PrusaSlicer-NonPlainar/src/libslic3r/Support/SupportParameters.cpp
Vojtech Bubnik 1e7a3216ca WIP Organic supports intefaces:
Further refactor of FDM support code - extracted interface routine to common.
Implemented support for soluble interfaces & half soluble / half non-soluble
interfaces.
2023-05-08 09:19:31 +02:00

142 lines
9.1 KiB
C++

#include "../Print.hpp"
#include "../PrintConfig.hpp"
#include "../Slicing.hpp"
#include "SupportParameters.hpp"
namespace Slic3r::FFFSupport {
SupportParameters::SupportParameters(const PrintObject &object)
{
const PrintConfig &print_config = object.print()->config();
const PrintObjectConfig &object_config = object.config();
const SlicingParameters &slicing_params = object.slicing_parameters();
this->soluble_interface = slicing_params.soluble_interface;
this->soluble_interface_non_soluble_base =
// Zero z-gap between the overhangs and the support interface.
slicing_params.soluble_interface &&
// Interface extruder soluble.
object_config.support_material_interface_extruder.value > 0 && print_config.filament_soluble.get_at(object_config.support_material_interface_extruder.value - 1) &&
// Base extruder: Either "print with active extruder" not soluble.
(object_config.support_material_extruder.value == 0 || ! print_config.filament_soluble.get_at(object_config.support_material_extruder.value - 1));
{
int num_top_interface_layers = std::max(0, object_config.support_material_interface_layers.value);
int num_bottom_interface_layers = object_config.support_material_bottom_interface_layers < 0 ?
num_top_interface_layers : object_config.support_material_bottom_interface_layers;
this->has_top_contacts = num_top_interface_layers > 0;
this->has_bottom_contacts = num_bottom_interface_layers > 0;
this->num_top_interface_layers = this->has_top_contacts ? size_t(num_top_interface_layers - 1) : 0;
this->num_bottom_interface_layers = this->has_bottom_contacts ? size_t(num_bottom_interface_layers - 1) : 0;
if (this->soluble_interface_non_soluble_base) {
// Try to support soluble dense interfaces with non-soluble dense interfaces.
this->num_top_base_interface_layers = size_t(std::min(num_top_interface_layers / 2, 2));
this->num_bottom_base_interface_layers = size_t(std::min(num_bottom_interface_layers / 2, 2));
} else {
this->num_top_base_interface_layers = 0;
this->num_bottom_base_interface_layers = 0;
}
}
this->first_layer_flow = Slic3r::support_material_1st_layer_flow(&object, float(slicing_params.first_print_layer_height));
this->support_material_flow = Slic3r::support_material_flow(&object, float(slicing_params.layer_height));
this->support_material_interface_flow = Slic3r::support_material_interface_flow(&object, float(slicing_params.layer_height));
this->raft_interface_flow = support_material_interface_flow;
// Calculate a minimum support layer height as a minimum over all extruders, but not smaller than 10um.
this->support_layer_height_min = scaled<coord_t>(0.01);
for (auto lh : print_config.min_layer_height.values)
this->support_layer_height_min = std::min(this->support_layer_height_min, std::max(0.01, lh));
for (auto layer : object.layers())
this->support_layer_height_min = std::min(this->support_layer_height_min, std::max(0.01, layer->height));
if (object_config.support_material_interface_layers.value == 0) {
// No interface layers allowed, print everything with the base support pattern.
this->support_material_interface_flow = this->support_material_flow;
}
// Evaluate the XY gap between the object outer perimeters and the support structures.
// Evaluate the XY gap between the object outer perimeters and the support structures.
coordf_t external_perimeter_width = 0.;
coordf_t bridge_flow_ratio = 0;
for (size_t region_id = 0; region_id < object.num_printing_regions(); ++ region_id) {
const PrintRegion &region = object.printing_region(region_id);
external_perimeter_width = std::max(external_perimeter_width, coordf_t(region.flow(object, frExternalPerimeter, slicing_params.layer_height).width()));
bridge_flow_ratio += region.config().bridge_flow_ratio;
}
this->gap_xy = object_config.support_material_xy_spacing.get_abs_value(external_perimeter_width);
bridge_flow_ratio /= object.num_printing_regions();
this->support_material_bottom_interface_flow = slicing_params.soluble_interface || ! object_config.thick_bridges ?
this->support_material_interface_flow.with_flow_ratio(bridge_flow_ratio) :
Flow::bridging_flow(bridge_flow_ratio * this->support_material_interface_flow.nozzle_diameter(), this->support_material_interface_flow.nozzle_diameter());
this->can_merge_support_regions = object_config.support_material_extruder.value == object_config.support_material_interface_extruder.value;
if (!this->can_merge_support_regions && (object_config.support_material_extruder.value == 0 || object_config.support_material_interface_extruder.value == 0)) {
// One of the support extruders is of "don't care" type.
auto object_extruders = object.object_extruders();
if (object_extruders.size() == 1 &&
*object_extruders.begin() == std::max<unsigned int>(object_config.support_material_extruder.value, object_config.support_material_interface_extruder.value))
// Object is printed with the same extruder as the support.
this->can_merge_support_regions = true;
}
double interface_spacing = object_config.support_material_interface_spacing.value + this->support_material_interface_flow.spacing();
this->interface_density = std::min(1., this->support_material_interface_flow.spacing() / interface_spacing);
double raft_interface_spacing = object_config.support_material_interface_spacing.value + this->raft_interface_flow.spacing();
this->raft_interface_density = std::min(1., this->raft_interface_flow.spacing() / raft_interface_spacing);
double support_spacing = object_config.support_material_spacing.value + this->support_material_flow.spacing();
this->support_density = std::min(1., this->support_material_flow.spacing() / support_spacing);
if (object_config.support_material_interface_layers.value == 0) {
// No interface layers allowed, print everything with the base support pattern.
this->interface_density = this->support_density;
}
SupportMaterialPattern support_pattern = object_config.support_material_pattern;
this->with_sheath = object_config.support_material_with_sheath;
this->base_fill_pattern =
support_pattern == smpHoneycomb ? ipHoneycomb :
this->support_density > 0.95 || this->with_sheath ? ipRectilinear : ipSupportBase;
this->interface_fill_pattern = (this->interface_density > 0.95 ? ipRectilinear : ipSupportBase);
this->raft_interface_fill_pattern = this->raft_interface_density > 0.95 ? ipRectilinear : ipSupportBase;
this->contact_fill_pattern =
(object_config.support_material_interface_pattern == smipAuto && slicing_params.soluble_interface) ||
object_config.support_material_interface_pattern == smipConcentric ?
ipConcentric :
(this->interface_density > 0.95 ? ipRectilinear : ipSupportBase);
this->base_angle = Geometry::deg2rad(float(object_config.support_material_angle.value));
this->interface_angle = Geometry::deg2rad(float(object_config.support_material_angle.value + 90.));
this->raft_angle_1st_layer = 0.f;
this->raft_angle_base = 0.f;
this->raft_angle_interface = 0.f;
if (slicing_params.base_raft_layers > 1) {
assert(slicing_params.raft_layers() >= 4);
// There are all raft layer types (1st layer, base, interface & contact layers) available.
this->raft_angle_1st_layer = this->interface_angle;
this->raft_angle_base = this->base_angle;
this->raft_angle_interface = this->interface_angle;
if ((slicing_params.interface_raft_layers & 1) == 0)
// Allign the 1st raft interface layer so that the object 1st layer is hatched perpendicularly to the raft contact interface.
this->raft_angle_interface += float(0.5 * M_PI);
} else if (slicing_params.base_raft_layers == 1 || slicing_params.interface_raft_layers > 1) {
assert(slicing_params.raft_layers() == 2 || slicing_params.raft_layers() == 3);
// 1st layer, interface & contact layers available.
this->raft_angle_1st_layer = this->base_angle;
this->raft_angle_interface = this->interface_angle + 0.5 * M_PI;
} else if (slicing_params.interface_raft_layers == 1) {
// Only the contact raft layer is non-empty, which will be printed as the 1st layer.
assert(slicing_params.base_raft_layers == 0);
assert(slicing_params.interface_raft_layers == 1);
assert(slicing_params.raft_layers() == 1);
this->raft_angle_1st_layer = float(0.5 * M_PI);
this->raft_angle_interface = this->raft_angle_1st_layer;
} else {
// No raft.
assert(slicing_params.base_raft_layers == 0);
assert(slicing_params.interface_raft_layers == 0);
assert(slicing_params.raft_layers() == 0);
}
}
} // namespace Slic3r