230 lines
7.2 KiB
Perl
230 lines
7.2 KiB
Perl
package Slic3r::Fill::3DHoneycomb;
|
|
use Moo;
|
|
|
|
extends 'Slic3r::Fill::Base';
|
|
|
|
use POSIX qw(ceil fmod);
|
|
use Slic3r::Geometry qw(scale scaled_epsilon);
|
|
use Slic3r::Geometry::Clipper qw(intersection_pl);
|
|
|
|
# require bridge flow since most of this pattern hangs in air
|
|
sub use_bridge_flow { 1 }
|
|
|
|
sub fill_surface {
|
|
my ($self, $surface, %params) = @_;
|
|
|
|
my $expolygon = $surface->expolygon;
|
|
my $bb = $expolygon->bounding_box;
|
|
my $size = $bb->size;
|
|
|
|
my $distance = scale($self->spacing) / $params{density};
|
|
|
|
# align bounding box to a multiple of our honeycomb grid module
|
|
# (a module is 2*$distance since one $distance half-module is
|
|
# growing while the other $distance half-module is shrinking)
|
|
{
|
|
my $min = $bb->min_point;
|
|
$min->translate(
|
|
-($bb->x_min % (2*$distance)),
|
|
-($bb->y_min % (2*$distance)),
|
|
);
|
|
$bb->merge_point($min);
|
|
}
|
|
|
|
# generate pattern
|
|
my @polylines = map Slic3r::Polyline->new(@$_),
|
|
makeGrid(
|
|
scale($self->z),
|
|
$distance,
|
|
ceil($size->x / $distance) + 1,
|
|
ceil($size->y / $distance) + 1, #//
|
|
(($self->layer_id / $surface->thickness_layers) % 2) + 1,
|
|
);
|
|
|
|
# move pattern in place
|
|
$_->translate($bb->x_min, $bb->y_min) for @polylines;
|
|
|
|
# clip pattern to boundaries
|
|
@polylines = @{intersection_pl(\@polylines, \@$expolygon)};
|
|
|
|
# connect lines
|
|
unless ($params{dont_connect} || !@polylines) { # prevent calling leftmost_point() on empty collections
|
|
my ($expolygon_off) = @{$expolygon->offset_ex(scaled_epsilon)};
|
|
my $collection = Slic3r::Polyline::Collection->new(@polylines);
|
|
@polylines = ();
|
|
foreach my $polyline (@{$collection->chained_path_from($collection->leftmost_point, 0)}) {
|
|
# try to append this polyline to previous one if any
|
|
if (@polylines) {
|
|
my $line = Slic3r::Line->new($polylines[-1]->last_point, $polyline->first_point);
|
|
if ($line->length <= 1.5*$distance && $expolygon_off->contains_line($line)) {
|
|
$polylines[-1]->append_polyline($polyline);
|
|
next;
|
|
}
|
|
}
|
|
|
|
# make a clone before $collection goes out of scope
|
|
push @polylines, $polyline->clone;
|
|
}
|
|
}
|
|
|
|
# TODO: return ExtrusionLoop objects to get better chained paths
|
|
return @polylines;
|
|
}
|
|
|
|
|
|
=head1 DESCRIPTION
|
|
|
|
Creates a contiguous sequence of points at a specified height that make
|
|
up a horizontal slice of the edges of a space filling truncated
|
|
octahedron tesselation. The octahedrons are oriented so that the
|
|
square faces are in the horizontal plane with edges parallel to the X
|
|
and Y axes.
|
|
|
|
Credits: David Eccles (gringer).
|
|
|
|
=head2 makeGrid(z, gridSize, gridWidth, gridHeight, curveType)
|
|
|
|
Generate a set of curves (array of array of 2d points) that describe a
|
|
horizontal slice of a truncated regular octahedron with a specified
|
|
grid square size.
|
|
|
|
=cut
|
|
|
|
sub makeGrid {
|
|
my ($z, $gridSize, $gridWidth, $gridHeight, $curveType) = @_;
|
|
my $scaleFactor = $gridSize;
|
|
my $normalisedZ = $z / $scaleFactor;
|
|
my @points = makeNormalisedGrid($normalisedZ, $gridWidth, $gridHeight, $curveType);
|
|
foreach my $lineRef (@points) {
|
|
foreach my $pointRef (@$lineRef) {
|
|
$pointRef->[0] *= $scaleFactor;
|
|
$pointRef->[1] *= $scaleFactor;
|
|
}
|
|
}
|
|
return @points;
|
|
}
|
|
|
|
=head1 FUNCTIONS
|
|
=cut
|
|
|
|
=head2 colinearPoints(offset, gridLength)
|
|
|
|
Generate an array of points that are in the same direction as the
|
|
basic printing line (i.e. Y points for columns, X points for rows)
|
|
|
|
Note: a negative offset only causes a change in the perpendicular
|
|
direction
|
|
|
|
=cut
|
|
|
|
sub colinearPoints {
|
|
my ($offset, $baseLocation, $gridLength) = @_;
|
|
|
|
my @points = ();
|
|
push @points, $baseLocation - abs($offset/2);
|
|
for (my $i = 0; $i < $gridLength; $i++) {
|
|
push @points, $baseLocation + $i + abs($offset/2);
|
|
push @points, $baseLocation + ($i+1) - abs($offset/2);
|
|
}
|
|
push @points, $baseLocation + $gridLength + abs($offset/2);
|
|
return @points;
|
|
}
|
|
|
|
=head2 colinearPoints(offset, baseLocation, gridLength)
|
|
|
|
Generate an array of points for the dimension that is perpendicular to
|
|
the basic printing line (i.e. X points for columns, Y points for rows)
|
|
|
|
=cut
|
|
|
|
sub perpendPoints {
|
|
my ($offset, $baseLocation, $gridLength) = @_;
|
|
|
|
my @points = ();
|
|
my $side = 2*(($baseLocation) % 2) - 1;
|
|
push @points, $baseLocation - $offset/2 * $side;
|
|
for (my $i = 0; $i < $gridLength; $i++) {
|
|
$side = 2*(($i+$baseLocation) % 2) - 1;
|
|
push @points, $baseLocation + $offset/2 * $side;
|
|
push @points, $baseLocation + $offset/2 * $side;
|
|
}
|
|
push @points, $baseLocation - $offset/2 * $side;
|
|
|
|
return @points;
|
|
}
|
|
|
|
=head2 trim(pointArrayRef, minX, minY, maxX, maxY)
|
|
|
|
Trims an array of points to specified rectangular limits. Point
|
|
components that are outside these limits are set to the limits.
|
|
|
|
=cut
|
|
|
|
sub trim {
|
|
my ($pointArrayRef, $minX, $minY, $maxX, $maxY) = @_;
|
|
|
|
foreach (@$pointArrayRef) {
|
|
$_->[0] = ($_->[0] < $minX) ? $minX : (($_->[0] > $maxX) ? $maxX : $_->[0]);
|
|
$_->[1] = ($_->[1] < $minY) ? $minY : (($_->[1] > $maxY) ? $maxY : $_->[1]);
|
|
}
|
|
}
|
|
|
|
=head2 makeNormalisedGrid(z, gridWidth, gridHeight, curveType)
|
|
|
|
Generate a set of curves (array of array of 2d points) that describe a
|
|
horizontal slice of a truncated regular octahedron with edge length 1.
|
|
|
|
curveType specifies which lines to print, 1 for vertical lines
|
|
(columns), 2 for horizontal lines (rows), and 3 for both.
|
|
|
|
=cut
|
|
|
|
sub makeNormalisedGrid {
|
|
my ($z, $gridWidth, $gridHeight, $curveType) = @_;
|
|
|
|
## offset required to create a regular octagram
|
|
my $octagramGap = 0.5;
|
|
|
|
# sawtooth wave function for range f($z) = [-$octagramGap .. $octagramGap]
|
|
my $a = sqrt(2); # period
|
|
my $wave = abs(fmod($z, $a) - $a/2)/$a*4 - 1;
|
|
my $offset = $wave * $octagramGap;
|
|
|
|
my @points = ();
|
|
if (($curveType & 1) != 0) {
|
|
for (my $x = 0; $x <= $gridWidth; $x++) {
|
|
my @xPoints = perpendPoints($offset, $x, $gridHeight);
|
|
my @yPoints = colinearPoints($offset, 0, $gridHeight);
|
|
# This is essentially @newPoints = zip(@xPoints, @yPoints)
|
|
my @newPoints = map [ $xPoints[$_], $yPoints[$_] ], 0..$#xPoints;
|
|
|
|
# trim points to grid edges
|
|
#trim(\@newPoints, 0, 0, $gridWidth, $gridHeight);
|
|
|
|
if ($x % 2 == 0){
|
|
push @points, [ @newPoints ];
|
|
} else {
|
|
push @points, [ reverse @newPoints ];
|
|
}
|
|
}
|
|
}
|
|
if (($curveType & 2) != 0) {
|
|
for (my $y = 0; $y <= $gridHeight; $y++) {
|
|
my @xPoints = colinearPoints($offset, 0, $gridWidth);
|
|
my @yPoints = perpendPoints($offset, $y, $gridWidth);
|
|
my @newPoints = map [ $xPoints[$_], $yPoints[$_] ], 0..$#xPoints;
|
|
|
|
# trim points to grid edges
|
|
#trim(\@newPoints, 0, 0, $gridWidth, $gridHeight);
|
|
|
|
if ($y % 2 == 0) {
|
|
push @points, [ @newPoints ];
|
|
} else {
|
|
push @points, [ reverse @newPoints ];
|
|
}
|
|
}
|
|
}
|
|
return @points;
|
|
}
|
|
|
|
1;
|