PrusaSlicer-NonPlainar/src/libslic3r/GCode/WipeTowerPrusaMM.hpp
bubnikv c7f6e5436c Fix of
Extend the "filament type" list with PC or allow free form text into the filament type field. #1704
2019-05-17 11:46:46 +02:00

389 lines
16 KiB
C++

#ifndef WipeTowerPrusaMM_hpp_
#define WipeTowerPrusaMM_hpp_
#include <cmath>
#include <string>
#include <sstream>
#include <utility>
#include <algorithm>
#include "WipeTower.hpp"
#include "PrintConfig.hpp"
namespace Slic3r
{
namespace PrusaMultiMaterial {
class Writer;
};
class WipeTowerPrusaMM : public WipeTower
{
public:
enum material_type
{
INVALID = -1,
PLA = 0, // E:210C B:55C
ABS = 1, // E:255C B:100C
PET = 2, // E:240C B:90C
HIPS = 3, // E:220C B:100C
FLEX = 4, // E:245C B:80C
SCAFF = 5, // E:215C B:55C
EDGE = 6, // E:240C B:80C
NGEN = 7, // E:230C B:80C
PVA = 8, // E:210C B:80C
PC = 9
};
// Parse material name into material_type.
static material_type parse_material(const char *name);
static std::string to_string(material_type material);
// x -- x coordinates of wipe tower in mm ( left bottom corner )
// y -- y coordinates of wipe tower in mm ( left bottom corner )
// width -- width of wipe tower in mm ( default 60 mm - leave as it is )
// wipe_area -- space available for one toolchange in mm
WipeTowerPrusaMM(float x, float y, float width, float rotation_angle, float cooling_tube_retraction,
float cooling_tube_length, float parking_pos_retraction, float extra_loading_move,
float bridging, bool set_extruder_trimpot, GCodeFlavor flavor,
const std::vector<std::vector<float>>& wiping_matrix, unsigned int initial_tool) :
m_wipe_tower_pos(x, y),
m_wipe_tower_width(width),
m_wipe_tower_rotation_angle(rotation_angle),
m_y_shift(0.f),
m_z_pos(0.f),
m_is_first_layer(false),
m_cooling_tube_retraction(cooling_tube_retraction),
m_cooling_tube_length(cooling_tube_length),
m_parking_pos_retraction(parking_pos_retraction),
m_extra_loading_move(extra_loading_move),
m_bridging(bridging),
m_set_extruder_trimpot(set_extruder_trimpot),
m_gcode_flavor(flavor),
m_current_tool(initial_tool),
wipe_volumes(wiping_matrix)
{}
virtual ~WipeTowerPrusaMM() {}
// Set the extruder properties.
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed, float loading_speed_start,
float unloading_speed, float unloading_speed_start, float delay, int cooling_moves,
float cooling_initial_speed, float cooling_final_speed, std::string ramming_parameters, float nozzle_diameter)
{
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
m_filpar.push_back(FilamentParameters());
m_filpar[idx].material = material;
if (material == FLEX || material == SCAFF || material == PVA) {
// MMU2 lowers the print speed using the speed override (M220) for printing of soluble PVA/BVOH and flex materials.
// Therefore it does not make sense to use the new M220 B and M220 R (backup / restore).
m_retain_speed_override = false;
}
m_filpar[idx].temperature = temp;
m_filpar[idx].first_layer_temperature = first_layer_temp;
m_filpar[idx].loading_speed = loading_speed;
m_filpar[idx].loading_speed_start = loading_speed_start;
m_filpar[idx].unloading_speed = unloading_speed;
m_filpar[idx].unloading_speed_start = unloading_speed_start;
m_filpar[idx].delay = delay;
m_filpar[idx].cooling_moves = cooling_moves;
m_filpar[idx].cooling_initial_speed = cooling_initial_speed;
m_filpar[idx].cooling_final_speed = cooling_final_speed;
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
std::stringstream stream{ramming_parameters};
float speed = 0.f;
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
m_filpar[idx].ramming_line_width_multiplicator /= 100;
m_filpar[idx].ramming_step_multiplicator /= 100;
while (stream >> speed)
m_filpar[idx].ramming_speed.push_back(speed);
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
}
// Appends into internal structure m_plan containing info about the future wipe tower
// to be used before building begins. The entries must be added ordered in z.
void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f);
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
void generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result);
float get_depth() const { return m_wipe_tower_depth; }
// Switch to a next layer.
virtual void set_layer(
// Print height of this layer.
float print_z,
// Layer height, used to calculate extrusion the rate.
float layer_height,
// Maximum number of tool changes on this layer or the layers below.
size_t max_tool_changes,
// Is this the first layer of the print? In that case print the brim first.
bool is_first_layer,
// Is this the last layer of the waste tower?
bool is_last_layer)
{
m_z_pos = print_z;
m_layer_height = layer_height;
m_is_first_layer = is_first_layer;
m_print_brim = is_first_layer;
m_depth_traversed = 0.f;
m_current_shape = (! is_first_layer && m_current_shape == SHAPE_NORMAL) ? SHAPE_REVERSED : SHAPE_NORMAL;
if (is_first_layer) {
this->m_num_layer_changes = 0;
this->m_num_tool_changes = 0;
}
else
++ m_num_layer_changes;
// Calculate extrusion flow from desired line width, nozzle diameter, filament diameter and layer_height:
m_extrusion_flow = extrusion_flow(layer_height);
// Advance m_layer_info iterator, making sure we got it right
while (!m_plan.empty() && m_layer_info->z < print_z - WT_EPSILON && m_layer_info+1 != m_plan.end())
++m_layer_info;
}
// Return the wipe tower position.
virtual const xy& position() const { return m_wipe_tower_pos; }
// Return the wipe tower width.
virtual float width() const { return m_wipe_tower_width; }
// The wipe tower is finished, there should be no more tool changes or wipe tower prints.
virtual bool finished() const { return m_max_color_changes == 0; }
// Returns gcode to prime the nozzles at the front edge of the print bed.
virtual ToolChangeResult prime(
// print_z of the first layer.
float first_layer_height,
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
const std::vector<unsigned int> &tools,
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
bool last_wipe_inside_wipe_tower);
// Returns gcode for a toolchange and a final print head position.
// On the first layer, extrude a brim around the future wipe tower first.
virtual ToolChangeResult tool_change(unsigned int new_tool, bool last_in_layer);
// Fill the unfilled space with a sparse infill.
// Call this method only if layer_finished() is false.
virtual ToolChangeResult finish_layer();
// Is the current layer finished?
virtual bool layer_finished() const {
return ( (m_is_first_layer ? m_wipe_tower_depth - m_perimeter_width : m_layer_info->depth) - WT_EPSILON < m_depth_traversed);
}
virtual std::vector<float> get_used_filament() const override { return m_used_filament_length; }
virtual int get_number_of_toolchanges() const override { return m_num_tool_changes; }
private:
WipeTowerPrusaMM();
enum wipe_shape // A fill-in direction
{
SHAPE_NORMAL = 1,
SHAPE_REVERSED = -1
};
const bool m_peters_wipe_tower = false; // sparse wipe tower inspired by Peter's post processor - not finished yet
const float Filament_Area = float(M_PI * 1.75f * 1.75f / 4.f); // filament area in mm^2
const float Width_To_Nozzle_Ratio = 1.25f; // desired line width (oval) in multiples of nozzle diameter - may not be actually neccessary to adjust
const float WT_EPSILON = 1e-3f;
xy m_wipe_tower_pos; // Left front corner of the wipe tower in mm.
float m_wipe_tower_width; // Width of the wipe tower.
float m_wipe_tower_depth = 0.f; // Depth of the wipe tower
float m_wipe_tower_rotation_angle = 0.f; // Wipe tower rotation angle in degrees (with respect to x axis)
float m_internal_rotation = 0.f;
float m_y_shift = 0.f; // y shift passed to writer
float m_z_pos = 0.f; // Current Z position.
float m_layer_height = 0.f; // Current layer height.
size_t m_max_color_changes = 0; // Maximum number of color changes per layer.
bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower.
int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary)
// G-code generator parameters.
float m_cooling_tube_retraction = 0.f;
float m_cooling_tube_length = 0.f;
float m_parking_pos_retraction = 0.f;
float m_extra_loading_move = 0.f;
float m_bridging = 0.f;
bool m_set_extruder_trimpot = false;
bool m_retain_speed_override = true;
bool m_adhesion = true;
GCodeFlavor m_gcode_flavor;
float m_perimeter_width = 0.4f * Width_To_Nozzle_Ratio; // Width of an extrusion line, also a perimeter spacing for 100% infill.
float m_extrusion_flow = 0.038f; //0.029f;// Extrusion flow is derived from m_perimeter_width, layer height and filament diameter.
struct FilamentParameters {
material_type material = PLA;
int temperature = 0;
int first_layer_temperature = 0;
float loading_speed = 0.f;
float loading_speed_start = 0.f;
float unloading_speed = 0.f;
float unloading_speed_start = 0.f;
float delay = 0.f ;
int cooling_moves = 0;
float cooling_initial_speed = 0.f;
float cooling_final_speed = 0.f;
float ramming_line_width_multiplicator = 0.f;
float ramming_step_multiplicator = 0.f;
std::vector<float> ramming_speed;
float nozzle_diameter;
};
// Extruder specific parameters.
std::vector<FilamentParameters> m_filpar;
// State of the wipe tower generator.
unsigned int m_num_layer_changes = 0; // Layer change counter for the output statistics.
unsigned int m_num_tool_changes = 0; // Tool change change counter for the output statistics.
///unsigned int m_idx_tool_change_in_layer = 0; // Layer change counter in this layer. Counting up to m_max_color_changes.
bool m_print_brim = true;
// A fill-in direction (positive Y, negative Y) alternates with each layer.
wipe_shape m_current_shape = SHAPE_NORMAL;
unsigned int m_current_tool = 0;
const std::vector<std::vector<float>> wipe_volumes;
float m_depth_traversed = 0.f; // Current y position at the wipe tower.
bool m_left_to_right = true;
float m_extra_spacing = 1.f;
// Calculates extrusion flow needed to produce required line width for given layer height
float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow
{
if ( layer_height < 0 )
return m_extrusion_flow;
return layer_height * ( m_perimeter_width - layer_height * (1.f-float(M_PI)/4.f)) / Filament_Area;
}
// Calculates length of extrusion line to extrude given volume
float volume_to_length(float volume, float line_width, float layer_height) const {
return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f))));
}
// Calculates depth for all layers and propagates them downwards
void plan_tower();
// Goes through m_plan and recalculates depths and width of the WT to make it exactly square - experimental
void make_wipe_tower_square();
// Goes through m_plan, calculates border and finish_layer extrusions and subtracts them from last wipe
void save_on_last_wipe();
struct box_coordinates
{
box_coordinates(float left, float bottom, float width, float height) :
ld(left , bottom ),
lu(left , bottom + height),
rd(left + width, bottom ),
ru(left + width, bottom + height) {}
box_coordinates(const xy &pos, float width, float height) : box_coordinates(pos.x, pos.y, width, height) {}
void translate(const xy &shift) {
ld += shift; lu += shift;
rd += shift; ru += shift;
}
void translate(const float dx, const float dy) { translate(xy(dx, dy)); }
void expand(const float offset) {
ld += xy(- offset, - offset);
lu += xy(- offset, offset);
rd += xy( offset, - offset);
ru += xy( offset, offset);
}
void expand(const float offset_x, const float offset_y) {
ld += xy(- offset_x, - offset_y);
lu += xy(- offset_x, offset_y);
rd += xy( offset_x, - offset_y);
ru += xy( offset_x, offset_y);
}
xy ld; // left down
xy lu; // left upper
xy rd; // right lower
xy ru; // right upper
};
// to store information about tool changes for a given layer
struct WipeTowerInfo{
struct ToolChange {
unsigned int old_tool;
unsigned int new_tool;
float required_depth;
float ramming_depth;
float first_wipe_line;
float wipe_volume;
ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f)
: old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {}
};
float z; // z position of the layer
float height; // layer height
float depth; // depth of the layer based on all layers above
float extra_spacing;
float toolchanges_depth() const { float sum = 0.f; for (const auto &a : tool_changes) sum += a.required_depth; return sum; }
std::vector<ToolChange> tool_changes;
WipeTowerInfo(float z_par, float layer_height_par)
: z{z_par}, height{layer_height_par}, depth{0}, extra_spacing{1.f} {}
};
std::vector<WipeTowerInfo> m_plan; // Stores information about all layers and toolchanges for the future wipe tower (filled by plan_toolchange(...))
std::vector<WipeTowerInfo>::iterator m_layer_info = m_plan.end();
// Stores information about used filament length per extruder:
std::vector<float> m_used_filament_length;
// Returns gcode for wipe tower brim
// sideOnly -- set to false -- experimental, draw brim on sides of wipe tower
// offset -- set to 0 -- experimental, offset to replace brim in front / rear of wipe tower
ToolChangeResult toolchange_Brim(bool sideOnly = false, float y_offset = 0.f);
void toolchange_Unload(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
const material_type current_material,
const int new_temperature);
void toolchange_Change(
PrusaMultiMaterial::Writer &writer,
const unsigned int new_tool,
material_type new_material);
void toolchange_Load(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box);
void toolchange_Wipe(
PrusaMultiMaterial::Writer &writer,
const box_coordinates &cleaning_box,
float wipe_volume);
};
}; // namespace Slic3r
#endif /* WipeTowerPrusaMM_hpp_ */