff;
cmd[2] = addr & 0xff;
avr910_send(pgm, cmd, sizeof(cmd));
avr910_vfy_cmd_sent(pgm, "set addr");
}
static int avr910_write_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char value)
{
char cmd[2];
if (strcmp(m->desc, "flash") == 0) {
if (addr & 0x01) {
cmd[0] = 'C'; /* Write Program Mem high byte */
}
else {
cmd[0] = 'c';
}
addr >>= 1;
}
else if (strcmp(m->desc, "eeprom") == 0) {
cmd[0] = 'D';
}
else {
return avr_write_byte_default(pgm, p, m, addr, value);
}
cmd[1] = value;
avr910_set_addr(pgm, addr);
avr910_send(pgm, cmd, sizeof(cmd));
avr910_vfy_cmd_sent(pgm, "write byte");
return 0;
}
static int avr910_read_byte_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char * value)
{
char buf[2];
avr910_set_addr(pgm, addr >> 1);
avr910_send(pgm, "R", 1);
/* Read back the program mem word (MSB first) */
avr910_recv(pgm, buf, sizeof(buf));
if ((addr & 0x01) == 0) {
*value = buf[1];
}
else {
*value = buf[0];
}
return 0;
}
static int avr910_read_byte_eeprom(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char * value)
{
avr910_set_addr(pgm, addr);
avr910_send(pgm, "d", 1);
avr910_recv(pgm, (char *)value, 1);
return 0;
}
static int avr910_read_byte(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned long addr, unsigned char * value)
{
if (strcmp(m->desc, "flash") == 0) {
return avr910_read_byte_flash(pgm, p, m, addr, value);
}
if (strcmp(m->desc, "eeprom") == 0) {
return avr910_read_byte_eeprom(pgm, p, m, addr, value);
}
return avr_read_byte_default(pgm, p, m, addr, value);
}
static int avr910_paged_write_flash(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
unsigned char cmd[] = {'c', 'C'};
char buf[2];
unsigned int max_addr = addr + n_bytes;
unsigned int page_addr;
int page_bytes = page_size;
int page_wr_cmd_pending = 0;
page_addr = addr;
avr910_set_addr(pgm, addr>>1);
while (addr < max_addr) {
page_wr_cmd_pending = 1;
buf[0] = cmd[addr & 0x01];
buf[1] = m->buf[addr];
avr910_send(pgm, buf, sizeof(buf));
avr910_vfy_cmd_sent(pgm, "write byte");
addr++;
page_bytes--;
if (m->paged && (page_bytes == 0)) {
/* Send the "Issue Page Write" if we have sent a whole page. */
avr910_set_addr(pgm, page_addr>>1);
avr910_send(pgm, "m", 1);
avr910_vfy_cmd_sent(pgm, "flush page");
page_wr_cmd_pending = 0;
usleep(m->max_write_delay);
avr910_set_addr(pgm, addr>>1);
/* Set page address for next page. */
page_addr = addr;
page_bytes = page_size;
}
else if ((PDATA(pgm)->has_auto_incr_addr != 'Y') && ((addr & 0x01) == 0)) {
avr910_set_addr(pgm, addr>>1);
}
}
/* If we didn't send the page wr cmd after the last byte written in the
loop, send it now. */
if (page_wr_cmd_pending) {
avr910_set_addr(pgm, page_addr>>1);
avr910_send(pgm, "m", 1);
avr910_vfy_cmd_sent(pgm, "flush final page");
usleep(m->max_write_delay);
}
return addr;
}
static int avr910_paged_write_eeprom(PROGRAMMER * pgm, AVRPART * p,
AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
char cmd[2];
unsigned int max_addr = addr + n_bytes;
avr910_set_addr(pgm, addr);
cmd[0] = 'D';
while (addr < max_addr) {
cmd[1] = m->buf[addr];
avr910_send(pgm, cmd, sizeof(cmd));
avr910_vfy_cmd_sent(pgm, "write byte");
usleep(m->max_write_delay);
addr++;
if (PDATA(pgm)->has_auto_incr_addr != 'Y') {
avr910_set_addr(pgm, addr);
}
}
return addr;
}
static int avr910_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
int rval = 0;
if (PDATA(pgm)->use_blockmode == 0) {
if (strcmp(m->desc, "flash") == 0) {
rval = avr910_paged_write_flash(pgm, p, m, page_size, addr, n_bytes);
} else if (strcmp(m->desc, "eeprom") == 0) {
rval = avr910_paged_write_eeprom(pgm, p, m, page_size, addr, n_bytes);
} else {
rval = -2;
}
}
if (PDATA(pgm)->use_blockmode == 1) {
unsigned int max_addr = addr + n_bytes;
char *cmd;
unsigned int blocksize = PDATA(pgm)->buffersize;
int wr_size;
if (strcmp(m->desc, "flash") && strcmp(m->desc, "eeprom"))
return -2;
if (m->desc[0] == 'e') {
blocksize = 1; /* Write to eeprom single bytes only */
wr_size = 1;
} else {
wr_size = 2;
}
avr910_set_addr(pgm, addr / wr_size);
cmd = malloc(4 + blocksize);
if (!cmd) return -1;
cmd[0] = 'B';
cmd[3] = toupper((int)(m->desc[0]));
while (addr < max_addr) {
if ((max_addr - addr) < blocksize) {
blocksize = max_addr - addr;
};
memcpy(&cmd[4], &m->buf[addr], blocksize);
cmd[1] = (blocksize >> 8) & 0xff;
cmd[2] = blocksize & 0xff;
avr910_send(pgm, cmd, 4 + blocksize);
avr910_vfy_cmd_sent(pgm, "write block");
addr += blocksize;
} /* while */
free(cmd);
rval = addr;
}
return rval;
}
static int avr910_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
unsigned int page_size,
unsigned int addr, unsigned int n_bytes)
{
char cmd[4];
int rd_size;
unsigned int max_addr;
char buf[2];
int rval=0;
max_addr = addr + n_bytes;
if (strcmp(m->desc, "flash") == 0) {
cmd[0] = 'R';
rd_size = 2; /* read two bytes per addr */
} else if (strcmp(m->desc, "eeprom") == 0) {
cmd[0] = 'd';
rd_size = 1;
} else {
return -2;
}
if (PDATA(pgm)->use_blockmode) {
/* use buffered mode */
int blocksize = PDATA(pgm)->buffersize;
cmd[0] = 'g';
cmd[3] = toupper((int)(m->desc[0]));
avr910_set_addr(pgm, addr / rd_size);
while (addr < max_addr) {
if ((max_addr - addr) < (unsigned)blocksize) {
blocksize = max_addr - addr;
}
cmd[1] = (blocksize >> 8) & 0xff;
cmd[2] = blocksize & 0xff;
avr910_send(pgm, cmd, 4);
avr910_recv(pgm, (char *)&m->buf[addr], blocksize);
addr += blocksize;
}
rval = addr;
} else {
avr910_set_addr(pgm, addr / rd_size);
while (addr < max_addr) {
avr910_send(pgm, cmd, 1);
if (rd_size == 2) {
/* The 'R' command returns two bytes, MSB first, we need to put the data
into the memory buffer LSB first. */
avr910_recv(pgm, buf, 2);
m->buf[addr] = buf[1]; /* LSB */
m->buf[addr + 1] = buf[0]; /* MSB */
}
else {
avr910_recv(pgm, (char *)&m->buf[addr], 1);
}
addr += rd_size;
if (PDATA(pgm)->has_auto_incr_addr != 'Y') {
avr910_set_addr(pgm, addr / rd_size);
}
}
rval = addr;
}
return rval;
}
/* Signature byte reads are always 3 bytes. */
static int avr910_read_sig_bytes(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m)
{
unsigned char tmp;
if (m->size < 3) {
avrdude_message(MSG_INFO, "%s: memsize too small for sig byte read", progname);
return -1;
}
avr910_send(pgm, "s", 1);
avr910_recv(pgm, (char *)m->buf, 3);
/* Returned signature has wrong order. */
tmp = m->buf[2];
m->buf[2] = m->buf[0];
m->buf[0] = tmp;
return 3;
}
const char avr910_desc[] = "Serial programmers using protocol described in application note AVR910";
void avr910_initpgm(PROGRAMMER * pgm)
{
strcpy(pgm->type, "avr910");
/*
* mandatory functions
*/
pgm->initialize = avr910_initialize;
pgm->display = avr910_display;
pgm->enable = avr910_enable;
pgm->disable = avr910_disable;
pgm->program_enable = avr910_program_enable;
pgm->chip_erase = avr910_chip_erase;
pgm->cmd = avr910_cmd;
pgm->open = avr910_open;
pgm->close = avr910_close;
/*
* optional functions
*/
pgm->write_byte = avr910_write_byte;
pgm->read_byte = avr910_read_byte;
pgm->paged_write = avr910_paged_write;
pgm->paged_load = avr910_paged_load;
pgm->read_sig_bytes = avr910_read_sig_bytes;
pgm->parseextparams = avr910_parseextparms;
pgm->setup = avr910_setup;
pgm->teardown = avr910_teardown;
}