PrusaSlicer-NonPlainar/src/libslic3r/Fill/FillBase.cpp
Vojtech Bubnik 1eadb6a1a9 Replaced some of Slic3r::RuntimeError exceptions with Slic3r::SlicingError.
Only Slic3r::SlicingError are now displayed by a notification, other
exceptions are shown by a pop-up dialog.
2020-09-14 18:03:22 +02:00

1014 lines
44 KiB
C++

#include <stdio.h>
#include "../ClipperUtils.hpp"
#include "../EdgeGrid.hpp"
#include "../Geometry.hpp"
#include "../Surface.hpp"
#include "../PrintConfig.hpp"
#include "../libslic3r.h"
#include "FillBase.hpp"
#include "FillConcentric.hpp"
#include "FillHoneycomb.hpp"
#include "Fill3DHoneycomb.hpp"
#include "FillGyroid.hpp"
#include "FillPlanePath.hpp"
#include "FillRectilinear.hpp"
#include "FillRectilinear2.hpp"
#include "FillRectilinear3.hpp"
#include "FillAdaptive.hpp"
namespace Slic3r {
Fill* Fill::new_from_type(const InfillPattern type)
{
switch (type) {
case ipConcentric: return new FillConcentric();
case ipHoneycomb: return new FillHoneycomb();
case ip3DHoneycomb: return new Fill3DHoneycomb();
case ipGyroid: return new FillGyroid();
case ipRectilinear: return new FillRectilinear2();
case ipMonotonous: return new FillMonotonous();
case ipLine: return new FillLine();
case ipGrid: return new FillGrid2();
case ipTriangles: return new FillTriangles();
case ipStars: return new FillStars();
case ipCubic: return new FillCubic();
// case ipGrid: return new FillGrid();
case ipArchimedeanChords: return new FillArchimedeanChords();
case ipHilbertCurve: return new FillHilbertCurve();
case ipOctagramSpiral: return new FillOctagramSpiral();
case ipAdaptiveCubic: return new FillAdaptive();
case ipSupportCubic: return new FillSupportCubic();
default: throw Slic3r::InvalidArgument("unknown type");
}
}
Fill* Fill::new_from_type(const std::string &type)
{
const t_config_enum_values &enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
t_config_enum_values::const_iterator it = enum_keys_map.find(type);
return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second));
}
// Force initialization of the Fill::use_bridge_flow() internal static map in a thread safe fashion even on compilers
// not supporting thread safe non-static data member initializers.
static bool use_bridge_flow_initializer = Fill::use_bridge_flow(ipGrid);
bool Fill::use_bridge_flow(const InfillPattern type)
{
static std::vector<unsigned char> cached;
if (cached.empty()) {
cached.assign(size_t(ipCount), 0);
for (size_t i = 0; i < cached.size(); ++ i) {
auto *fill = Fill::new_from_type((InfillPattern)i);
cached[i] = fill->use_bridge_flow();
delete fill;
}
}
return cached[type] != 0;
}
Polylines Fill::fill_surface(const Surface *surface, const FillParams &params)
{
// Perform offset.
Slic3r::ExPolygons expp = offset_ex(surface->expolygon, float(scale_(this->overlap - 0.5 * this->spacing)));
// Create the infills for each of the regions.
Polylines polylines_out;
for (size_t i = 0; i < expp.size(); ++ i)
_fill_surface_single(
params,
surface->thickness_layers,
_infill_direction(surface),
expp[i],
polylines_out);
return polylines_out;
}
// Calculate a new spacing to fill width with possibly integer number of lines,
// the first and last line being centered at the interval ends.
// This function possibly increases the spacing, never decreases,
// and for a narrow width the increase in spacing may become severe,
// therefore the adjustment is limited to 20% increase.
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
{
assert(width >= 0);
assert(distance > 0);
// floor(width / distance)
coord_t number_of_intervals = (width - EPSILON) / distance;
coord_t distance_new = (number_of_intervals == 0) ?
distance :
((width - EPSILON) / number_of_intervals);
const coordf_t factor = coordf_t(distance_new) / coordf_t(distance);
assert(factor > 1. - 1e-5);
// How much could the extrusion width be increased? By 20%.
const coordf_t factor_max = 1.2;
if (factor > factor_max)
distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
return distance_new;
}
// Returns orientation of the infill and the reference point of the infill pattern.
// For a normal print, the reference point is the center of a bounding box of the STL.
std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
{
// set infill angle
float out_angle = this->angle;
if (out_angle == FLT_MAX) {
//FIXME Vojtech: Add a warning?
printf("Using undefined infill angle\n");
out_angle = 0.f;
}
// Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject)
// The bounding box is only undefined in unit tests.
Point out_shift = empty(this->bounding_box) ?
surface->expolygon.contour.bounding_box().center() :
this->bounding_box.center();
#if 0
if (empty(this->bounding_box)) {
printf("Fill::_infill_direction: empty bounding box!");
} else {
printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y);
}
#endif
if (surface->bridge_angle >= 0) {
// use bridge angle
//FIXME Vojtech: Add a debugf?
// Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
#ifdef SLIC3R_DEBUG
printf("Filling bridge with angle %f\n", surface->bridge_angle);
#endif /* SLIC3R_DEBUG */
out_angle = surface->bridge_angle;
} else if (this->layer_id != size_t(-1)) {
// alternate fill direction
out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers);
} else {
// printf("Layer_ID undefined!\n");
}
out_angle += float(M_PI/2.);
return std::pair<float, Point>(out_angle, out_shift);
}
#if 0
// From pull request "Gyroid improvements" #2730 by @supermerill
/// cut poly between poly.point[idx_1] & poly.point[idx_1+1]
/// add p1+-width to one part and p2+-width to the other one.
/// add the "new" polyline to polylines (to part cut from poly)
/// p1 & p2 have to be between poly.point[idx_1] & poly.point[idx_1+1]
/// if idx_1 is ==0 or == size-1, then we don't need to create a new polyline.
static void cut_polyline(Polyline &poly, Polylines &polylines, size_t idx_1, Point p1, Point p2) {
//reorder points
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
Point temp = p2;
p2 = p1;
p1 = temp;
}
if (idx_1 == poly.points.size() - 1) {
//shouldn't be possible.
poly.points.erase(poly.points.end() - 1);
} else {
// create new polyline
Polyline new_poly;
//put points in new_poly
new_poly.points.push_back(p2);
new_poly.points.insert(new_poly.points.end(), poly.points.begin() + idx_1 + 1, poly.points.end());
//erase&put points in poly
poly.points.erase(poly.points.begin() + idx_1 + 1, poly.points.end());
poly.points.push_back(p1);
//safe test
if (poly.length() == 0)
poly.points = new_poly.points;
else
polylines.emplace_back(new_poly);
}
}
/// the poly is like a polygon but with first_point != last_point (already removed)
static void cut_polygon(Polyline &poly, size_t idx_1, Point p1, Point p2) {
//reorder points
if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
Point temp = p2;
p2 = p1;
p1 = temp;
}
//check if we need to rotate before cutting
if (idx_1 != poly.size() - 1) {
//put points in new_poly
poly.points.insert(poly.points.end(), poly.points.begin(), poly.points.begin() + idx_1 + 1);
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_1 + 1);
}
//put points in poly
poly.points.push_back(p1);
poly.points.insert(poly.points.begin(), p2);
}
/// check if the polyline from pts_to_check may be at 'width' distance of a point in polylines_blocker
/// it use equally_spaced_points with width/2 precision, so don't worry with pts_to_check number of points.
/// it use the given polylines_blocker points, be sure to put enough of them to be reliable.
/// complexity : N(pts_to_check.equally_spaced_points(width / 2)) x N(polylines_blocker.points)
static bool collision(const Points &pts_to_check, const Polylines &polylines_blocker, const coordf_t width) {
//check if it's not too close to a polyline
coordf_t min_dist_square = width * width * 0.9 - SCALED_EPSILON;
Polyline better_polylines(pts_to_check);
Points better_pts = better_polylines.equally_spaced_points(width / 2);
for (const Point &p : better_pts) {
for (const Polyline &poly2 : polylines_blocker) {
for (const Point &p2 : poly2.points) {
if (p.distance_to_square(p2) < min_dist_square) {
return true;
}
}
}
}
return false;
}
/// Try to find a path inside polylines that allow to go from p1 to p2.
/// width if the width of the extrusion
/// polylines_blockers are the array of polylines to check if the path isn't blocked by something.
/// complexity: N(polylines.points) + a collision check after that if we finded a path: N(2(p2-p1)/width) x N(polylines_blocker.points)
static Points get_frontier(Polylines &polylines, const Point& p1, const Point& p2, const coord_t width, const Polylines &polylines_blockers, coord_t max_size = -1) {
for (size_t idx_poly = 0; idx_poly < polylines.size(); ++idx_poly) {
Polyline &poly = polylines[idx_poly];
if (poly.size() <= 1) continue;
//loop?
if (poly.first_point() == poly.last_point()) {
//polygon : try to find a line for p1 & p2.
size_t idx_11, idx_12, idx_21, idx_22;
idx_11 = poly.closest_point_index(p1);
idx_12 = idx_11;
if (Line(poly.points[idx_11], poly.points[(idx_11 + 1) % (poly.points.size() - 1)]).distance_to(p1) < SCALED_EPSILON) {
idx_12 = (idx_11 + 1) % (poly.points.size() - 1);
} else if (Line(poly.points[(idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2)], poly.points[idx_11]).distance_to(p1) < SCALED_EPSILON) {
idx_11 = (idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2);
} else {
continue;
}
idx_21 = poly.closest_point_index(p2);
idx_22 = idx_21;
if (Line(poly.points[idx_21], poly.points[(idx_21 + 1) % (poly.points.size() - 1)]).distance_to(p2) < SCALED_EPSILON) {
idx_22 = (idx_21 + 1) % (poly.points.size() - 1);
} else if (Line(poly.points[(idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2)], poly.points[idx_21]).distance_to(p2) < SCALED_EPSILON) {
idx_21 = (idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2);
} else {
continue;
}
//edge case: on the same line
if (idx_11 == idx_21 && idx_12 == idx_22) {
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
cut_polygon(poly, idx_11, p1, p2);
return Points() = { Line(p1, p2).midpoint() };
}
//compute distance & array for the ++ path
Points ret_1_to_2;
double dist_1_to_2 = p1.distance_to(poly.points[idx_12]);
ret_1_to_2.push_back(poly.points[idx_12]);
size_t max = idx_12 <= idx_21 ? idx_21+1 : poly.points.size();
for (size_t i = idx_12 + 1; i < max; i++) {
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
ret_1_to_2.push_back(poly.points[i]);
}
if (idx_12 > idx_21) {
dist_1_to_2 += poly.points.back().distance_to(poly.points.front());
ret_1_to_2.push_back(poly.points[0]);
for (size_t i = 1; i <= idx_21; i++) {
dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
ret_1_to_2.push_back(poly.points[i]);
}
}
dist_1_to_2 += p2.distance_to(poly.points[idx_21]);
//compute distance & array for the -- path
Points ret_2_to_1;
double dist_2_to_1 = p1.distance_to(poly.points[idx_11]);
ret_2_to_1.push_back(poly.points[idx_11]);
size_t min = idx_22 <= idx_11 ? idx_22 : 0;
for (size_t i = idx_11; i > min; i--) {
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
ret_2_to_1.push_back(poly.points[i - 1]);
}
if (idx_22 > idx_11) {
dist_2_to_1 += poly.points.back().distance_to(poly.points.front());
ret_2_to_1.push_back(poly.points[poly.points.size() - 1]);
for (size_t i = poly.points.size() - 1; i > idx_22; i--) {
dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
ret_2_to_1.push_back(poly.points[i - 1]);
}
}
dist_2_to_1 += p2.distance_to(poly.points[idx_22]);
if (max_size < dist_2_to_1 && max_size < dist_1_to_2) {
return Points();
}
//choose between the two direction (keep the short one)
if (dist_1_to_2 < dist_2_to_1) {
if (collision(ret_1_to_2, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
//remove points
if (idx_12 <= idx_21) {
poly.points.erase(poly.points.begin() + idx_12, poly.points.begin() + idx_21 + 1);
if (idx_12 != 0) {
cut_polygon(poly, idx_11, p1, p2);
} //else : already cut at the good place
} else {
poly.points.erase(poly.points.begin() + idx_12, poly.points.end());
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_21);
cut_polygon(poly, poly.points.size() - 1, p1, p2);
}
return ret_1_to_2;
} else {
if (collision(ret_2_to_1, polylines_blockers, width)) return Points();
//break loop
poly.points.erase(poly.points.end() - 1);
//remove points
if (idx_22 <= idx_11) {
poly.points.erase(poly.points.begin() + idx_22, poly.points.begin() + idx_11 + 1);
if (idx_22 != 0) {
cut_polygon(poly, idx_21, p1, p2);
} //else : already cut at the good place
} else {
poly.points.erase(poly.points.begin() + idx_22, poly.points.end());
poly.points.erase(poly.points.begin(), poly.points.begin() + idx_11);
cut_polygon(poly, poly.points.size() - 1, p1, p2);
}
return ret_2_to_1;
}
} else {
//polyline : try to find a line for p1 & p2.
size_t idx_1, idx_2;
idx_1 = poly.closest_point_index(p1);
if (idx_1 < poly.points.size() - 1 && Line(poly.points[idx_1], poly.points[idx_1 + 1]).distance_to(p1) < SCALED_EPSILON) {
} else if (idx_1 > 0 && Line(poly.points[idx_1 - 1], poly.points[idx_1]).distance_to(p1) < SCALED_EPSILON) {
idx_1 = idx_1 - 1;
} else {
continue;
}
idx_2 = poly.closest_point_index(p2);
if (idx_2 < poly.points.size() - 1 && Line(poly.points[idx_2], poly.points[idx_2 + 1]).distance_to(p2) < SCALED_EPSILON) {
} else if (idx_2 > 0 && Line(poly.points[idx_2 - 1], poly.points[idx_2]).distance_to(p2) < SCALED_EPSILON) {
idx_2 = idx_2 - 1;
} else {
continue;
}
//edge case: on the same line
if (idx_1 == idx_2) {
if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
cut_polyline(poly, polylines, idx_1, p1, p2);
return Points() = { Line(p1, p2).midpoint() };
}
//create ret array
size_t first_idx = idx_1;
size_t last_idx = idx_2 + 1;
if (idx_1 > idx_2) {
first_idx = idx_2;
last_idx = idx_1 + 1;
}
Points p_ret;
p_ret.insert(p_ret.end(), poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
coordf_t length = 0;
for (size_t i = 1; i < p_ret.size(); i++) length += p_ret[i - 1].distance_to(p_ret[i]);
if (max_size < length) {
return Points();
}
if (collision(p_ret, polylines_blockers, width)) return Points();
//cut polyline
poly.points.erase(poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
cut_polyline(poly, polylines, first_idx, p1, p2);
//order the returned array to be p1->p2
if (idx_1 > idx_2) {
std::reverse(p_ret.begin(), p_ret.end());
}
return p_ret;
}
}
return Points();
}
/// Connect the infill_ordered polylines, in this order, from the back point to the next front point.
/// It uses only the boundary polygons to do so, and can't pass two times at the same place.
/// It avoid passing over the infill_ordered's polylines (preventing local over-extrusion).
/// return the connected polylines in polylines_out. Can output polygons (stored as polylines with first_point = last_point).
/// complexity: worst: N(infill_ordered.points) x N(boundary.points)
/// typical: N(infill_ordered) x ( N(boundary.points) + N(infill_ordered.points) )
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary, Polylines &polylines_out, const FillParams &params) {
//TODO: fallback to the quick & dirty old algorithm when n(points) is too high.
Polylines polylines_frontier = to_polylines(((Polygons)boundary));
Polylines polylines_blocker;
coord_t clip_size = scale_(this->spacing) * 2;
for (const Polyline &polyline : infill_ordered) {
if (polyline.length() > 2.01 * clip_size) {
polylines_blocker.push_back(polyline);
polylines_blocker.back().clip_end(clip_size);
polylines_blocker.back().clip_start(clip_size);
}
}
//length between two lines
coordf_t ideal_length = (1 / params.density) * this->spacing;
Polylines polylines_connected_first;
bool first = true;
for (const Polyline &polyline : infill_ordered) {
if (!first) {
// Try to connect the lines.
Points &pts_end = polylines_connected_first.back().points;
const Point &last_point = pts_end.back();
const Point &first_point = polyline.points.front();
if (last_point.distance_to(first_point) < scale_(this->spacing) * 10) {
Points pts_frontier = get_frontier(polylines_frontier, last_point, first_point, scale_(this->spacing), polylines_blocker, (coord_t)scale_(ideal_length) * 2);
if (!pts_frontier.empty()) {
// The lines can be connected.
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
}
// The lines cannot be connected.
polylines_connected_first.emplace_back(std::move(polyline));
first = false;
}
Polylines polylines_connected;
first = true;
for (const Polyline &polyline : polylines_connected_first) {
if (!first) {
// Try to connect the lines.
Points &pts_end = polylines_connected.back().points;
const Point &last_point = pts_end.back();
const Point &first_point = polyline.points.front();
Polylines before = polylines_frontier;
Points pts_frontier = get_frontier(polylines_frontier, last_point, first_point, scale_(this->spacing), polylines_blocker);
if (!pts_frontier.empty()) {
// The lines can be connected.
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
continue;
}
}
// The lines cannot be connected.
polylines_connected.emplace_back(std::move(polyline));
first = false;
}
//try to link to nearest point if possible
for (size_t idx1 = 0; idx1 < polylines_connected.size(); idx1++) {
size_t min_idx = 0;
coordf_t min_length = 0;
bool switch_id1 = false;
bool switch_id2 = false;
for (size_t idx2 = idx1 + 1; idx2 < polylines_connected.size(); idx2++) {
double last_first = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].first_point());
double first_first = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].first_point());
double first_last = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].last_point());
double last_last = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].last_point());
double min = std::min(std::min(last_first, last_last), std::min(first_first, first_last));
if (min < min_length || min_length == 0) {
min_idx = idx2;
switch_id1 = (std::min(last_first, last_last) > std::min(first_first, first_last));
switch_id2 = (std::min(last_first, first_first) > std::min(last_last, first_last));
min_length = min;
}
}
if (min_idx > idx1 && min_idx < polylines_connected.size()){
Points pts_frontier = get_frontier(polylines_frontier,
switch_id1 ? polylines_connected[idx1].first_point() : polylines_connected[idx1].last_point(),
switch_id2 ? polylines_connected[min_idx].last_point() : polylines_connected[min_idx].first_point(),
scale_(this->spacing), polylines_blocker);
if (!pts_frontier.empty()) {
if (switch_id1) polylines_connected[idx1].reverse();
if (switch_id2) polylines_connected[min_idx].reverse();
Points &pts_end = polylines_connected[idx1].points;
pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
pts_end.insert(pts_end.end(), polylines_connected[min_idx].points.begin(), polylines_connected[min_idx].points.end());
polylines_connected.erase(polylines_connected.begin() + min_idx);
}
}
}
//try to create some loops if possible
for (Polyline &polyline : polylines_connected) {
Points pts_frontier = get_frontier(polylines_frontier, polyline.last_point(), polyline.first_point(), scale_(this->spacing), polylines_blocker);
if (!pts_frontier.empty()) {
polyline.points.insert(polyline.points.end(), pts_frontier.begin(), pts_frontier.end());
polyline.points.insert(polyline.points.begin(), polyline.points.back());
}
polylines_out.emplace_back(polyline);
}
}
#else
struct ContourPointData {
ContourPointData(float param) : param(param) {}
// Eucleidean position of the contour point along the contour.
float param = 0.f;
// Was the segment starting with this contour point extruded?
bool segment_consumed = false;
// Was this point extruded over?
bool point_consumed = false;
};
// Verify whether the contour from point idx_start to point idx_end could be taken (whether all segments along the contour were not yet extruded).
static bool could_take(const std::vector<ContourPointData> &contour_data, size_t idx_start, size_t idx_end)
{
assert(idx_start != idx_end);
for (size_t i = idx_start; i != idx_end; ) {
if (contour_data[i].segment_consumed || contour_data[i].point_consumed)
return false;
if (++ i == contour_data.size())
i = 0;
}
return ! contour_data[idx_end].point_consumed;
}
// Connect end of pl1 to the start of pl2 using the perimeter contour.
// The idx_start and idx_end are ordered so that the connecting polyline points will be taken with increasing indices.
static void take(Polyline &pl1, Polyline &&pl2, const Points &contour, std::vector<ContourPointData> &contour_data, size_t idx_start, size_t idx_end, bool reversed)
{
#ifndef NDEBUG
size_t num_points_initial = pl1.points.size();
assert(idx_start != idx_end);
#endif /* NDEBUG */
{
// Reserve memory at pl1 for the connecting contour and pl2.
int new_points = int(idx_end) - int(idx_start) - 1;
if (new_points < 0)
new_points += int(contour.size());
pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size());
}
contour_data[idx_start].point_consumed = true;
contour_data[idx_start].segment_consumed = true;
contour_data[idx_end ].point_consumed = true;
if (reversed) {
size_t i = (idx_end == 0) ? contour_data.size() - 1 : idx_end - 1;
while (i != idx_start) {
contour_data[i].point_consumed = true;
contour_data[i].segment_consumed = true;
pl1.points.emplace_back(contour[i]);
if (i == 0)
i = contour_data.size();
-- i;
}
} else {
size_t i = idx_start;
if (++ i == contour_data.size())
i = 0;
while (i != idx_end) {
contour_data[i].point_consumed = true;
contour_data[i].segment_consumed = true;
pl1.points.emplace_back(contour[i]);
if (++ i == contour_data.size())
i = 0;
}
}
append(pl1.points, std::move(pl2.points));
}
// Return an index of start of a segment and a point of the clipping point at distance from the end of polyline.
struct SegmentPoint {
// Segment index, defining a line <idx_segment, idx_segment + 1).
size_t idx_segment = std::numeric_limits<size_t>::max();
// Parameter of point in <0, 1) along the line <idx_segment, idx_segment + 1)
double t;
Vec2d point;
bool valid() const { return idx_segment != std::numeric_limits<size_t>::max(); }
};
static inline SegmentPoint clip_start_segment_and_point(const Points &polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_prev = polyline.front().cast<double>();
for (size_t i = 1; i < polyline.size(); ++ i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_prev;
double l2 = v.squaredNorm();
if (l2 > distance * distance) {
out.idx_segment = i;
out.t = distance / sqrt(l2);
out.point = pt_prev + out.t * v;
break;
}
distance -= sqrt(l2);
pt_prev = pt;
}
}
return out;
}
static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, double distance)
{
assert(polyline.size() >= 2);
assert(distance > 0.);
// Initialized to "invalid".
SegmentPoint out;
if (polyline.size() >= 2) {
Vec2d pt_next = polyline.back().cast<double>();
for (int i = int(polyline.size()) - 2; i >= 0; -- i) {
Vec2d pt = polyline[i].cast<double>();
Vec2d v = pt - pt_next;
double l2 = v.squaredNorm();
if (l2 > distance * distance) {
out.idx_segment = i;
out.t = distance / sqrt(l2);
out.point = pt_next + out.t * v;
// Store the parameter referenced to the starting point of a segment.
out.t = 1. - out.t;
break;
}
distance -= sqrt(l2);
pt_next = pt;
}
}
return out;
}
// Optimized version with the precalculated v1 = p1b - p1a and l1_2 = v1.squaredNorm().
// Assumption: l1_2 < EPSILON.
static inline double segment_point_distance_squared(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &v1, const double l1_2, const Vec2d &p2)
{
assert(l1_2 > EPSILON);
Vec2d v12 = p2 - p1a;
double t = v12.dot(v1);
return (t <= 0. ) ? v12.squaredNorm() :
(t >= l1_2) ? (p2 - p1a).squaredNorm() :
((t / l1_2) * v1 - v12).squaredNorm();
}
static inline double segment_point_distance_squared(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &p2)
{
const Vec2d v = p1b - p1a;
const double l2 = v.squaredNorm();
if (l2 < EPSILON)
// p1a == p1b
return (p2 - p1a).squaredNorm();
return segment_point_distance_squared(p1a, p1b, v, v.squaredNorm(), p2);
}
// Distance to the closest point of line.
static inline double min_distance_of_segments(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &p2a, const Vec2d &p2b)
{
Vec2d v1 = p1b - p1a;
double l1_2 = v1.squaredNorm();
if (l1_2 < EPSILON)
// p1a == p1b: Return distance of p1a from the (p2a, p2b) segment.
return segment_point_distance_squared(p2a, p2b, p1a);
Vec2d v2 = p2b - p2a;
double l2_2 = v2.squaredNorm();
if (l2_2 < EPSILON)
// p2a == p2b: Return distance of p2a from the (p1a, p1b) segment.
return segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a);
return std::min(
std::min(segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a), segment_point_distance_squared(p1a, p1b, v1, l1_2, p2b)),
std::min(segment_point_distance_squared(p2a, p2b, v2, l2_2, p1a), segment_point_distance_squared(p2a, p2b, v2, l2_2, p1b)));
}
// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
void mark_boundary_segments_touching_infill(
const std::vector<Points> &boundary,
std::vector<std::vector<ContourPointData>> &boundary_data,
const BoundingBox &boundary_bbox,
const Polylines &infill,
const double clip_distance,
const double distance_colliding)
{
EdgeGrid::Grid grid;
grid.set_bbox(boundary_bbox);
// Inflate the bounding box by a thick line width.
grid.create(boundary, clip_distance + scale_(10.));
struct Visitor {
Visitor(const EdgeGrid::Grid &grid, const std::vector<Points> &boundary, std::vector<std::vector<ContourPointData>> &boundary_data, const double dist2_max) :
grid(grid), boundary(boundary), boundary_data(boundary_data), dist2_max(dist2_max) {}
void init(const Vec2d &pt1, const Vec2d &pt2) {
this->pt1 = &pt1;
this->pt2 = &pt2;
}
bool operator()(coord_t iy, coord_t ix) {
// Called with a row and colum of the grid cell, which is intersected by a line.
auto cell_data_range = this->grid.cell_data_range(iy, ix);
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) {
// End points of the line segment and their vector.
auto segment = this->grid.segment(*it_contour_and_segment);
const Vec2d seg_pt1 = segment.first.cast<double>();
const Vec2d seg_pt2 = segment.second.cast<double>();
if (min_distance_of_segments(seg_pt1, seg_pt2, *this->pt1, *this->pt2) < this->dist2_max) {
// Mark this boundary segment as touching the infill line.
ContourPointData &bdp = boundary_data[it_contour_and_segment->first][it_contour_and_segment->second];
bdp.segment_consumed = true;
// There is no need for checking seg_pt2 as it will be checked the next time.
bool point_touching = false;
if (segment_point_distance_squared(*this->pt1, *this->pt2, seg_pt1) < this->dist2_max) {
point_touching = true;
bdp.point_consumed = true;
}
#if 0
{
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun ++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(Line(segment.first, segment.second), "red");
svg.draw(Line(this->pt1->cast<coord_t>(), this->pt2->cast<coord_t>()), "magenta");
}
#endif
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid &grid;
const std::vector<Points> &boundary;
std::vector<std::vector<ContourPointData>> &boundary_data;
// Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line.
const double dist2_max;
const Vec2d *pt1;
const Vec2d *pt2;
} visitor(grid, boundary, boundary_data, distance_colliding * distance_colliding);
BoundingBoxf bboxf(boundary_bbox.min.cast<double>(), boundary_bbox.max.cast<double>());
bboxf.offset(- SCALED_EPSILON);
for (const Polyline &polyline : infill) {
// Clip the infill polyline by the Eucledian distance along the polyline.
SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
SegmentPoint end_point = clip_end_segment_and_point(polyline.points, clip_distance);
if (start_point.valid() && end_point.valid() &&
(start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) {
// The clipped polyline is non-empty.
for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++ point_idx) {
//FIXME extend the EdgeGrid to suport tracing a thick line.
#if 0
Point pt1, pt2;
Vec2d pt1d, pt2d;
if (point_idx == start_point.idx_segment) {
pt1d = start_point.point;
pt1 = pt1d.cast<coord_t>();
} else {
pt1 = polyline.points[point_idx];
pt1d = pt1.cast<double>();
}
if (point_idx == start_point.idx_segment) {
pt2d = end_point.point;
pt2 = pt1d.cast<coord_t>();
} else {
pt2 = polyline.points[point_idx];
pt2d = pt2.cast<double>();
}
visitor.init(pt1d, pt2d);
grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
#else
Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx ].cast<double>();
Vec2d pt2 = (point_idx == end_point .idx_segment) ? end_point .point : polyline.points[point_idx + 1].cast<double>();
#if 0
{
static size_t iRun = 0;
ExPolygon expoly(Polygon(*grid.contours().front()));
for (size_t i = 1; i < grid.contours().size(); ++i)
expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun ++).c_str(), get_extents(expoly));
svg.draw(expoly, "green");
svg.draw(polyline, "blue");
svg.draw(Line(pt1.cast<coord_t>(), pt2.cast<coord_t>()), "magenta", scale_(0.1));
}
#endif
visitor.init(pt1, pt2);
// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
Vec2d vperp(-v.y(), v.x());
Vec2d a = pt1 - v - vperp;
Vec2d b = pt1 + v - vperp;
if (Geometry::liang_barsky_line_clipping(a, b, bboxf))
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
a = pt1 - v + vperp;
b = pt1 + v + vperp;
if (Geometry::liang_barsky_line_clipping(a, b, bboxf))
grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
#endif
}
}
}
}
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams &params)
{
assert(! infill_ordered.empty());
assert(! boundary_src.contour.points.empty());
BoundingBox bbox = get_extents(boundary_src.contour);
bbox.offset(SCALED_EPSILON);
// 1) Add the end points of infill_ordered to boundary_src.
std::vector<Points> boundary;
std::vector<std::vector<ContourPointData>> boundary_data;
boundary.assign(boundary_src.holes.size() + 1, Points());
boundary_data.assign(boundary_src.holes.size() + 1, std::vector<ContourPointData>());
// Mapping the infill_ordered end point to a (contour, point) of boundary.
std::vector<std::pair<size_t, size_t>> map_infill_end_point_to_boundary;
map_infill_end_point_to_boundary.assign(infill_ordered.size() * 2, std::pair<size_t, size_t>(std::numeric_limits<size_t>::max(), std::numeric_limits<size_t>::max()));
{
// Project the infill_ordered end points onto boundary_src.
std::vector<std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>> intersection_points;
{
EdgeGrid::Grid grid;
grid.set_bbox(bbox);
grid.create(boundary_src, scale_(10.));
intersection_points.reserve(infill_ordered.size() * 2);
for (const Polyline &pl : infill_ordered)
for (const Point *pt : { &pl.points.front(), &pl.points.back() }) {
EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON);
if (cp.valid()) {
// The infill end point shall lie on the contour.
assert(cp.distance < 2.);
intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
}
}
std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp1, const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp2) {
return cp1.first.contour_idx < cp2.first.contour_idx ||
(cp1.first.contour_idx == cp2.first.contour_idx &&
(cp1.first.start_point_idx < cp2.first.start_point_idx ||
(cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t)));
});
}
auto it = intersection_points.begin();
auto it_end = intersection_points.end();
for (size_t idx_contour = 0; idx_contour <= boundary_src.holes.size(); ++ idx_contour) {
const Polygon &contour_src = (idx_contour == 0) ? boundary_src.contour : boundary_src.holes[idx_contour - 1];
Points &contour_dst = boundary[idx_contour];
for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) {
contour_dst.emplace_back(contour_src.points[idx_point]);
for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) {
// Add these points to the destination contour.
const Vec2d pt1 = contour_src[idx_point].cast<double>();
const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast<double>();
const Vec2d pt = lerp(pt1, pt2, it->first.t);
map_infill_end_point_to_boundary[it->second] = std::make_pair(idx_contour, contour_dst.size());
contour_dst.emplace_back(pt.cast<coord_t>());
}
}
// Parametrize the curve.
std::vector<ContourPointData> &contour_data = boundary_data[idx_contour];
contour_data.reserve(contour_dst.size());
contour_data.emplace_back(ContourPointData(0.f));
for (size_t i = 1; i < contour_dst.size(); ++ i)
contour_data.emplace_back(contour_data.back().param + (contour_dst[i].cast<float>() - contour_dst[i - 1].cast<float>()).norm());
contour_data.front().param = contour_data.back().param + (contour_dst.back().cast<float>() - contour_dst.front().cast<float>()).norm();
}
#ifndef NDEBUG
assert(boundary.size() == boundary_src.num_contours());
assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(),
[&boundary](const std::pair<size_t, size_t> &contour_point) {
return contour_point.first < boundary.size() && contour_point.second < boundary[contour_point.first].size();
}));
#endif /* NDEBUG */
}
// Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
{
// @supermerill used 2. * scale_(spacing)
const double clip_distance = 3. * scale_(spacing);
const double distance_colliding = 1.1 * scale_(spacing);
mark_boundary_segments_touching_infill(boundary, boundary_data, bbox, infill_ordered, clip_distance, distance_colliding);
}
// Connection from end of one infill line to the start of another infill line.
//const float length_max = scale_(spacing);
// const float length_max = scale_((2. / params.density) * spacing);
const float length_max = scale_((1000. / params.density) * spacing);
std::vector<size_t> merged_with(infill_ordered.size());
for (size_t i = 0; i < merged_with.size(); ++ i)
merged_with[i] = i;
struct ConnectionCost {
ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {}
size_t idx_first;
double cost;
bool reversed;
};
std::vector<ConnectionCost> connections_sorted;
connections_sorted.reserve(infill_ordered.size() * 2 - 2);
for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++ idx_chain) {
const Polyline &pl1 = infill_ordered[idx_chain - 1];
const Polyline &pl2 = infill_ordered[idx_chain];
const std::pair<size_t, size_t> *cp1 = &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1];
const std::pair<size_t, size_t> *cp2 = &map_infill_end_point_to_boundary[idx_chain * 2];
const std::vector<ContourPointData> &contour_data = boundary_data[cp1->first];
if (cp1->first == cp2->first) {
// End points on the same contour. Try to connect them.
float param_lo = (cp1->second == 0) ? 0.f : contour_data[cp1->second].param;
float param_hi = (cp2->second == 0) ? 0.f : contour_data[cp2->second].param;
float param_end = contour_data.front().param;
bool reversed = false;
if (param_lo > param_hi) {
std::swap(param_lo, param_hi);
reversed = true;
}
assert(param_lo >= 0.f && param_lo <= param_end);
assert(param_hi >= 0.f && param_hi <= param_end);
double len = param_hi - param_lo;
if (len < length_max)
connections_sorted.emplace_back(idx_chain - 1, len, reversed);
len = param_lo + param_end - param_hi;
if (len < length_max)
connections_sorted.emplace_back(idx_chain - 1, len, ! reversed);
}
}
std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; });
size_t idx_chain_last = 0;
for (ConnectionCost &connection_cost : connections_sorted) {
const std::pair<size_t, size_t> *cp1 = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1];
const std::pair<size_t, size_t> *cp1prev = cp1 - 1;
const std::pair<size_t, size_t> *cp2 = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2];
const std::pair<size_t, size_t> *cp2next = cp2 + 1;
assert(cp1->first == cp2->first);
std::vector<ContourPointData> &contour_data = boundary_data[cp1->first];
if (connection_cost.reversed)
std::swap(cp1, cp2);
// Mark the the other end points of the segments to be taken as consumed temporarily, so they will not be crossed
// by the new connection line.
bool prev_marked = false;
bool next_marked = false;
if (cp1prev->first == cp1->first && ! contour_data[cp1prev->second].point_consumed) {
contour_data[cp1prev->second].point_consumed = true;
prev_marked = true;
}
if (cp2next->first == cp1->first && ! contour_data[cp2next->second].point_consumed) {
contour_data[cp2next->second].point_consumed = true;
next_marked = true;
}
if (could_take(contour_data, cp1->second, cp2->second)) {
// Indices of the polygons to be connected.
size_t idx_first = connection_cost.idx_first;
size_t idx_second = idx_first + 1;
for (size_t last = idx_first;;) {
size_t lower = merged_with[last];
if (lower == last) {
merged_with[idx_first] = lower;
idx_first = lower;
break;
}
last = lower;
}
// Connect the two polygons using the boundary contour.
take(infill_ordered[idx_first], std::move(infill_ordered[idx_second]), boundary[cp1->first], contour_data, cp1->second, cp2->second, connection_cost.reversed);
// Mark the second polygon as merged with the first one.
merged_with[idx_second] = merged_with[idx_first];
}
if (prev_marked)
contour_data[cp1prev->second].point_consumed = false;
if (next_marked)
contour_data[cp2next->second].point_consumed = false;
}
polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline &pl) { return ! pl.empty(); }));
for (Polyline &pl : infill_ordered)
if (! pl.empty())
polylines_out.emplace_back(std::move(pl));
}
#endif
} // namespace Slic3r