PrusaSlicer-NonPlainar/src/libslic3r/Model.hpp

660 lines
32 KiB
C++

#ifndef slic3r_Model_hpp_
#define slic3r_Model_hpp_
#include "libslic3r.h"
#include "PrintConfig.hpp"
#include "Layer.hpp"
#include "Point.hpp"
#include "TriangleMesh.hpp"
#include "Slicing.hpp"
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "Geometry.hpp"
#include <libslic3r/SLA/SLACommon.hpp>
namespace Slic3r {
class Model;
class ModelInstance;
class ModelMaterial;
class ModelObject;
class ModelVolume;
class Print;
class SLAPrint;
typedef std::string t_model_material_id;
typedef std::string t_model_material_attribute;
typedef std::map<t_model_material_attribute, std::string> t_model_material_attributes;
typedef std::map<t_model_material_id, ModelMaterial*> ModelMaterialMap;
typedef std::vector<ModelObject*> ModelObjectPtrs;
typedef std::vector<ModelVolume*> ModelVolumePtrs;
typedef std::vector<ModelInstance*> ModelInstancePtrs;
// Unique identifier of a Model, ModelObject, ModelVolume, ModelInstance or ModelMaterial.
// Used to synchronize the front end (UI) with the back end (BackgroundSlicingProcess / Print / PrintObject)
// Valid IDs are strictly positive (non zero).
// It is declared as an object, as some compilers (notably msvcc) consider a typedef size_t equivalent to size_t
// for parameter overload.
struct ModelID
{
ModelID(size_t id) : id(id) {}
bool operator==(const ModelID &rhs) const { return this->id == rhs.id; }
bool operator!=(const ModelID &rhs) const { return this->id != rhs.id; }
bool operator< (const ModelID &rhs) const { return this->id < rhs.id; }
bool operator> (const ModelID &rhs) const { return this->id > rhs.id; }
bool operator<=(const ModelID &rhs) const { return this->id <= rhs.id; }
bool operator>=(const ModelID &rhs) const { return this->id >= rhs.id; }
bool valid() const { return id != 0; }
size_t id;
};
// Base for Model, ModelObject, ModelVolume, ModelInstance or ModelMaterial to provide a unique ID
// to synchronize the front end (UI) with the back end (BackgroundSlicingProcess / Print / PrintObject).
// Achtung! The s_last_id counter is not thread safe, so it is expected, that the ModelBase derived instances
// are only instantiated from the main thread.
class ModelBase
{
public:
ModelID id() const { return m_id; }
protected:
// Constructors to be only called by derived classes.
// Default constructor to assign a unique ID.
ModelBase() : m_id(generate_new_id()) {}
// Constructor with ignored int parameter to assign an invalid ID, to be replaced
// by an existing ID copied from elsewhere.
ModelBase(int) : m_id(ModelID(0)) {}
// Use with caution!
void set_new_unique_id() { m_id = generate_new_id(); }
void set_invalid_id() { m_id = 0; }
// Use with caution!
void copy_id(const ModelBase &rhs) { m_id = rhs.id(); }
// Override this method if a ModelBase derived class owns other ModelBase derived instances.
void assign_new_unique_ids_recursive() { this->set_new_unique_id(); }
private:
ModelID m_id;
static inline ModelID generate_new_id() { return ModelID(++ s_last_id); }
static size_t s_last_id;
};
#define MODELBASE_DERIVED_COPY_MOVE_CLONE(TYPE) \
/* Copy a model, copy the IDs. The Print::apply() will call the TYPE::copy() method */ \
/* to make a private copy for background processing. */ \
static TYPE* new_copy(const TYPE &rhs) { return new TYPE(rhs); } \
static TYPE* new_copy(TYPE &&rhs) { return new TYPE(std::move(rhs)); } \
static TYPE make_copy(const TYPE &rhs) { return TYPE(rhs); } \
static TYPE make_copy(TYPE &&rhs) { return TYPE(std::move(rhs)); } \
TYPE& assign_copy(const TYPE &rhs); \
TYPE& assign_copy(TYPE &&rhs); \
/* Copy a TYPE, generate new IDs. The front end will use this call. */ \
static TYPE* new_clone(const TYPE &rhs) { \
/* Default constructor assigning an invalid ID. */ \
auto obj = new TYPE(-1); \
obj->assign_clone(rhs); \
return obj; \
} \
TYPE make_clone(const TYPE &rhs) { \
/* Default constructor assigning an invalid ID. */ \
TYPE obj(-1); \
obj.assign_clone(rhs); \
return obj; \
} \
TYPE& assign_clone(const TYPE &rhs) { \
this->assign_copy(rhs); \
this->assign_new_unique_ids_recursive(); \
return *this; \
}
#define MODELBASE_DERIVED_PRIVATE_COPY_MOVE(TYPE) \
private: \
/* Private constructor with an unused int parameter will create a TYPE instance with an invalid ID. */ \
explicit TYPE(int) : ModelBase(-1) {}; \
void assign_new_unique_ids_recursive();
// Material, which may be shared across multiple ModelObjects of a single Model.
class ModelMaterial : public ModelBase
{
public:
// Attributes are defined by the AMF file format, but they don't seem to be used by Slic3r for any purpose.
t_model_material_attributes attributes;
// Dynamic configuration storage for the object specific configuration values, overriding the global configuration.
DynamicPrintConfig config;
Model* get_model() const { return m_model; }
void apply(const t_model_material_attributes &attributes)
{ this->attributes.insert(attributes.begin(), attributes.end()); }
protected:
friend class Model;
// Constructor, which assigns a new unique ID.
ModelMaterial(Model *model) : m_model(model) {}
// Copy constructor copies the ID and m_model!
ModelMaterial(const ModelMaterial &rhs) = default;
void set_model(Model *model) { m_model = model; }
private:
// Parent, owning this material.
Model *m_model;
ModelMaterial() = delete;
ModelMaterial(ModelMaterial &&rhs) = delete;
ModelMaterial& operator=(const ModelMaterial &rhs) = delete;
ModelMaterial& operator=(ModelMaterial &&rhs) = delete;
};
// A printable object, possibly having multiple print volumes (each with its own set of parameters and materials),
// and possibly having multiple modifier volumes, each modifier volume with its set of parameters and materials.
// Each ModelObject may be instantiated mutliple times, each instance having different placement on the print bed,
// different rotation and different uniform scaling.
class ModelObject : public ModelBase
{
friend class Model;
public:
std::string name;
std::string input_file; // XXX: consider fs::path
// Instances of this ModelObject. Each instance defines a shift on the print bed, rotation around the Z axis and a uniform scaling.
// Instances are owned by this ModelObject.
ModelInstancePtrs instances;
// Printable and modifier volumes, each with its material ID and a set of override parameters.
// ModelVolumes are owned by this ModelObject.
ModelVolumePtrs volumes;
// Configuration parameters specific to a single ModelObject, overriding the global Slic3r settings.
DynamicPrintConfig config;
// Variation of a layer thickness for spans of Z coordinates.
t_layer_height_ranges layer_height_ranges;
// Profile of increasing z to a layer height, to be linearly interpolated when calculating the layers.
// The pairs of <z, layer_height> are packed into a 1D array.
std::vector<coordf_t> layer_height_profile;
// This vector holds position of selected support points for SLA. The data are
// saved in mesh coordinates to allow using them for several instances.
// The format is (x, y, z, point_size, supports_island)
std::vector<sla::SupportPoint> sla_support_points;
// To keep track of where the points came from (used for synchronization between
// the SLA gizmo and the backend).
sla::PointsStatus sla_points_status = sla::PointsStatus::None;
/* This vector accumulates the total translation applied to the object by the
center_around_origin() method. Callers might want to apply the same translation
to new volumes before adding them to this object in order to preserve alignment
when user expects that. */
Vec3d origin_translation;
Model* get_model() { return m_model; };
const Model* get_model() const { return m_model; };
ModelVolume* add_volume(const TriangleMesh &mesh);
ModelVolume* add_volume(TriangleMesh &&mesh);
ModelVolume* add_volume(const ModelVolume &volume);
ModelVolume* add_volume(const ModelVolume &volume, TriangleMesh &&mesh);
void delete_volume(size_t idx);
void clear_volumes();
bool is_multiparts() const { return volumes.size() > 1; }
ModelInstance* add_instance();
ModelInstance* add_instance(const ModelInstance &instance);
ModelInstance* add_instance(const Vec3d &offset, const Vec3d &scaling_factor, const Vec3d &rotation, const Vec3d &mirror);
void delete_instance(size_t idx);
void delete_last_instance();
void clear_instances();
// Returns the bounding box of the transformed instances.
// This bounding box is approximate and not snug.
// This bounding box is being cached.
const BoundingBoxf3& bounding_box() const;
void invalidate_bounding_box() { m_bounding_box_valid = false; m_raw_mesh_bounding_box_valid = false; }
// A mesh containing all transformed instances of this object.
TriangleMesh mesh() const;
// Non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
// Currently used by ModelObject::mesh() and to calculate the 2D envelope for 2D platter.
TriangleMesh raw_mesh() const;
// Non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
TriangleMesh full_raw_mesh() const;
// A transformed snug bounding box around the non-modifier object volumes, without the translation applied.
// This bounding box is only used for the actual slicing.
BoundingBoxf3 raw_bounding_box() const;
// A snug bounding box around the transformed non-modifier object volumes.
BoundingBoxf3 instance_bounding_box(size_t instance_idx, bool dont_translate = false) const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of non-modifier object volumes.
BoundingBoxf3 raw_mesh_bounding_box() const;
// A snug bounding box of non-transformed (non-rotated, non-scaled, non-translated) sum of all object volumes.
BoundingBoxf3 full_raw_mesh_bounding_box() const;
// Calculate 2D convex hull of of a projection of the transformed printable volumes into the XY plane.
// This method is cheap in that it does not make any unnecessary copy of the volume meshes.
// This method is used by the auto arrange function.
Polygon convex_hull_2d(const Transform3d &trafo_instance);
#if ENABLE_VOLUMES_CENTERING_FIXES
void center_around_origin(bool include_modifiers = true);
#else
void center_around_origin();
#endif // ENABLE_VOLUMES_CENTERING_FIXES
void ensure_on_bed();
void translate_instances(const Vec3d& vector);
void translate_instance(size_t instance_idx, const Vec3d& vector);
void translate(const Vec3d &vector) { this->translate(vector(0), vector(1), vector(2)); }
void translate(double x, double y, double z);
void scale(const Vec3d &versor);
void scale(const double s) { this->scale(Vec3d(s, s, s)); }
void scale(double x, double y, double z) { this->scale(Vec3d(x, y, z)); }
/// Scale the current ModelObject to fit by altering the scaling factor of ModelInstances.
/// It operates on the total size by duplicating the object according to all the instances.
/// \param size Sizef3 the size vector
void scale_to_fit(const Vec3d &size);
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
void scale_mesh(const Vec3d& versor);
size_t materials_count() const;
size_t facets_count() const;
bool needed_repair() const;
ModelObjectPtrs cut(size_t instance, coordf_t z, bool keep_upper = true, bool keep_lower = true, bool rotate_lower = false); // Note: z is in world coordinates
void split(ModelObjectPtrs* new_objects);
void repair();
double get_min_z() const;
double get_instance_min_z(size_t instance_idx) const;
// Called by Print::validate() from the UI thread.
unsigned int check_instances_print_volume_state(const BoundingBoxf3& print_volume);
// Print object statistics to console.
void print_info() const;
protected:
friend class Print;
friend class SLAPrint;
// Called by Print::apply() to set the model pointer after making a copy.
void set_model(Model *model) { m_model = model; }
private:
ModelObject(Model *model) : m_model(model), origin_translation(Vec3d::Zero()),
m_bounding_box_valid(false), m_raw_mesh_bounding_box_valid(false) {}
~ModelObject();
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
/* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
ModelObject(const ModelObject &rhs) : ModelBase(-1), m_model(rhs.m_model) { this->assign_copy(rhs); }
explicit ModelObject(ModelObject &&rhs) : ModelBase(-1) { this->assign_copy(std::move(rhs)); }
ModelObject& operator=(const ModelObject &rhs) { this->assign_copy(rhs); m_model = rhs.m_model; return *this; }
ModelObject& operator=(ModelObject &&rhs) { this->assign_copy(std::move(rhs)); m_model = rhs.m_model; return *this; }
MODELBASE_DERIVED_COPY_MOVE_CLONE(ModelObject)
MODELBASE_DERIVED_PRIVATE_COPY_MOVE(ModelObject)
// Parent object, owning this ModelObject. Set to nullptr here, so the macros above will have it initialized.
Model *m_model = nullptr;
// Bounding box, cached.
mutable BoundingBoxf3 m_bounding_box;
mutable bool m_bounding_box_valid;
mutable BoundingBoxf3 m_raw_mesh_bounding_box;
mutable bool m_raw_mesh_bounding_box_valid;
};
// Declared outside of ModelVolume, so it could be forward declared.
enum class ModelVolumeType : int {
INVALID = -1,
MODEL_PART = 0,
PARAMETER_MODIFIER,
SUPPORT_ENFORCER,
SUPPORT_BLOCKER,
};
// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
// ModelVolume instances are owned by a ModelObject.
class ModelVolume : public ModelBase
{
public:
std::string name;
// The triangular model.
TriangleMesh mesh;
// Configuration parameters specific to an object model geometry or a modifier volume,
// overriding the global Slic3r settings and the ModelObject settings.
DynamicPrintConfig config;
// A parent object owning this modifier volume.
ModelObject* get_object() const { return this->object; };
ModelVolumeType type() const { return m_type; }
void set_type(const ModelVolumeType t) { m_type = t; }
bool is_model_part() const { return m_type == ModelVolumeType::MODEL_PART; }
bool is_modifier() const { return m_type == ModelVolumeType::PARAMETER_MODIFIER; }
bool is_support_enforcer() const { return m_type == ModelVolumeType::SUPPORT_ENFORCER; }
bool is_support_blocker() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER; }
bool is_support_modifier() const { return m_type == ModelVolumeType::SUPPORT_BLOCKER || m_type == ModelVolumeType::SUPPORT_ENFORCER; }
t_model_material_id material_id() const { return m_material_id; }
void set_material_id(t_model_material_id material_id);
ModelMaterial* material() const;
void set_material(t_model_material_id material_id, const ModelMaterial &material);
// Extract the current extruder ID based on this ModelVolume's config and the parent ModelObject's config.
// Extruder ID is only valid for FFF. Returns -1 for SLA or if the extruder ID is not applicable (support volumes).
int extruder_id() const;
bool is_splittable() const;
// Split this volume, append the result to the object owning this volume.
// Return the number of volumes created from this one.
// This is useful to assign different materials to different volumes of an object.
size_t split(unsigned int max_extruders);
void translate(double x, double y, double z) { translate(Vec3d(x, y, z)); }
void translate(const Vec3d& displacement);
void scale(const Vec3d& scaling_factors);
void scale(double x, double y, double z) { scale(Vec3d(x, y, z)); }
void scale(double s) { scale(Vec3d(s, s, s)); }
void rotate(double angle, Axis axis);
void rotate(double angle, const Vec3d& axis);
void mirror(Axis axis);
void scale_geometry(const Vec3d& versor);
// translates the mesh and the convex hull so that the origin of their vertices is in the center of this volume's bounding box
void center_geometry();
void calculate_convex_hull();
const TriangleMesh& get_convex_hull() const;
// Helpers for loading / storing into AMF / 3MF files.
static ModelVolumeType type_from_string(const std::string &s);
static std::string type_to_string(const ModelVolumeType t);
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
Vec3d get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
using ModelBase::set_new_unique_id;
protected:
friend class Print;
friend class SLAPrint;
friend class ModelObject;
explicit ModelVolume(const ModelVolume &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
private:
// Parent object owning this ModelVolume.
ModelObject* object;
// Is it an object to be printed, or a modifier volume?
ModelVolumeType m_type;
t_model_material_id m_material_id;
// The convex hull of this model's mesh.
TriangleMesh m_convex_hull;
Geometry::Transformation m_transformation;
// flag to optimize the checking if the volume is splittable
// -1 -> is unknown value (before first cheking)
// 0 -> is not splittable
// 1 -> is splittable
mutable int m_is_splittable{ -1 };
ModelVolume(ModelObject *object, const TriangleMesh &mesh) : mesh(mesh), m_type(ModelVolumeType::MODEL_PART), object(object)
{
if (mesh.stl.stats.number_of_facets > 1)
calculate_convex_hull();
}
ModelVolume(ModelObject *object, TriangleMesh &&mesh, TriangleMesh &&convex_hull) :
mesh(std::move(mesh)), m_convex_hull(std::move(convex_hull)), m_type(ModelVolumeType::MODEL_PART), object(object) {}
// Copying an existing volume, therefore this volume will get a copy of the ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other) :
ModelBase(other), // copy the ID
name(other.name), mesh(other.mesh), m_convex_hull(other.m_convex_hull), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
{
this->set_material_id(other.material_id());
}
// Providing a new mesh, therefore this volume will get a new unique ID assigned.
ModelVolume(ModelObject *object, const ModelVolume &other, const TriangleMesh &&mesh) :
name(other.name), mesh(std::move(mesh)), config(other.config), m_type(other.m_type), object(object), m_transformation(other.m_transformation)
{
this->set_material_id(other.material_id());
if (mesh.stl.stats.number_of_facets > 1)
calculate_convex_hull();
}
ModelVolume& operator=(ModelVolume &rhs) = delete;
};
// A single instance of a ModelObject.
// Knows the affine transformation of an object.
class ModelInstance : public ModelBase
{
public:
enum EPrintVolumeState : unsigned char
{
PVS_Inside,
PVS_Partly_Outside,
PVS_Fully_Outside,
Num_BedStates
};
private:
Geometry::Transformation m_transformation;
public:
// flag showing the position of this instance with respect to the print volume (set by Print::validate() using ModelObject::check_instances_print_volume_state())
EPrintVolumeState print_volume_state;
ModelObject* get_object() const { return this->object; }
const Geometry::Transformation& get_transformation() const { return m_transformation; }
void set_transformation(const Geometry::Transformation& transformation) { m_transformation = transformation; }
const Vec3d& get_offset() const { return m_transformation.get_offset(); }
double get_offset(Axis axis) const { return m_transformation.get_offset(axis); }
void set_offset(const Vec3d& offset) { m_transformation.set_offset(offset); }
void set_offset(Axis axis, double offset) { m_transformation.set_offset(axis, offset); }
const Vec3d& get_rotation() const { return m_transformation.get_rotation(); }
double get_rotation(Axis axis) const { return m_transformation.get_rotation(axis); }
void set_rotation(const Vec3d& rotation) { m_transformation.set_rotation(rotation); }
void set_rotation(Axis axis, double rotation) { m_transformation.set_rotation(axis, rotation); }
const Vec3d& get_scaling_factor() const { return m_transformation.get_scaling_factor(); }
double get_scaling_factor(Axis axis) const { return m_transformation.get_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor) { m_transformation.set_scaling_factor(scaling_factor); }
void set_scaling_factor(Axis axis, double scaling_factor) { m_transformation.set_scaling_factor(axis, scaling_factor); }
const Vec3d& get_mirror() const { return m_transformation.get_mirror(); }
double get_mirror(Axis axis) const { return m_transformation.get_mirror(axis); }
void set_mirror(const Vec3d& mirror) { m_transformation.set_mirror(mirror); }
void set_mirror(Axis axis, double mirror) { m_transformation.set_mirror(axis, mirror); }
// To be called on an external mesh
void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
// Calculate a bounding box of a transformed mesh. To be called on an external mesh.
BoundingBoxf3 transform_mesh_bounding_box(const TriangleMesh& mesh, bool dont_translate = false) const;
// Transform an external bounding box.
BoundingBoxf3 transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate = false) const;
// Transform an external vector.
Vec3d transform_vector(const Vec3d& v, bool dont_translate = false) const;
// To be called on an external polygon. It does not translate the polygon, only rotates and scales.
void transform_polygon(Polygon* polygon) const;
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const { return m_transformation.get_matrix(dont_translate, dont_rotate, dont_scale, dont_mirror); }
bool is_printable() const { return print_volume_state == PVS_Inside; }
protected:
friend class Print;
friend class SLAPrint;
friend class ModelObject;
explicit ModelInstance(const ModelInstance &rhs) = default;
void set_model_object(ModelObject *model_object) { object = model_object; }
private:
// Parent object, owning this instance.
ModelObject* object;
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject *object) : object(object), print_volume_state(PVS_Inside) {}
// Constructor, which assigns a new unique ID.
explicit ModelInstance(ModelObject *object, const ModelInstance &other) :
m_transformation(other.m_transformation), object(object), print_volume_state(PVS_Inside) {}
ModelInstance() = delete;
explicit ModelInstance(ModelInstance &&rhs) = delete;
ModelInstance& operator=(const ModelInstance &rhs) = delete;
ModelInstance& operator=(ModelInstance &&rhs) = delete;
};
// The print bed content.
// Description of a triangular model with multiple materials, multiple instances with various affine transformations
// and with multiple modifier meshes.
// A model groups multiple objects, each object having possibly multiple instances,
// all objects may share mutliple materials.
class Model : public ModelBase
{
static unsigned int s_auto_extruder_id;
public:
// Materials are owned by a model and referenced by objects through t_model_material_id.
// Single material may be shared by multiple models.
ModelMaterialMap materials;
// Objects are owned by a model. Each model may have multiple instances, each instance having its own transformation (shift, scale, rotation).
ModelObjectPtrs objects;
// Default constructor assigns a new ID to the model.
Model() {}
~Model() { this->clear_objects(); this->clear_materials(); }
/* To be able to return an object from own copy / clone methods. Hopefully the compiler will do the "Copy elision" */
/* (Omits copy and move(since C++11) constructors, resulting in zero - copy pass - by - value semantics). */
Model(const Model &rhs) : ModelBase(-1) { this->assign_copy(rhs); }
explicit Model(Model &&rhs) : ModelBase(-1) { this->assign_copy(std::move(rhs)); }
Model& operator=(const Model &rhs) { this->assign_copy(rhs); return *this; }
Model& operator=(Model &&rhs) { this->assign_copy(std::move(rhs)); return *this; }
MODELBASE_DERIVED_COPY_MOVE_CLONE(Model)
static Model read_from_file(const std::string &input_file, DynamicPrintConfig *config = nullptr, bool add_default_instances = true);
static Model read_from_archive(const std::string &input_file, DynamicPrintConfig *config, bool add_default_instances = true);
/// Repair the ModelObjects of the current Model.
/// This function calls repair function on each TriangleMesh of each model object volume
void repair();
// Add a new ModelObject to this Model, generate a new ID for this ModelObject.
ModelObject* add_object();
ModelObject* add_object(const char *name, const char *path, const TriangleMesh &mesh);
ModelObject* add_object(const char *name, const char *path, TriangleMesh &&mesh);
ModelObject* add_object(const ModelObject &other);
void delete_object(size_t idx);
bool delete_object(ModelID id);
bool delete_object(ModelObject* object);
void clear_objects();
ModelMaterial* add_material(t_model_material_id material_id);
ModelMaterial* add_material(t_model_material_id material_id, const ModelMaterial &other);
ModelMaterial* get_material(t_model_material_id material_id) {
ModelMaterialMap::iterator i = this->materials.find(material_id);
return (i == this->materials.end()) ? nullptr : i->second;
}
void delete_material(t_model_material_id material_id);
void clear_materials();
bool add_default_instances();
// Returns approximate axis aligned bounding box of this model
BoundingBoxf3 bounding_box() const;
// Set the print_volume_state of PrintObject::instances,
// return total number of printable objects.
unsigned int update_print_volume_state(const BoundingBoxf3 &print_volume);
// Returns true if any ModelObject was modified.
bool center_instances_around_point(const Vec2d &point);
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
TriangleMesh mesh() const;
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
// Croaks if the duplicated objects do not fit the print bed.
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
void duplicate_objects_grid(size_t x, size_t y, coordf_t dist);
bool looks_like_multipart_object() const;
void convert_multipart_object(unsigned int max_extruders);
// Ensures that the min z of the model is not negative
void adjust_min_z();
void print_info() const { for (const ModelObject *o : this->objects) o->print_info(); }
static unsigned int get_auto_extruder_id(unsigned int max_extruders);
static std::string get_auto_extruder_id_as_string(unsigned int max_extruders);
static void reset_auto_extruder_id();
// Propose an output file name & path based on the first printable object's name and source input file's path.
std::string propose_export_file_name_and_path() const;
// Propose an output path, replace extension. The new_extension shall contain the initial dot.
std::string propose_export_file_name_and_path(const std::string &new_extension) const;
private:
MODELBASE_DERIVED_PRIVATE_COPY_MOVE(Model)
};
#undef MODELBASE_DERIVED_COPY_MOVE_CLONE
#undef MODELBASE_DERIVED_PRIVATE_COPY_MOVE
// Test whether the two models contain the same number of ModelObjects with the same set of IDs
// ordered in the same order. In that case it is not necessary to kill the background processing.
extern bool model_object_list_equal(const Model &model_old, const Model &model_new);
// Test whether the new model is just an extension of the old model (new objects were added
// to the end of the original list. In that case it is not necessary to kill the background processing.
extern bool model_object_list_extended(const Model &model_old, const Model &model_new);
// Test whether the new ModelObject contains a different set of volumes (or sorted in a different order)
// than the old ModelObject.
extern bool model_volume_list_changed(const ModelObject &model_object_old, const ModelObject &model_object_new, const ModelVolumeType type);
#ifndef NDEBUG
// Verify whether the IDs of Model / ModelObject / ModelVolume / ModelInstance / ModelMaterial are valid and unique.
void check_model_ids_validity(const Model &model);
void check_model_ids_equal(const Model &model1, const Model &model2);
#endif /* NDEBUG */
}
#endif