PrusaSlicer-NonPlainar/xs/src/libslic3r/GCodeTimeEstimator.cpp

1012 lines
30 KiB
C++

#include "GCodeTimeEstimator.hpp"
#include <boost/bind.hpp>
#include <cmath>
static const std::string AXIS_STR = "XYZE";
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
static const float MILLISEC_TO_SEC = 0.001f;
static const float INCHES_TO_MM = 25.4f;
static const float DEFAULT_FEEDRATE = 1500.0f; // from Prusa Firmware (Marlin_main.cpp)
static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_RETRACT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_FEEDRATE[] = { 500.0f, 500.0f, 12.0f, 120.0f }; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_ACCELERATION[] = { 9000.0f, 9000.0f, 500.0f, 10000.0f }; // Prusa Firmware 1_75mm_MK2
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.2f, 2.5f }; // from Prusa Firmware (Configuration.h)
static const float DEFAULT_MINIMUM_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
static const float DEFAULT_MINIMUM_TRAVEL_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
#if USE_CURA_JUNCTION_VMAX
static const float MINIMUM_PLANNER_SPEED = 0.05f; // from Cura <<<<<<<< WHAT IS THIS ???
#endif // USE_CURA_JUNCTION_VMAX
static const float PREVIOUS_FEEDRATE_THRESHOLD = 0.0001f;
namespace Slic3r {
void GCodeTimeEstimator::Feedrates::reset()
{
feedrate = 0.0f;
safe_feedrate = 0.0f;
::memset(axis_feedrate, 0, Num_Axis * sizeof(float));
::memset(abs_axis_feedrate, 0, Num_Axis * sizeof(float));
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time(float acceleration) const
{
return acceleration_time_from_distance(feedrate.entry, accelerate_until, acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_time() const
{
return (feedrate.cruise != 0.0f) ? cruise_distance() / feedrate.cruise : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::deceleration_time(float acceleration) const
{
return acceleration_time_from_distance(feedrate.cruise, (distance - decelerate_after), -acceleration);
}
float GCodeTimeEstimator::Block::Trapezoid::cruise_distance() const
{
return decelerate_after - accelerate_until;
}
float GCodeTimeEstimator::Block::Trapezoid::acceleration_time_from_distance(float initial_feedrate, float distance, float acceleration)
{
return (acceleration != 0.0f) ? (speed_from_distance(initial_feedrate, distance, acceleration) - initial_feedrate) / acceleration : 0.0f;
}
float GCodeTimeEstimator::Block::Trapezoid::speed_from_distance(float initial_feedrate, float distance, float acceleration)
{
return ::sqrt(sqr(initial_feedrate) + 2.0f * acceleration * distance);
}
float GCodeTimeEstimator::Block::move_length() const
{
float length = ::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
return (length > 0.0f) ? length : ::abs(delta_pos[E]);
}
float GCodeTimeEstimator::Block::is_extruder_only_move() const
{
return (delta_pos[X] == 0.0f) && (delta_pos[Y] == 0.0f) && (delta_pos[Z] == 0.0f) && (delta_pos[E] != 0.0f);
}
float GCodeTimeEstimator::Block::is_travel_move() const
{
return delta_pos[E] == 0.0f;
}
float GCodeTimeEstimator::Block::acceleration_time() const
{
return trapezoid.acceleration_time(acceleration);
}
float GCodeTimeEstimator::Block::cruise_time() const
{
return trapezoid.cruise_time();
}
float GCodeTimeEstimator::Block::deceleration_time() const
{
return trapezoid.deceleration_time(acceleration);
}
float GCodeTimeEstimator::Block::cruise_distance() const
{
return trapezoid.cruise_distance();
}
void GCodeTimeEstimator::Block::calculate_trapezoid()
{
float distance = move_length();
trapezoid.distance = distance;
trapezoid.feedrate = feedrate;
float accelerate_distance = estimate_acceleration_distance(feedrate.entry, feedrate.cruise, acceleration);
float decelerate_distance = estimate_acceleration_distance(feedrate.cruise, feedrate.exit, -acceleration);
float cruise_distance = distance - accelerate_distance - decelerate_distance;
// Not enough space to reach the nominal feedrate.
// This means no cruising, and we'll have to use intersection_distance() to calculate when to abort acceleration
// and start braking in order to reach the exit_feedrate exactly at the end of this block.
if (cruise_distance < 0.0f)
{
accelerate_distance = clamp(0.0f, distance, intersection_distance(feedrate.entry, feedrate.exit, acceleration, distance));
cruise_distance = 0.0f;
trapezoid.feedrate.cruise = Trapezoid::speed_from_distance(feedrate.entry, accelerate_distance, acceleration);
}
trapezoid.accelerate_until = accelerate_distance;
trapezoid.decelerate_after = accelerate_distance + cruise_distance;
}
float GCodeTimeEstimator::Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
{
return ::sqrt(sqr(target_velocity) - 2.0f * acceleration * distance);
}
float GCodeTimeEstimator::Block::estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
return (acceleration == 0.0f) ? 0.0f : (sqr(target_rate) - sqr(initial_rate)) / (2.0f * acceleration);
}
float GCodeTimeEstimator::Block::intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
return (acceleration == 0.0f) ? 0.0f : (2.0f * acceleration * distance - sqr(initial_rate) + sqr(final_rate)) / (4.0f * acceleration);
}
GCodeTimeEstimator::GCodeTimeEstimator()
{
reset();
set_default();
}
void GCodeTimeEstimator::calculate_time_from_text(const std::string& gcode)
{
_parser.parse(gcode, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_calculate_time();
reset();
}
void GCodeTimeEstimator::calculate_time_from_file(const std::string& file)
{
_parser.parse_file(file, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
_calculate_time();
reset();
}
void GCodeTimeEstimator::add_gcode_line(const std::string& gcode_line)
{
_parser.parse_line(gcode_line, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
}
void GCodeTimeEstimator::calculate_time()
{
_calculate_time();
_reset();
}
void GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
{
_state.axis[axis].position = position;
}
void GCodeTimeEstimator::set_axis_max_feedrate(EAxis axis, float feedrate_mm_sec)
{
_state.axis[axis].max_feedrate = feedrate_mm_sec;
}
void GCodeTimeEstimator::set_axis_max_acceleration(EAxis axis, float acceleration)
{
_state.axis[axis].max_acceleration = acceleration;
}
void GCodeTimeEstimator::set_axis_max_jerk(EAxis axis, float jerk)
{
_state.axis[axis].max_jerk = jerk;
}
float GCodeTimeEstimator::get_axis_position(EAxis axis) const
{
return _state.axis[axis].position;
}
float GCodeTimeEstimator::get_axis_max_feedrate(EAxis axis) const
{
return _state.axis[axis].max_feedrate;
}
float GCodeTimeEstimator::get_axis_max_acceleration(EAxis axis) const
{
return _state.axis[axis].max_acceleration;
}
float GCodeTimeEstimator::get_axis_max_jerk(EAxis axis) const
{
return _state.axis[axis].max_jerk;
}
void GCodeTimeEstimator::set_feedrate(float feedrate_mm_sec)
{
_state.feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_feedrate() const
{
return _state.feedrate;
}
void GCodeTimeEstimator::set_acceleration(float acceleration_mm_sec2)
{
_state.acceleration = acceleration_mm_sec2;
}
float GCodeTimeEstimator::get_acceleration() const
{
return _state.acceleration;
}
void GCodeTimeEstimator::set_retract_acceleration(float acceleration_mm_sec2)
{
_state.retract_acceleration = acceleration_mm_sec2;
}
float GCodeTimeEstimator::get_retract_acceleration() const
{
return _state.retract_acceleration;
}
void GCodeTimeEstimator::set_minimum_feedrate(float feedrate_mm_sec)
{
_state.minimum_feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_minimum_feedrate() const
{
return _state.minimum_feedrate;
}
void GCodeTimeEstimator::set_minimum_travel_feedrate(float feedrate_mm_sec)
{
_state.minimum_travel_feedrate = feedrate_mm_sec;
}
float GCodeTimeEstimator::get_minimum_travel_feedrate() const
{
return _state.minimum_travel_feedrate;
}
void GCodeTimeEstimator::set_dialect(GCodeTimeEstimator::EDialect dialect)
{
_state.dialect = dialect;
}
GCodeTimeEstimator::EDialect GCodeTimeEstimator::get_dialect() const
{
return _state.dialect;
}
void GCodeTimeEstimator::set_units(GCodeTimeEstimator::EUnits units)
{
_state.units = units;
}
GCodeTimeEstimator::EUnits GCodeTimeEstimator::get_units() const
{
return _state.units;
}
void GCodeTimeEstimator::set_positioning_xyz_type(GCodeTimeEstimator::EPositioningType type)
{
_state.positioning_xyz_type = type;
}
GCodeTimeEstimator::EPositioningType GCodeTimeEstimator::get_positioning_xyz_type() const
{
return _state.positioning_xyz_type;
}
void GCodeTimeEstimator::set_positioning_e_type(GCodeTimeEstimator::EPositioningType type)
{
_state.positioning_e_type = type;
}
GCodeTimeEstimator::EPositioningType GCodeTimeEstimator::get_positioning_e_type() const
{
return _state.positioning_e_type;
}
void GCodeTimeEstimator::add_additional_time(float timeSec)
{
_state.additional_time += timeSec;
}
void GCodeTimeEstimator::set_additional_time(float timeSec)
{
_state.additional_time = timeSec;
}
float GCodeTimeEstimator::get_additional_time() const
{
return _state.additional_time;
}
void GCodeTimeEstimator::set_default()
{
set_units(Millimeters);
set_dialect(Unknown);
set_positioning_xyz_type(Absolute);
set_positioning_e_type(Relative);
set_feedrate(DEFAULT_FEEDRATE);
set_acceleration(DEFAULT_ACCELERATION);
set_retract_acceleration(DEFAULT_RETRACT_ACCELERATION);
set_minimum_feedrate(DEFAULT_MINIMUM_FEEDRATE);
set_minimum_travel_feedrate(DEFAULT_MINIMUM_TRAVEL_FEEDRATE);
for (unsigned char a = X; a < Num_Axis; ++a)
{
EAxis axis = (EAxis)a;
set_axis_max_feedrate(axis, DEFAULT_AXIS_MAX_FEEDRATE[a]);
set_axis_max_acceleration(axis, DEFAULT_AXIS_MAX_ACCELERATION[a]);
set_axis_max_jerk(axis, DEFAULT_AXIS_MAX_JERK[a]);
}
}
void GCodeTimeEstimator::reset()
{
_blocks.clear();
_reset();
}
float GCodeTimeEstimator::get_time() const
{
return _time;
}
std::string GCodeTimeEstimator::get_time_hms() const
{
float timeinsecs = get_time();
int hours = (int)(timeinsecs / 3600.0f);
timeinsecs -= (float)hours * 3600.0f;
int minutes = (int)(timeinsecs / 60.0f);
timeinsecs -= (float)minutes * 60.0f;
char buffer[16];
::sprintf(buffer, "%02d:%02d:%02d", hours, minutes, (int)timeinsecs);
return buffer;
}
void GCodeTimeEstimator::_reset()
{
_curr.reset();
_prev.reset();
set_axis_position(X, 0.0f);
set_axis_position(Y, 0.0f);
set_axis_position(Z, 0.0f);
set_additional_time(0.0f);
}
void GCodeTimeEstimator::_calculate_time()
{
#if ENABLE_BLOCKS_PRE_PROCESSING
forward_pass();
reverse_pass();
recalculate_trapezoids();
#endif // ENABLE_BLOCKS_PRE_PROCESSING
_time = get_additional_time();
for (const Block& block : _blocks)
{
_time += block.acceleration_time();
_time += block.cruise_time();
_time += block.deceleration_time();
}
}
void GCodeTimeEstimator::_process_gcode_line(GCodeReader&, const GCodeReader::GCodeLine& line)
{
if (line.cmd.length() > 1)
{
switch (line.cmd[0])
{
case 'G':
{
switch (::atoi(&line.cmd[1]))
{
case 1: // Move
{
_processG1(line);
break;
}
case 4: // Dwell
{
_processG4(line);
break;
}
case 20: // Set Units to Inches
{
_processG20(line);
break;
}
case 21: // Set Units to Millimeters
{
_processG21(line);
break;
}
case 28: // Move to Origin (Home)
{
_processG28(line);
break;
}
case 90: // Set to Absolute Positioning
{
_processG90(line);
break;
}
case 91: // Set to Relative Positioning
{
_processG91(line);
break;
}
case 92: // Set Position
{
_processG92(line);
break;
}
}
break;
}
case 'M':
{
switch (::atoi(&line.cmd[1]))
{
case 82: // Set extruder to absolute mode
{
_processM82(line);
break;
}
case 83: // Set extruder to relative mode
{
_processM83(line);
break;
}
case 109: // Set Extruder Temperature and Wait
{
_processM109(line);
break;
}
case 201: // Set max printing acceleration
{
_processM201(line);
break;
}
case 203: // Set maximum feedrate
{
_processM203(line);
break;
}
case 204: // Set default acceleration
{
_processM204(line);
break;
}
case 205: // Advanced settings
{
_processM205(line);
break;
}
case 566: // Set allowable instantaneous speed change
{
_processM566(line);
break;
}
}
break;
}
}
}
}
// Returns the new absolute position on the given axis in dependence of the given parameters
float axis_absolute_position_from_G1_line(GCodeTimeEstimator::EAxis axis, const GCodeReader::GCodeLine& lineG1, GCodeTimeEstimator::EUnits units, GCodeTimeEstimator::EPositioningType type, float current_absolute_position)
{
float lengthsScaleFactor = (units == GCodeTimeEstimator::Inches) ? INCHES_TO_MM : 1.0f;
if (lineG1.has(AXIS_STR[axis]))
{
float ret = lineG1.get_float(AXIS_STR[axis]) * lengthsScaleFactor;
return (type == GCodeTimeEstimator::Absolute) ? ret : current_absolute_position + ret;
}
else
return current_absolute_position;
}
void GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
{
// updates axes positions from line
EUnits units = get_units();
float new_pos[Num_Axis];
for (unsigned char a = X; a < Num_Axis; ++a)
{
new_pos[a] = axis_absolute_position_from_G1_line((EAxis)a, line, units, (a == E) ? get_positioning_e_type() : get_positioning_xyz_type(), get_axis_position((EAxis)a));
}
// updates feedrate from line, if present
if (line.has('F'))
set_feedrate(std::max(line.get_float('F') * MMMIN_TO_MMSEC, get_minimum_feedrate()));
// fills block data
Block block;
// calculates block movement deltas
float max_abs_delta = 0.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
block.delta_pos[a] = new_pos[a] - get_axis_position((EAxis)a);
max_abs_delta = std::max(max_abs_delta, ::abs(block.delta_pos[a]));
}
// is it a move ?
if (max_abs_delta == 0.0f)
return;
// calculates block feedrate
_curr.feedrate = std::max(get_feedrate(), block.is_travel_move() ? get_minimum_travel_feedrate() : get_minimum_feedrate());
float distance = block.move_length();
float invDistance = 1.0f / distance;
float min_feedrate_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
_curr.axis_feedrate[a] = _curr.feedrate * block.delta_pos[a] * invDistance;
_curr.abs_axis_feedrate[a] = ::abs(_curr.axis_feedrate[a]);
if (_curr.abs_axis_feedrate[a] > 0.0f)
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / _curr.abs_axis_feedrate[a]);
}
block.feedrate.cruise = min_feedrate_factor * _curr.feedrate;
for (unsigned char a = X; a < Num_Axis; ++a)
{
_curr.axis_feedrate[a] *= min_feedrate_factor;
_curr.abs_axis_feedrate[a] *= min_feedrate_factor;
}
// calculates block acceleration
float acceleration = block.is_extruder_only_move() ? get_retract_acceleration() : get_acceleration();
for (unsigned char a = X; a < Num_Axis; ++a)
{
float axis_max_acceleration = get_axis_max_acceleration((EAxis)a);
if (acceleration * ::abs(block.delta_pos[a]) * invDistance > axis_max_acceleration)
acceleration = axis_max_acceleration;
}
block.acceleration = acceleration;
// calculates block exit feedrate
_curr.safe_feedrate = block.feedrate.cruise;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (_curr.abs_axis_feedrate[a] > axis_max_jerk)
_curr.safe_feedrate = std::min(_curr.safe_feedrate, axis_max_jerk);
}
block.feedrate.exit = _curr.safe_feedrate;
// calculates block entry feedrate
#if USE_CURA_JUNCTION_VMAX
float vmax_junction = _curr.safe_feedrate;
if (!_blocks.empty() && (_prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD))
{
vmax_junction = block.feedrate.cruise;
float vmax_junction_factor = 1.0f;
for (unsigned char a = X; a < Num_Axis; ++a)
{
float abs_delta_axis_feedrate = ::abs(_curr.axis_feedrate[a] - _prev.axis_feedrate[a]);
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (abs_delta_axis_feedrate > axis_max_jerk)
vmax_junction_factor = std::min(vmax_junction_factor, axis_max_jerk / abs_delta_axis_feedrate);
}
// limit vmax to not exceed previous feedrate
vmax_junction = std::min(_prev.feedrate, vmax_junction * vmax_junction_factor);
}
#if ENABLE_BLOCKS_PRE_PROCESSING
float v_allowable = Block::max_allowable_speed(-acceleration, MINIMUM_PLANNER_SPEED, distance);
block.feedrate.entry = std::min(vmax_junction, v_allowable);
#else
block.feedrate.entry = std::min(vmax_junction, Block::max_allowable_speed(-acceleration, MINIMUM_PLANNER_SPEED, distance));
#endif // ENABLE_BLOCKS_PRE_PROCESSING
#else
float vmax_junction = _curr.safe_feedrate;
if (!_blocks.empty() && (_prev.feedrate > PREVIOUS_FEEDRATE_THRESHOLD))
{
bool prev_speed_larger = _prev.feedrate > block.feedrate.cruise;
float smaller_speed_factor = prev_speed_larger ? (block.feedrate.cruise / _prev.feedrate) : (_prev.feedrate / block.feedrate.cruise);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block.feedrate.cruise : _prev.feedrate;
float v_factor = 1.0f;
bool limited = false;
for (unsigned char a = X; a < Num_Axis; ++a)
{
// Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
float v_exit = _prev.axis_feedrate[a];
float v_entry = _curr.axis_feedrate[a];
if (prev_speed_larger)
v_exit *= smaller_speed_factor;
if (limited)
{
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
float jerk =
(v_exit > v_entry) ?
(((v_entry > 0.0f) || (v_exit < 0.0f)) ?
// coasting
(v_exit - v_entry) :
// axis reversal
std::max(v_exit, -v_entry)) :
// v_exit <= v_entry
(((v_entry < 0.0f) || (v_exit > 0.0f)) ?
// coasting
(v_entry - v_exit) :
// axis reversal
std::max(-v_exit, v_entry));
float axis_max_jerk = get_axis_max_jerk((EAxis)a);
if (jerk > axis_max_jerk)
{
v_factor *= axis_max_jerk / jerk;
limited = true;
}
}
if (limited)
vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
float vmax_junction_threshold = vmax_junction * 0.99f;
// Not coasting. The machine will stop and start the movements anyway, better to start the segment from start.
if ((_prev.safe_feedrate > vmax_junction_threshold) && (_curr.safe_feedrate > vmax_junction_threshold))
vmax_junction = _curr.safe_feedrate;
}
#if ENABLE_BLOCKS_PRE_PROCESSING
float v_allowable = Block::max_allowable_speed(-acceleration, _curr.safe_feedrate, distance);
block.feedrate.entry = std::min(vmax_junction, v_allowable);
#else
block.feedrate.entry = std::min(vmax_junction, Block::max_allowable_speed(-acceleration, _curr.safe_feedrate, distance));
#endif // ENABLE_BLOCKS_PRE_PROCESSING
#endif // USE_CURA_JUNCTION_VMAX
#if ENABLE_BLOCKS_PRE_PROCESSING
block.max_entry_speed = vmax_junction;
block.flags.nominal_length = (block.feedrate.cruise <= v_allowable);
block.flags.recalculate = true;
block.safe_feedrate = _curr.safe_feedrate;
#endif // ENABLE_BLOCKS_PRE_PROCESSING
// calculates block trapezoid
block.calculate_trapezoid();
// updates previous
_prev = _curr;
// updates axis positions
for (unsigned char a = X; a < Num_Axis; ++a)
{
set_axis_position((EAxis)a, new_pos[a]);
}
// adds block to blocks list
_blocks.push_back(block);
}
void GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
{
EDialect dialect = get_dialect();
if (line.has('P'))
add_additional_time(line.get_float('P') * MILLISEC_TO_SEC);
// see: http://reprap.org/wiki/G-code#G4:_Dwell
if ((dialect == Repetier) ||
(dialect == Marlin) ||
(dialect == Smoothieware) ||
(dialect == RepRapFirmware))
{
if (line.has('S'))
add_additional_time(line.get_float('S'));
}
}
void GCodeTimeEstimator::_processG20(const GCodeReader::GCodeLine& line)
{
set_units(Inches);
}
void GCodeTimeEstimator::_processG21(const GCodeReader::GCodeLine& line)
{
set_units(Millimeters);
}
void GCodeTimeEstimator::_processG28(const GCodeReader::GCodeLine& line)
{
// todo
}
void GCodeTimeEstimator::_processG90(const GCodeReader::GCodeLine& line)
{
set_positioning_xyz_type(Absolute);
}
void GCodeTimeEstimator::_processG91(const GCodeReader::GCodeLine& line)
{
// >>>>>>>> THERE ARE DIALECT VARIANTS
set_positioning_xyz_type(Relative);
}
void GCodeTimeEstimator::_processM82(const GCodeReader::GCodeLine& line)
{
set_positioning_e_type(Absolute);
}
void GCodeTimeEstimator::_processM83(const GCodeReader::GCodeLine& line)
{
set_positioning_e_type(Relative);
}
void GCodeTimeEstimator::_processG92(const GCodeReader::GCodeLine& line)
{
float lengthsScaleFactor = (get_units() == Inches) ? INCHES_TO_MM : 1.0f;
bool anyFound = false;
if (line.has('X'))
{
set_axis_position(X, line.get_float('X') * lengthsScaleFactor);
anyFound = true;
}
if (line.has('Y'))
{
set_axis_position(Y, line.get_float('Y') * lengthsScaleFactor);
anyFound = true;
}
if (line.has('Z'))
{
set_axis_position(Z, line.get_float('Z') * lengthsScaleFactor);
anyFound = true;
}
if (line.has('E'))
{
set_axis_position(E, line.get_float('E') * lengthsScaleFactor);
anyFound = true;
}
if (!anyFound)
{
for (unsigned char a = X; a < Num_Axis; ++a)
{
set_axis_position((EAxis)a, 0.0f);
}
}
}
void GCodeTimeEstimator::_processM109(const GCodeReader::GCodeLine& line)
{
// todo
}
void GCodeTimeEstimator::_processM201(const GCodeReader::GCodeLine& line)
{
EDialect dialect = get_dialect();
// see http://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration
float factor = ((dialect != RepRapFirmware) && (get_units() == GCodeTimeEstimator::Inches)) ? INCHES_TO_MM : 1.0f;
if (line.has('X'))
set_axis_max_acceleration(X, line.get_float('X') * factor);
if (line.has('Y'))
set_axis_max_acceleration(Y, line.get_float('Y') * factor);
if (line.has('Z'))
set_axis_max_acceleration(Z, line.get_float('Z') * factor);
if (line.has('E'))
set_axis_max_acceleration(E, line.get_float('E') * factor);
}
void GCodeTimeEstimator::_processM203(const GCodeReader::GCodeLine& line)
{
EDialect dialect = get_dialect();
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
if (dialect == Repetier)
return;
// see http://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate
float factor = (dialect == Marlin) ? 1.0f : MMMIN_TO_MMSEC;
if (line.has('X'))
set_axis_max_feedrate(X, line.get_float('X') * factor);
if (line.has('Y'))
set_axis_max_feedrate(Y, line.get_float('Y') * factor);
if (line.has('Z'))
set_axis_max_feedrate(Z, line.get_float('Z') * factor);
if (line.has('E'))
set_axis_max_feedrate(E, line.get_float('E') * factor);
}
void GCodeTimeEstimator::_processM204(const GCodeReader::GCodeLine& line)
{
if (line.has('S'))
set_acceleration(line.get_float('S'));
if (line.has('T'))
set_retract_acceleration(line.get_float('T'));
}
void GCodeTimeEstimator::_processM205(const GCodeReader::GCodeLine& line)
{
if (line.has('X'))
{
float max_jerk = line.get_float('X');
set_axis_max_jerk(X, max_jerk);
set_axis_max_jerk(Y, max_jerk);
}
if (line.has('Y'))
set_axis_max_jerk(Y, line.get_float('Y'));
if (line.has('Z'))
set_axis_max_jerk(Z, line.get_float('Z'));
if (line.has('E'))
set_axis_max_jerk(E, line.get_float('E'));
if (line.has('S'))
set_minimum_feedrate(line.get_float('S'));
if (line.has('T'))
set_minimum_travel_feedrate(line.get_float('T'));
}
void GCodeTimeEstimator::_processM566(const GCodeReader::GCodeLine& line)
{
if (line.has('X'))
set_axis_max_jerk(X, line.get_float('X') * MMMIN_TO_MMSEC);
if (line.has('Y'))
set_axis_max_jerk(Y, line.get_float('Y') * MMMIN_TO_MMSEC);
if (line.has('Z'))
set_axis_max_jerk(Z, line.get_float('Z') * MMMIN_TO_MMSEC);
if (line.has('E'))
set_axis_max_jerk(E, line.get_float('E') * MMMIN_TO_MMSEC);
}
#if ENABLE_BLOCKS_PRE_PROCESSING
void GCodeTimeEstimator::forward_pass()
{
Block* block[2] = { nullptr, nullptr };
for (Block& b : _blocks)
{
block[0] = block[1];
block[1] = &b;
planner_forward_pass_kernel(block[0], block[1]);
}
planner_forward_pass_kernel(block[1], nullptr);
}
void GCodeTimeEstimator::reverse_pass()
{
Block* block[2] = { nullptr, nullptr };
for (int i = (int)_blocks.size() - 1; i >= 0; --i)
{
block[1] = block[0];
block[0] = &_blocks[i];
planner_reverse_pass_kernel(block[0], block[1]);
}
}
void GCodeTimeEstimator::planner_forward_pass_kernel(Block* prev, Block* curr)
{
if (prev == nullptr)
return;
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!prev->flags.nominal_length)
{
if (prev->feedrate.entry < curr->feedrate.entry)
{
float entry_speed = std::min(curr->feedrate.entry, Block::max_allowable_speed(-prev->acceleration, prev->feedrate.entry, prev->move_length()));
// Check for junction speed change
if (curr->feedrate.entry != entry_speed)
{
curr->feedrate.entry = entry_speed;
curr->flags.recalculate = true;
}
}
}
}
void GCodeTimeEstimator::planner_reverse_pass_kernel(Block* curr, Block* next)
{
if ((curr == nullptr) || (next == nullptr))
return;
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
if (curr->feedrate.entry != curr->max_entry_speed)
{
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
if (!curr->flags.nominal_length && (curr->max_entry_speed > next->feedrate.entry))
curr->feedrate.entry = std::min(curr->max_entry_speed, Block::max_allowable_speed(-curr->acceleration, next->feedrate.entry, curr->move_length()));
else
curr->feedrate.entry = curr->max_entry_speed;
curr->flags.recalculate = true;
}
}
void GCodeTimeEstimator::recalculate_trapezoids()
{
Block* curr = nullptr;
Block* next = nullptr;
for (Block& b : _blocks)
{
curr = next;
next = &b;
if (curr != nullptr)
{
// Recalculate if current block entry or exit junction speed has changed.
if (curr->flags.recalculate || next->flags.recalculate)
{
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
Block block = *curr;
block.feedrate.exit = next->feedrate.entry;
block.calculate_trapezoid();
curr->trapezoid = block.trapezoid;
curr->flags.recalculate = false; // Reset current only to ensure next trapezoid is computed
}
}
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if (next != nullptr)
{
Block block = *next;
#if USE_CURA_JUNCTION_VMAX
block.feedrate.exit = MINIMUM_PLANNER_SPEED;
#else
block.feedrate.exit = next->safe_feedrate;
#endif // USE_CURA_JUNCTION_VMAX
block.calculate_trapezoid();
next->trapezoid = block.trapezoid;
next->flags.recalculate = false;
}
}
#endif // ENABLE_BLOCKS_PRE_PROCESSING
}