
Refactored PerimeterGenerator for functional style, better constness with the goal of calling PerimeterGenerator::process_xxx() for each surface at once to collect its fill expolygons.
1106 lines
56 KiB
C++
1106 lines
56 KiB
C++
#include "PerimeterGenerator.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "ExtrusionEntityCollection.hpp"
|
|
#include "ShortestPath.hpp"
|
|
#include "clipper/clipper_z.hpp"
|
|
|
|
#include "Arachne/WallToolPaths.hpp"
|
|
#include "Arachne/utils/ExtrusionLine.hpp"
|
|
|
|
#include <cmath>
|
|
#include <cassert>
|
|
#include <stack>
|
|
#include <unordered_map>
|
|
|
|
//#define ARACHNE_DEBUG
|
|
|
|
#ifdef ARACHNE_DEBUG
|
|
#include "SVG.hpp"
|
|
#include "Utils.hpp"
|
|
#endif
|
|
|
|
namespace Slic3r {
|
|
|
|
ExtrusionMultiPath PerimeterGenerator::thick_polyline_to_multi_path(const ThickPolyline &thick_polyline, ExtrusionRole role, const Flow &flow, const float tolerance, const float merge_tolerance)
|
|
{
|
|
ExtrusionMultiPath multi_path;
|
|
ExtrusionPath path(role);
|
|
ThickLines lines = thick_polyline.thicklines();
|
|
|
|
for (int i = 0; i < (int)lines.size(); ++i) {
|
|
const ThickLine& line = lines[i];
|
|
assert(line.a_width >= SCALED_EPSILON && line.b_width >= SCALED_EPSILON);
|
|
|
|
const coordf_t line_len = line.length();
|
|
if (line_len < SCALED_EPSILON) {
|
|
// The line is so tiny that we don't care about its width when we connect it to another line.
|
|
if (!path.empty())
|
|
path.polyline.points.back() = line.b; // If the variable path is non-empty, connect this tiny line to it.
|
|
else if (i + 1 < (int)lines.size()) // If there is at least one following line, connect this tiny line to it.
|
|
lines[i + 1].a = line.a;
|
|
else if (!multi_path.paths.empty())
|
|
multi_path.paths.back().polyline.points.back() = line.b; // Connect this tiny line to the last finished path.
|
|
|
|
// If any of the above isn't satisfied, then remove this tiny line.
|
|
continue;
|
|
}
|
|
|
|
double thickness_delta = fabs(line.a_width - line.b_width);
|
|
if (thickness_delta > tolerance) {
|
|
const auto segments = (unsigned int)ceil(thickness_delta / tolerance);
|
|
const coordf_t seg_len = line_len / segments;
|
|
Points pp;
|
|
std::vector<coordf_t> width;
|
|
{
|
|
pp.push_back(line.a);
|
|
width.push_back(line.a_width);
|
|
for (size_t j = 1; j < segments; ++j) {
|
|
pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
|
|
|
|
coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
|
|
width.push_back(w);
|
|
width.push_back(w);
|
|
}
|
|
pp.push_back(line.b);
|
|
width.push_back(line.b_width);
|
|
|
|
assert(pp.size() == segments + 1u);
|
|
assert(width.size() == segments*2);
|
|
}
|
|
|
|
// delete this line and insert new ones
|
|
lines.erase(lines.begin() + i);
|
|
for (size_t j = 0; j < segments; ++j) {
|
|
ThickLine new_line(pp[j], pp[j+1]);
|
|
new_line.a_width = width[2*j];
|
|
new_line.b_width = width[2*j+1];
|
|
lines.insert(lines.begin() + i + j, new_line);
|
|
}
|
|
|
|
-- i;
|
|
continue;
|
|
}
|
|
|
|
const double w = fmax(line.a_width, line.b_width);
|
|
const Flow new_flow = (role == erOverhangPerimeter && flow.bridge()) ? flow : flow.with_width(unscale<float>(w) + flow.height() * float(1. - 0.25 * PI));
|
|
if (path.polyline.points.empty()) {
|
|
path.polyline.append(line.a);
|
|
path.polyline.append(line.b);
|
|
// Convert from spacing to extrusion width based on the extrusion model
|
|
// of a square extrusion ended with semi circles.
|
|
#ifdef SLIC3R_DEBUG
|
|
printf(" filling %f gap\n", flow.width);
|
|
#endif
|
|
path.mm3_per_mm = new_flow.mm3_per_mm();
|
|
path.width = new_flow.width();
|
|
path.height = new_flow.height();
|
|
} else {
|
|
assert(path.width >= EPSILON);
|
|
thickness_delta = scaled<double>(fabs(path.width - new_flow.width()));
|
|
if (thickness_delta <= merge_tolerance) {
|
|
// the width difference between this line and the current flow
|
|
// (of the previous line) width is within the accepted tolerance
|
|
path.polyline.append(line.b);
|
|
} else {
|
|
// we need to initialize a new line
|
|
multi_path.paths.emplace_back(std::move(path));
|
|
path = ExtrusionPath(role);
|
|
-- i;
|
|
}
|
|
}
|
|
}
|
|
if (path.polyline.is_valid())
|
|
multi_path.paths.emplace_back(std::move(path));
|
|
return multi_path;
|
|
}
|
|
|
|
static void variable_width(const ThickPolylines &polylines, ExtrusionRole role, const Flow &flow, std::vector<ExtrusionEntity *> &out)
|
|
{
|
|
// This value determines granularity of adaptive width, as G-code does not allow
|
|
// variable extrusion within a single move; this value shall only affect the amount
|
|
// of segments, and any pruning shall be performed before we apply this tolerance.
|
|
const auto tolerance = float(scale_(0.05));
|
|
for (const ThickPolyline &p : polylines) {
|
|
ExtrusionMultiPath multi_path = PerimeterGenerator::thick_polyline_to_multi_path(p, role, flow, tolerance, tolerance);
|
|
// Append paths to collection.
|
|
if (!multi_path.paths.empty()) {
|
|
for (auto it = std::next(multi_path.paths.begin()); it != multi_path.paths.end(); ++it) {
|
|
assert(it->polyline.points.size() >= 2);
|
|
assert(std::prev(it)->polyline.last_point() == it->polyline.first_point());
|
|
}
|
|
|
|
if (multi_path.paths.front().first_point() == multi_path.paths.back().last_point())
|
|
out.emplace_back(new ExtrusionLoop(std::move(multi_path.paths)));
|
|
else
|
|
out.emplace_back(new ExtrusionMultiPath(std::move(multi_path)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Hierarchy of perimeters.
|
|
class PerimeterGeneratorLoop {
|
|
public:
|
|
// Polygon of this contour.
|
|
Polygon polygon;
|
|
// Is it a contour or a hole?
|
|
// Contours are CCW oriented, holes are CW oriented.
|
|
bool is_contour;
|
|
// Depth in the hierarchy. External perimeter has depth = 0. An external perimeter could be both a contour and a hole.
|
|
unsigned short depth;
|
|
// Should this contur be fuzzyfied on path generation?
|
|
bool fuzzify;
|
|
// Children contour, may be both CCW and CW oriented (outer contours or holes).
|
|
std::vector<PerimeterGeneratorLoop> children;
|
|
|
|
PerimeterGeneratorLoop(const Polygon &polygon, unsigned short depth, bool is_contour, bool fuzzify) :
|
|
polygon(polygon), is_contour(is_contour), depth(depth), fuzzify(fuzzify) {}
|
|
// External perimeter. It may be CCW or CW oriented (outer contour or hole contour).
|
|
bool is_external() const { return this->depth == 0; }
|
|
// An island, which may have holes, but it does not have another internal island.
|
|
bool is_internal_contour() const {
|
|
// An internal contour is a contour containing no other contours
|
|
if (! this->is_contour)
|
|
return false;
|
|
for (const PerimeterGeneratorLoop &loop : this->children)
|
|
if (loop.is_contour)
|
|
return false;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// Thanks Cura developers for this function.
|
|
static void fuzzy_polygon(Polygon &poly, double fuzzy_skin_thickness, double fuzzy_skin_point_dist)
|
|
{
|
|
const double min_dist_between_points = fuzzy_skin_point_dist * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
|
|
const double range_random_point_dist = fuzzy_skin_point_dist / 2.;
|
|
double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
|
|
Point* p0 = &poly.points.back();
|
|
Points out;
|
|
out.reserve(poly.points.size());
|
|
for (Point &p1 : poly.points)
|
|
{ // 'a' is the (next) new point between p0 and p1
|
|
Vec2d p0p1 = (p1 - *p0).cast<double>();
|
|
double p0p1_size = p0p1.norm();
|
|
// so that p0p1_size - dist_last_point evaulates to dist_left_over - p0p1_size
|
|
double dist_last_point = dist_left_over + p0p1_size * 2.;
|
|
for (double p0pa_dist = dist_left_over; p0pa_dist < p0p1_size;
|
|
p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX))
|
|
{
|
|
double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
|
|
out.emplace_back(*p0 + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>());
|
|
dist_last_point = p0pa_dist;
|
|
}
|
|
dist_left_over = p0p1_size - dist_last_point;
|
|
p0 = &p1;
|
|
}
|
|
while (out.size() < 3) {
|
|
size_t point_idx = poly.size() - 2;
|
|
out.emplace_back(poly[point_idx]);
|
|
if (point_idx == 0)
|
|
break;
|
|
-- point_idx;
|
|
}
|
|
if (out.size() >= 3)
|
|
poly.points = std::move(out);
|
|
}
|
|
|
|
// Thanks Cura developers for this function.
|
|
static void fuzzy_extrusion_line(Arachne::ExtrusionLine &ext_lines, double fuzzy_skin_thickness, double fuzzy_skin_point_dist)
|
|
{
|
|
const double min_dist_between_points = fuzzy_skin_point_dist * 3. / 4.; // hardcoded: the point distance may vary between 3/4 and 5/4 the supplied value
|
|
const double range_random_point_dist = fuzzy_skin_point_dist / 2.;
|
|
double dist_left_over = double(rand()) * (min_dist_between_points / 2) / double(RAND_MAX); // the distance to be traversed on the line before making the first new point
|
|
|
|
auto *p0 = &ext_lines.front();
|
|
std::vector<Arachne::ExtrusionJunction> out;
|
|
out.reserve(ext_lines.size());
|
|
for (auto &p1 : ext_lines) {
|
|
if (p0->p == p1.p) { // Connect endpoints.
|
|
out.emplace_back(p1.p, p1.w, p1.perimeter_index);
|
|
continue;
|
|
}
|
|
|
|
// 'a' is the (next) new point between p0 and p1
|
|
Vec2d p0p1 = (p1.p - p0->p).cast<double>();
|
|
double p0p1_size = p0p1.norm();
|
|
// so that p0p1_size - dist_last_point evaulates to dist_left_over - p0p1_size
|
|
double dist_last_point = dist_left_over + p0p1_size * 2.;
|
|
for (double p0pa_dist = dist_left_over; p0pa_dist < p0p1_size; p0pa_dist += min_dist_between_points + double(rand()) * range_random_point_dist / double(RAND_MAX)) {
|
|
double r = double(rand()) * (fuzzy_skin_thickness * 2.) / double(RAND_MAX) - fuzzy_skin_thickness;
|
|
out.emplace_back(p0->p + (p0p1 * (p0pa_dist / p0p1_size) + perp(p0p1).cast<double>().normalized() * r).cast<coord_t>(), p1.w, p1.perimeter_index);
|
|
dist_last_point = p0pa_dist;
|
|
}
|
|
dist_left_over = p0p1_size - dist_last_point;
|
|
p0 = &p1;
|
|
}
|
|
|
|
while (out.size() < 3) {
|
|
size_t point_idx = ext_lines.size() - 2;
|
|
out.emplace_back(ext_lines[point_idx].p, ext_lines[point_idx].w, ext_lines[point_idx].perimeter_index);
|
|
if (point_idx == 0)
|
|
break;
|
|
-- point_idx;
|
|
}
|
|
|
|
if (ext_lines.back().p == ext_lines.front().p) // Connect endpoints.
|
|
out.front().p = out.back().p;
|
|
|
|
if (out.size() >= 3)
|
|
ext_lines.junctions = std::move(out);
|
|
}
|
|
|
|
using PerimeterGeneratorLoops = std::vector<PerimeterGeneratorLoop>;
|
|
|
|
static ExtrusionEntityCollection traverse_loops(const PerimeterGenerator::Parameters ¶ms, const Polygons &lower_slices_polygons_cache, const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls)
|
|
{
|
|
// loops is an arrayref of ::Loop objects
|
|
// turn each one into an ExtrusionLoop object
|
|
ExtrusionEntityCollection coll;
|
|
Polygon fuzzified;
|
|
for (const PerimeterGeneratorLoop &loop : loops) {
|
|
bool is_external = loop.is_external();
|
|
|
|
ExtrusionRole role;
|
|
ExtrusionLoopRole loop_role;
|
|
role = is_external ? erExternalPerimeter : erPerimeter;
|
|
if (loop.is_internal_contour()) {
|
|
// Note that we set loop role to ContourInternalPerimeter
|
|
// also when loop is both internal and external (i.e.
|
|
// there's only one contour loop).
|
|
loop_role = elrContourInternalPerimeter;
|
|
} else {
|
|
loop_role = elrDefault;
|
|
}
|
|
|
|
// detect overhanging/bridging perimeters
|
|
ExtrusionPaths paths;
|
|
const Polygon &polygon = loop.fuzzify ? fuzzified : loop.polygon;
|
|
if (loop.fuzzify) {
|
|
fuzzified = loop.polygon;
|
|
fuzzy_polygon(fuzzified, scaled<float>(params.config.fuzzy_skin_thickness.value), scaled<float>(params.config.fuzzy_skin_point_dist.value));
|
|
}
|
|
if (params.config.overhangs && params.layer_id > params.object_config.raft_layers
|
|
&& ! ((params.object_config.support_material || params.object_config.support_material_enforce_layers > 0) &&
|
|
params.object_config.support_material_contact_distance.value == 0)) {
|
|
// get non-overhang paths by intersecting this loop with the grown lower slices
|
|
extrusion_paths_append(
|
|
paths,
|
|
intersection_pl({ polygon }, lower_slices_polygons_cache),
|
|
role,
|
|
is_external ? params.ext_mm3_per_mm : params.mm3_per_mm,
|
|
is_external ? params.ext_perimeter_flow.width() : params.perimeter_flow.width(),
|
|
float(params.layer_height));
|
|
|
|
// get overhang paths by checking what parts of this loop fall
|
|
// outside the grown lower slices (thus where the distance between
|
|
// the loop centerline and original lower slices is >= half nozzle diameter
|
|
extrusion_paths_append(
|
|
paths,
|
|
diff_pl({ polygon }, lower_slices_polygons_cache),
|
|
erOverhangPerimeter,
|
|
params.mm3_per_mm_overhang,
|
|
params.overhang_flow.width(),
|
|
params.overhang_flow.height());
|
|
|
|
// Reapply the nearest point search for starting point.
|
|
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
|
|
chain_and_reorder_extrusion_paths(paths, &paths.front().first_point());
|
|
} else {
|
|
ExtrusionPath path(role);
|
|
path.polyline = polygon.split_at_first_point();
|
|
path.mm3_per_mm = is_external ? params.ext_mm3_per_mm : params.mm3_per_mm;
|
|
path.width = is_external ? params.ext_perimeter_flow.width() : params.perimeter_flow.width();
|
|
path.height = float(params.layer_height);
|
|
paths.push_back(path);
|
|
}
|
|
|
|
coll.append(ExtrusionLoop(std::move(paths), loop_role));
|
|
}
|
|
|
|
// Append thin walls to the nearest-neighbor search (only for first iteration)
|
|
if (! thin_walls.empty()) {
|
|
variable_width(thin_walls, erExternalPerimeter, params.ext_perimeter_flow, coll.entities);
|
|
thin_walls.clear();
|
|
}
|
|
|
|
// Traverse children and build the final collection.
|
|
Point zero_point(0, 0);
|
|
std::vector<std::pair<size_t, bool>> chain = chain_extrusion_entities(coll.entities, &zero_point);
|
|
ExtrusionEntityCollection out;
|
|
for (const std::pair<size_t, bool> &idx : chain) {
|
|
assert(coll.entities[idx.first] != nullptr);
|
|
if (idx.first >= loops.size()) {
|
|
// This is a thin wall.
|
|
out.entities.reserve(out.entities.size() + 1);
|
|
out.entities.emplace_back(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
if (idx.second)
|
|
out.entities.back()->reverse();
|
|
} else {
|
|
const PerimeterGeneratorLoop &loop = loops[idx.first];
|
|
assert(thin_walls.empty());
|
|
ExtrusionEntityCollection children = traverse_loops(params, lower_slices_polygons_cache, loop.children, thin_walls);
|
|
out.entities.reserve(out.entities.size() + children.entities.size() + 1);
|
|
ExtrusionLoop *eloop = static_cast<ExtrusionLoop*>(coll.entities[idx.first]);
|
|
coll.entities[idx.first] = nullptr;
|
|
if (loop.is_contour) {
|
|
eloop->make_counter_clockwise();
|
|
out.append(std::move(children.entities));
|
|
out.entities.emplace_back(eloop);
|
|
} else {
|
|
eloop->make_clockwise();
|
|
out.entities.emplace_back(eloop);
|
|
out.append(std::move(children.entities));
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static ClipperLib_Z::Paths clip_extrusion(const ClipperLib_Z::Path &subject, const ClipperLib_Z::Paths &clip, ClipperLib_Z::ClipType clipType)
|
|
{
|
|
ClipperLib_Z::Clipper clipper;
|
|
clipper.ZFillFunction([](const ClipperLib_Z::IntPoint &e1bot, const ClipperLib_Z::IntPoint &e1top, const ClipperLib_Z::IntPoint &e2bot,
|
|
const ClipperLib_Z::IntPoint &e2top, ClipperLib_Z::IntPoint &pt) {
|
|
ClipperLib_Z::IntPoint start = e1bot;
|
|
ClipperLib_Z::IntPoint end = e1top;
|
|
|
|
if (start.z() <= 0 && end.z() <= 0) {
|
|
start = e2bot;
|
|
end = e2top;
|
|
}
|
|
|
|
assert(start.z() > 0 && end.z() > 0);
|
|
|
|
// Interpolate extrusion line width.
|
|
double length_sqr = (end - start).cast<double>().squaredNorm();
|
|
double dist_sqr = (pt - start).cast<double>().squaredNorm();
|
|
double t = std::sqrt(dist_sqr / length_sqr);
|
|
|
|
pt.z() = start.z() + coord_t((end.z() - start.z()) * t);
|
|
});
|
|
|
|
clipper.AddPath(subject, ClipperLib_Z::ptSubject, false);
|
|
clipper.AddPaths(clip, ClipperLib_Z::ptClip, true);
|
|
|
|
ClipperLib_Z::PolyTree clipped_polytree;
|
|
ClipperLib_Z::Paths clipped_paths;
|
|
clipper.Execute(clipType, clipped_polytree, ClipperLib_Z::pftNonZero, ClipperLib_Z::pftNonZero);
|
|
ClipperLib_Z::PolyTreeToPaths(clipped_polytree, clipped_paths);
|
|
|
|
// Clipped path could contain vertices from the clip with a Z coordinate equal to zero.
|
|
// For those vertices, we must assign value based on the subject.
|
|
// This happens only in sporadic cases.
|
|
for (ClipperLib_Z::Path &path : clipped_paths)
|
|
for (ClipperLib_Z::IntPoint &c_pt : path)
|
|
if (c_pt.z() == 0) {
|
|
// Now we must find the corresponding line on with this point is located and compute line width (Z coordinate).
|
|
if (subject.size() <= 2)
|
|
continue;
|
|
|
|
const Point pt(c_pt.x(), c_pt.y());
|
|
Point projected_pt_min;
|
|
auto it_min = subject.begin();
|
|
auto dist_sqr_min = std::numeric_limits<double>::max();
|
|
Point prev(subject.front().x(), subject.front().y());
|
|
for (auto it = std::next(subject.begin()); it != subject.end(); ++it) {
|
|
Point curr(it->x(), it->y());
|
|
Point projected_pt = pt.projection_onto(Line(prev, curr));
|
|
if (double dist_sqr = (projected_pt - pt).cast<double>().squaredNorm(); dist_sqr < dist_sqr_min) {
|
|
dist_sqr_min = dist_sqr;
|
|
projected_pt_min = projected_pt;
|
|
it_min = std::prev(it);
|
|
}
|
|
prev = curr;
|
|
}
|
|
|
|
assert(dist_sqr_min <= SCALED_EPSILON);
|
|
assert(std::next(it_min) != subject.end());
|
|
|
|
const Point pt_a(it_min->x(), it_min->y());
|
|
const Point pt_b(std::next(it_min)->x(), std::next(it_min)->y());
|
|
const double line_len = (pt_b - pt_a).cast<double>().norm();
|
|
const double dist = (projected_pt_min - pt_a).cast<double>().norm();
|
|
c_pt.z() = coord_t(double(it_min->z()) + (dist / line_len) * double(std::next(it_min)->z() - it_min->z()));
|
|
}
|
|
|
|
assert([&clipped_paths = std::as_const(clipped_paths)]() -> bool {
|
|
for (const ClipperLib_Z::Path &path : clipped_paths)
|
|
for (const ClipperLib_Z::IntPoint &pt : path)
|
|
if (pt.z() <= 0)
|
|
return false;
|
|
return true;
|
|
}());
|
|
|
|
return clipped_paths;
|
|
}
|
|
|
|
struct PerimeterGeneratorArachneExtrusion
|
|
{
|
|
Arachne::ExtrusionLine *extrusion = nullptr;
|
|
// Indicates if closed ExtrusionLine is a contour or a hole. Used it only when ExtrusionLine is a closed loop.
|
|
bool is_contour = false;
|
|
// Should this extrusion be fuzzyfied on path generation?
|
|
bool fuzzify = false;
|
|
};
|
|
|
|
static ExtrusionEntityCollection traverse_extrusions(const PerimeterGenerator::Parameters ¶ms, const Polygons &lower_slices_polygons_cache, std::vector<PerimeterGeneratorArachneExtrusion> &pg_extrusions)
|
|
{
|
|
ExtrusionEntityCollection extrusion_coll;
|
|
for (PerimeterGeneratorArachneExtrusion &pg_extrusion : pg_extrusions) {
|
|
Arachne::ExtrusionLine *extrusion = pg_extrusion.extrusion;
|
|
if (extrusion->empty())
|
|
continue;
|
|
|
|
const bool is_external = extrusion->inset_idx == 0;
|
|
ExtrusionRole role = is_external ? erExternalPerimeter : erPerimeter;
|
|
|
|
if (pg_extrusion.fuzzify)
|
|
fuzzy_extrusion_line(*extrusion, scaled<float>(params.config.fuzzy_skin_thickness.value), scaled<float>(params.config.fuzzy_skin_point_dist.value));
|
|
|
|
ExtrusionPaths paths;
|
|
// detect overhanging/bridging perimeters
|
|
if (params.config.overhangs && params.layer_id > params.object_config.raft_layers
|
|
&& ! ((params.object_config.support_material || params.object_config.support_material_enforce_layers > 0) &&
|
|
params.object_config.support_material_contact_distance.value == 0)) {
|
|
|
|
ClipperLib_Z::Path extrusion_path;
|
|
extrusion_path.reserve(extrusion->size());
|
|
for (const Arachne::ExtrusionJunction &ej : extrusion->junctions)
|
|
extrusion_path.emplace_back(ej.p.x(), ej.p.y(), ej.w);
|
|
|
|
ClipperLib_Z::Paths lower_slices_paths;
|
|
lower_slices_paths.reserve(lower_slices_polygons_cache.size());
|
|
for (const Polygon &poly : lower_slices_polygons_cache) {
|
|
lower_slices_paths.emplace_back();
|
|
ClipperLib_Z::Path &out = lower_slices_paths.back();
|
|
out.reserve(poly.points.size());
|
|
for (const Point &pt : poly.points)
|
|
out.emplace_back(pt.x(), pt.y(), 0);
|
|
}
|
|
|
|
// get non-overhang paths by intersecting this loop with the grown lower slices
|
|
extrusion_paths_append(paths, clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctIntersection), role,
|
|
is_external ? params.ext_perimeter_flow : params.perimeter_flow);
|
|
|
|
// get overhang paths by checking what parts of this loop fall
|
|
// outside the grown lower slices (thus where the distance between
|
|
// the loop centerline and original lower slices is >= half nozzle diameter
|
|
extrusion_paths_append(paths, clip_extrusion(extrusion_path, lower_slices_paths, ClipperLib_Z::ctDifference), erOverhangPerimeter,
|
|
params.overhang_flow);
|
|
|
|
// Reapply the nearest point search for starting point.
|
|
// We allow polyline reversal because Clipper may have randomly reversed polylines during clipping.
|
|
// Arachne sometimes creates extrusion with zero-length (just two same endpoints);
|
|
if (!paths.empty()) {
|
|
Point start_point = paths.front().first_point();
|
|
if (!extrusion->is_closed) {
|
|
// Especially for open extrusion, we need to select a starting point that is at the start
|
|
// or the end of the extrusions to make one continuous line. Also, we prefer a non-overhang
|
|
// starting point.
|
|
struct PointInfo
|
|
{
|
|
size_t occurrence = 0;
|
|
bool is_overhang = false;
|
|
};
|
|
std::unordered_map<Point, PointInfo, PointHash> point_occurrence;
|
|
for (const ExtrusionPath &path : paths) {
|
|
++point_occurrence[path.polyline.first_point()].occurrence;
|
|
++point_occurrence[path.polyline.last_point()].occurrence;
|
|
if (path.role() == erOverhangPerimeter) {
|
|
point_occurrence[path.polyline.first_point()].is_overhang = true;
|
|
point_occurrence[path.polyline.last_point()].is_overhang = true;
|
|
}
|
|
}
|
|
|
|
// Prefer non-overhang point as a starting point.
|
|
for (const std::pair<Point, PointInfo> pt : point_occurrence)
|
|
if (pt.second.occurrence == 1) {
|
|
start_point = pt.first;
|
|
if (!pt.second.is_overhang) {
|
|
start_point = pt.first;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
chain_and_reorder_extrusion_paths(paths, &start_point);
|
|
}
|
|
} else {
|
|
extrusion_paths_append(paths, *extrusion, role, is_external ? params.ext_perimeter_flow : params.perimeter_flow);
|
|
}
|
|
|
|
// Append paths to collection.
|
|
if (!paths.empty()) {
|
|
if (extrusion->is_closed) {
|
|
ExtrusionLoop extrusion_loop(std::move(paths));
|
|
// Restore the orientation of the extrusion loop.
|
|
if (pg_extrusion.is_contour)
|
|
extrusion_loop.make_counter_clockwise();
|
|
else
|
|
extrusion_loop.make_clockwise();
|
|
|
|
for (auto it = std::next(extrusion_loop.paths.begin()); it != extrusion_loop.paths.end(); ++it) {
|
|
assert(it->polyline.points.size() >= 2);
|
|
assert(std::prev(it)->polyline.last_point() == it->polyline.first_point());
|
|
}
|
|
assert(extrusion_loop.paths.front().first_point() == extrusion_loop.paths.back().last_point());
|
|
|
|
extrusion_coll.append(std::move(extrusion_loop));
|
|
} else {
|
|
// Because we are processing one ExtrusionLine all ExtrusionPaths should form one connected path.
|
|
// But there is possibility that due to numerical issue there is poss
|
|
assert([&paths = std::as_const(paths)]() -> bool {
|
|
for (auto it = std::next(paths.begin()); it != paths.end(); ++it)
|
|
if (std::prev(it)->polyline.last_point() != it->polyline.first_point())
|
|
return false;
|
|
return true;
|
|
}());
|
|
ExtrusionMultiPath multi_path;
|
|
multi_path.paths.emplace_back(std::move(paths.front()));
|
|
|
|
for (auto it_path = std::next(paths.begin()); it_path != paths.end(); ++it_path) {
|
|
if (multi_path.paths.back().last_point() != it_path->first_point()) {
|
|
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
|
|
multi_path = ExtrusionMultiPath();
|
|
}
|
|
multi_path.paths.emplace_back(std::move(*it_path));
|
|
}
|
|
|
|
extrusion_coll.append(ExtrusionMultiPath(std::move(multi_path)));
|
|
}
|
|
}
|
|
}
|
|
|
|
return extrusion_coll;
|
|
}
|
|
|
|
#ifdef ARACHNE_DEBUG
|
|
static void export_perimeters_to_svg(const std::string &path, const Polygons &contours, const std::vector<Arachne::VariableWidthLines> &perimeters, const ExPolygons &infill_area)
|
|
{
|
|
coordf_t stroke_width = scale_(0.03);
|
|
BoundingBox bbox = get_extents(contours);
|
|
bbox.offset(scale_(1.));
|
|
::Slic3r::SVG svg(path.c_str(), bbox);
|
|
|
|
svg.draw(infill_area, "cyan");
|
|
|
|
for (const Arachne::VariableWidthLines &perimeter : perimeters)
|
|
for (const Arachne::ExtrusionLine &extrusion_line : perimeter) {
|
|
ThickPolyline thick_polyline = to_thick_polyline(extrusion_line);
|
|
svg.draw({thick_polyline}, "green", "blue", stroke_width);
|
|
}
|
|
|
|
for (const Line &line : to_lines(contours))
|
|
svg.draw(line, "red", stroke_width);
|
|
}
|
|
#endif
|
|
|
|
// Thanks, Cura developers, for implementing an algorithm for generating perimeters with variable width (Arachne) that is based on the paper
|
|
// "A framework for adaptive width control of dense contour-parallel toolpaths in fused deposition modeling"
|
|
void PerimeterGenerator::process_arachne(
|
|
// Inputs:
|
|
const Parameters ¶ms,
|
|
const SurfaceCollection *slices,
|
|
const ExPolygons *lower_slices,
|
|
// Cache:
|
|
Polygons &lower_slices_polygons_cache,
|
|
// Output:
|
|
// Loops with the external thin walls
|
|
ExtrusionEntityCollection &out_loops,
|
|
// Gaps without the thin walls
|
|
ExtrusionEntityCollection &out_gap_fill,
|
|
// Infills without the gap fills
|
|
SurfaceCollection &out_fill_surfaces)
|
|
{
|
|
// other perimeters
|
|
coord_t perimeter_spacing = params.perimeter_flow.scaled_spacing();
|
|
// external perimeters
|
|
coord_t ext_perimeter_width = params.ext_perimeter_flow.scaled_width();
|
|
coord_t ext_perimeter_spacing = params.ext_perimeter_flow.scaled_spacing();
|
|
coord_t ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (params.ext_perimeter_flow.spacing() + params.perimeter_flow.spacing()));
|
|
// solid infill
|
|
coord_t solid_infill_spacing = params.solid_infill_flow.scaled_spacing();
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
if (lower_slices != nullptr && params.config.overhangs) {
|
|
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
|
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
|
// in the current layer
|
|
double nozzle_diameter = params.print_config.nozzle_diameter.get_at(params.config.perimeter_extruder-1);
|
|
lower_slices_polygons_cache = offset(*lower_slices, float(scale_(+nozzle_diameter/2)));
|
|
}
|
|
|
|
// we need to process each island separately because we might have different
|
|
// extra perimeters for each one
|
|
for (const Surface &surface : slices->surfaces) {
|
|
// detect how many perimeters must be generated for this island
|
|
int loop_number = params.config.perimeters + surface.extra_perimeters - 1; // 0-indexed loops
|
|
ExPolygons last = offset_ex(surface.expolygon.simplify_p(params.scaled_resolution), - float(ext_perimeter_width / 2. - ext_perimeter_spacing / 2.));
|
|
Polygons last_p = to_polygons(last);
|
|
|
|
Arachne::WallToolPaths wallToolPaths(last_p, ext_perimeter_spacing, perimeter_spacing, coord_t(loop_number + 1), 0, params.layer_height, params.object_config, params.print_config);
|
|
std::vector<Arachne::VariableWidthLines> perimeters = wallToolPaths.getToolPaths();
|
|
loop_number = int(perimeters.size()) - 1;
|
|
|
|
#ifdef ARACHNE_DEBUG
|
|
{
|
|
static int iRun = 0;
|
|
export_perimeters_to_svg(debug_out_path("arachne-perimeters-%d-%d.svg", layer_id, iRun++), to_polygons(last), perimeters, union_ex(wallToolPaths.getInnerContour()));
|
|
}
|
|
#endif
|
|
|
|
// All closed ExtrusionLine should have the same the first and the last point.
|
|
// But in rare cases, Arachne produce ExtrusionLine marked as closed but without
|
|
// equal the first and the last point.
|
|
assert([&perimeters = std::as_const(perimeters)]() -> bool {
|
|
for (const Arachne::VariableWidthLines &perimeter : perimeters)
|
|
for (const Arachne::ExtrusionLine &el : perimeter)
|
|
if (el.is_closed && el.junctions.front().p != el.junctions.back().p)
|
|
return false;
|
|
return true;
|
|
}());
|
|
|
|
int start_perimeter = int(perimeters.size()) - 1;
|
|
int end_perimeter = -1;
|
|
int direction = -1;
|
|
|
|
if (params.config.external_perimeters_first) {
|
|
start_perimeter = 0;
|
|
end_perimeter = int(perimeters.size());
|
|
direction = 1;
|
|
}
|
|
|
|
std::vector<Arachne::ExtrusionLine *> all_extrusions;
|
|
for (int perimeter_idx = start_perimeter; perimeter_idx != end_perimeter; perimeter_idx += direction) {
|
|
if (perimeters[perimeter_idx].empty())
|
|
continue;
|
|
for (Arachne::ExtrusionLine &wall : perimeters[perimeter_idx])
|
|
all_extrusions.emplace_back(&wall);
|
|
}
|
|
|
|
// Find topological order with constraints from extrusions_constrains.
|
|
std::vector<size_t> blocked(all_extrusions.size(), 0); // Value indicating how many extrusions it is blocking (preceding extrusions) an extrusion.
|
|
std::vector<std::vector<size_t>> blocking(all_extrusions.size()); // Each extrusion contains a vector of extrusions that are blocked by this extrusion.
|
|
std::unordered_map<const Arachne::ExtrusionLine *, size_t> map_extrusion_to_idx;
|
|
for (size_t idx = 0; idx < all_extrusions.size(); idx++)
|
|
map_extrusion_to_idx.emplace(all_extrusions[idx], idx);
|
|
|
|
auto extrusions_constrains = Arachne::WallToolPaths::getRegionOrder(all_extrusions, params.config.external_perimeters_first);
|
|
for (auto [before, after] : extrusions_constrains) {
|
|
auto after_it = map_extrusion_to_idx.find(after);
|
|
++blocked[after_it->second];
|
|
blocking[map_extrusion_to_idx.find(before)->second].emplace_back(after_it->second);
|
|
}
|
|
|
|
std::vector<bool> processed(all_extrusions.size(), false); // Indicate that the extrusion was already processed.
|
|
Point current_position = all_extrusions.empty() ? Point::Zero() : all_extrusions.front()->junctions.front().p; // Some starting position.
|
|
std::vector<PerimeterGeneratorArachneExtrusion> ordered_extrusions; // To store our result in. At the end we'll std::swap.
|
|
ordered_extrusions.reserve(all_extrusions.size());
|
|
|
|
while (ordered_extrusions.size() < all_extrusions.size()) {
|
|
size_t best_candidate = 0;
|
|
double best_distance_sqr = std::numeric_limits<double>::max();
|
|
bool is_best_closed = false;
|
|
|
|
std::vector<size_t> available_candidates;
|
|
for (size_t candidate = 0; candidate < all_extrusions.size(); ++candidate) {
|
|
if (processed[candidate] || blocked[candidate])
|
|
continue; // Not a valid candidate.
|
|
available_candidates.push_back(candidate);
|
|
}
|
|
|
|
std::sort(available_candidates.begin(), available_candidates.end(), [&all_extrusions](const size_t a_idx, const size_t b_idx) -> bool {
|
|
return all_extrusions[a_idx]->is_closed < all_extrusions[b_idx]->is_closed;
|
|
});
|
|
|
|
for (const size_t candidate_path_idx : available_candidates) {
|
|
auto& path = all_extrusions[candidate_path_idx];
|
|
|
|
if (path->junctions.empty()) { // No vertices in the path. Can't find the start position then or really plan it in. Put that at the end.
|
|
if (best_distance_sqr == std::numeric_limits<double>::max()) {
|
|
best_candidate = candidate_path_idx;
|
|
is_best_closed = path->is_closed;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
const Point candidate_position = path->junctions.front().p;
|
|
double distance_sqr = (current_position - candidate_position).cast<double>().norm();
|
|
if (distance_sqr < best_distance_sqr) { // Closer than the best candidate so far.
|
|
if (path->is_closed || (!path->is_closed && best_distance_sqr != std::numeric_limits<double>::max()) || (!path->is_closed && !is_best_closed)) {
|
|
best_candidate = candidate_path_idx;
|
|
best_distance_sqr = distance_sqr;
|
|
is_best_closed = path->is_closed;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto &best_path = all_extrusions[best_candidate];
|
|
ordered_extrusions.push_back({best_path, best_path->is_contour(), false});
|
|
processed[best_candidate] = true;
|
|
for (size_t unlocked_idx : blocking[best_candidate])
|
|
blocked[unlocked_idx]--;
|
|
|
|
if(!best_path->junctions.empty()) { //If all paths were empty, the best path is still empty. We don't upate the current position then.
|
|
if(best_path->is_closed)
|
|
current_position = best_path->junctions[0].p; //We end where we started.
|
|
else
|
|
current_position = best_path->junctions.back().p; //Pick the other end from where we started.
|
|
}
|
|
}
|
|
|
|
if (params.layer_id > 0 && params.config.fuzzy_skin != FuzzySkinType::None) {
|
|
std::vector<PerimeterGeneratorArachneExtrusion *> closed_loop_extrusions;
|
|
for (PerimeterGeneratorArachneExtrusion &extrusion : ordered_extrusions)
|
|
if (extrusion.extrusion->inset_idx == 0) {
|
|
if (extrusion.extrusion->is_closed && params.config.fuzzy_skin == FuzzySkinType::External) {
|
|
closed_loop_extrusions.emplace_back(&extrusion);
|
|
} else {
|
|
extrusion.fuzzify = true;
|
|
}
|
|
}
|
|
|
|
if (params.config.fuzzy_skin == FuzzySkinType::External) {
|
|
ClipperLib_Z::Paths loops_paths;
|
|
loops_paths.reserve(closed_loop_extrusions.size());
|
|
for (const auto &cl_extrusion : closed_loop_extrusions) {
|
|
assert(cl_extrusion->extrusion->junctions.front() == cl_extrusion->extrusion->junctions.back());
|
|
size_t loop_idx = &cl_extrusion - &closed_loop_extrusions.front();
|
|
ClipperLib_Z::Path loop_path;
|
|
loop_path.reserve(cl_extrusion->extrusion->junctions.size() - 1);
|
|
for (auto junction_it = cl_extrusion->extrusion->junctions.begin(); junction_it != std::prev(cl_extrusion->extrusion->junctions.end()); ++junction_it)
|
|
loop_path.emplace_back(junction_it->p.x(), junction_it->p.y(), loop_idx);
|
|
loops_paths.emplace_back(loop_path);
|
|
}
|
|
|
|
ClipperLib_Z::Clipper clipper;
|
|
clipper.AddPaths(loops_paths, ClipperLib_Z::ptSubject, true);
|
|
ClipperLib_Z::PolyTree loops_polytree;
|
|
clipper.Execute(ClipperLib_Z::ctUnion, loops_polytree, ClipperLib_Z::pftEvenOdd, ClipperLib_Z::pftEvenOdd);
|
|
|
|
for (const ClipperLib_Z::PolyNode *child_node : loops_polytree.Childs) {
|
|
// The whole contour must have the same index.
|
|
coord_t polygon_idx = child_node->Contour.front().z();
|
|
bool has_same_idx = std::all_of(child_node->Contour.begin(), child_node->Contour.end(),
|
|
[&polygon_idx](const ClipperLib_Z::IntPoint &point) -> bool { return polygon_idx == point.z(); });
|
|
if (has_same_idx)
|
|
closed_loop_extrusions[polygon_idx]->fuzzify = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ExtrusionEntityCollection extrusion_coll = traverse_extrusions(params, lower_slices_polygons_cache, ordered_extrusions); !extrusion_coll.empty())
|
|
out_loops.append(extrusion_coll);
|
|
|
|
ExPolygons infill_contour = union_ex(wallToolPaths.getInnerContour());
|
|
const coord_t spacing = (perimeters.size() == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
|
if (offset_ex(infill_contour, -float(spacing / 2.)).empty())
|
|
infill_contour.clear(); // Infill region is too small, so let's filter it out.
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t inset =
|
|
(loop_number < 0) ? 0 :
|
|
(loop_number == 0) ?
|
|
// one loop
|
|
ext_perimeter_spacing:
|
|
// two or more loops?
|
|
perimeter_spacing;
|
|
|
|
inset = coord_t(scale_(params.config.get_abs_value("infill_overlap", unscale<double>(inset))));
|
|
Polygons pp;
|
|
for (ExPolygon &ex : infill_contour)
|
|
ex.simplify_p(params.scaled_resolution, &pp);
|
|
// collapse too narrow infill areas
|
|
const auto min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
|
// append infill areas to fill_surfaces
|
|
out_fill_surfaces.append(
|
|
offset2_ex(
|
|
union_ex(pp),
|
|
float(- min_perimeter_infill_spacing / 2.),
|
|
float(inset + min_perimeter_infill_spacing / 2.)),
|
|
stInternal);
|
|
}
|
|
}
|
|
|
|
void PerimeterGenerator::process_classic(
|
|
// Inputs:
|
|
const Parameters ¶ms,
|
|
const SurfaceCollection *slices,
|
|
const ExPolygons *lower_slices,
|
|
// Cache:
|
|
Polygons &lower_slices_polygons_cache,
|
|
// Output:
|
|
// Loops with the external thin walls
|
|
ExtrusionEntityCollection &out_loops,
|
|
// Gaps without the thin walls
|
|
ExtrusionEntityCollection &out_gap_fill,
|
|
// Infills without the gap fills
|
|
SurfaceCollection &out_fill_surfaces)
|
|
{
|
|
// other perimeters
|
|
coord_t perimeter_width = params.perimeter_flow.scaled_width();
|
|
coord_t perimeter_spacing = params.perimeter_flow.scaled_spacing();
|
|
// external perimeters
|
|
coord_t ext_perimeter_width = params.ext_perimeter_flow.scaled_width();
|
|
coord_t ext_perimeter_spacing = params.ext_perimeter_flow.scaled_spacing();
|
|
coord_t ext_perimeter_spacing2 = scaled<coord_t>(0.5f * (params.ext_perimeter_flow.spacing() + params.perimeter_flow.spacing()));
|
|
// solid infill
|
|
coord_t solid_infill_spacing = params.solid_infill_flow.scaled_spacing();
|
|
|
|
// Calculate the minimum required spacing between two adjacent traces.
|
|
// This should be equal to the nominal flow spacing but we experiment
|
|
// with some tolerance in order to avoid triggering medial axis when
|
|
// some squishing might work. Loops are still spaced by the entire
|
|
// flow spacing; this only applies to collapsing parts.
|
|
// For ext_min_spacing we use the ext_perimeter_spacing calculated for two adjacent
|
|
// external loops (which is the correct way) instead of using ext_perimeter_spacing2
|
|
// which is the spacing between external and internal, which is not correct
|
|
// and would make the collapsing (thus the details resolution) dependent on
|
|
// internal flow which is unrelated.
|
|
coord_t min_spacing = coord_t(perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
coord_t ext_min_spacing = coord_t(ext_perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE));
|
|
bool has_gap_fill = params.config.gap_fill_enabled.value && params.config.gap_fill_speed.value > 0;
|
|
|
|
// prepare grown lower layer slices for overhang detection
|
|
if (lower_slices != nullptr && params.config.overhangs) {
|
|
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
|
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
|
// in the current layer
|
|
double nozzle_diameter = params.print_config.nozzle_diameter.get_at(params.config.perimeter_extruder-1);
|
|
lower_slices_polygons_cache = offset(*lower_slices, float(scale_(+nozzle_diameter/2)));
|
|
}
|
|
|
|
// we need to process each island separately because we might have different
|
|
// extra perimeters for each one
|
|
for (const Surface &surface : slices->surfaces) {
|
|
// detect how many perimeters must be generated for this island
|
|
int loop_number = params.config.perimeters + surface.extra_perimeters - 1; // 0-indexed loops
|
|
ExPolygons last = union_ex(surface.expolygon.simplify_p(params.scaled_resolution));
|
|
ExPolygons gaps;
|
|
if (loop_number >= 0) {
|
|
// In case no perimeters are to be generated, loop_number will equal to -1.
|
|
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
|
|
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
|
|
ThickPolylines thin_walls;
|
|
// we loop one time more than needed in order to find gaps after the last perimeter was applied
|
|
for (int i = 0;; ++ i) { // outer loop is 0
|
|
// Calculate next onion shell of perimeters.
|
|
ExPolygons offsets;
|
|
if (i == 0) {
|
|
// the minimum thickness of a single loop is:
|
|
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
|
offsets = params.config.thin_walls ?
|
|
offset2_ex(
|
|
last,
|
|
- float(ext_perimeter_width / 2. + ext_min_spacing / 2. - 1),
|
|
+ float(ext_min_spacing / 2. - 1)) :
|
|
offset_ex(last, - float(ext_perimeter_width / 2.));
|
|
// look for thin walls
|
|
if (params.config.thin_walls) {
|
|
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
|
// (actually, something larger than that still may exist due to mitering or other causes)
|
|
coord_t min_width = coord_t(scale_(params.ext_perimeter_flow.nozzle_diameter() / 3));
|
|
ExPolygons expp = opening_ex(
|
|
// medial axis requires non-overlapping geometry
|
|
diff_ex(last, offset(offsets, float(ext_perimeter_width / 2.) + ClipperSafetyOffset)),
|
|
float(min_width / 2.));
|
|
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
|
for (ExPolygon &ex : expp)
|
|
ex.medial_axis(ext_perimeter_width + ext_perimeter_spacing2, min_width, &thin_walls);
|
|
}
|
|
if (params.spiral_vase && offsets.size() > 1) {
|
|
// Remove all but the largest area polygon.
|
|
keep_largest_contour_only(offsets);
|
|
}
|
|
} else {
|
|
//FIXME Is this offset correct if the line width of the inner perimeters differs
|
|
// from the line width of the infill?
|
|
coord_t distance = (i == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
|
offsets = params.config.thin_walls ?
|
|
// This path will ensure, that the perimeters do not overfill, as in
|
|
// prusa3d/Slic3r GH #32, but with the cost of rounding the perimeters
|
|
// excessively, creating gaps, which then need to be filled in by the not very
|
|
// reliable gap fill algorithm.
|
|
// Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
|
|
// the original.
|
|
offset2_ex(last,
|
|
- float(distance + min_spacing / 2. - 1.),
|
|
float(min_spacing / 2. - 1.)) :
|
|
// If "detect thin walls" is not enabled, this paths will be entered, which
|
|
// leads to overflows, as in prusa3d/Slic3r GH #32
|
|
offset_ex(last, - float(distance));
|
|
// look for gaps
|
|
if (has_gap_fill)
|
|
// not using safety offset here would "detect" very narrow gaps
|
|
// (but still long enough to escape the area threshold) that gap fill
|
|
// won't be able to fill but we'd still remove from infill area
|
|
append(gaps, diff_ex(
|
|
offset(last, - float(0.5 * distance)),
|
|
offset(offsets, float(0.5 * distance + 10)))); // safety offset
|
|
}
|
|
if (offsets.empty()) {
|
|
// Store the number of loops actually generated.
|
|
loop_number = i - 1;
|
|
// No region left to be filled in.
|
|
last.clear();
|
|
break;
|
|
} else if (i > loop_number) {
|
|
// If i > loop_number, we were looking just for gaps.
|
|
break;
|
|
}
|
|
{
|
|
const bool fuzzify_contours = params.config.fuzzy_skin != FuzzySkinType::None && i == 0 && params.layer_id > 0;
|
|
const bool fuzzify_holes = fuzzify_contours && params.config.fuzzy_skin == FuzzySkinType::All;
|
|
for (const ExPolygon &expolygon : offsets) {
|
|
// Outer contour may overlap with an inner contour,
|
|
// inner contour may overlap with another inner contour,
|
|
// outer contour may overlap with itself.
|
|
//FIXME evaluate the overlaps, annotate each point with an overlap depth,
|
|
// compensate for the depth of intersection.
|
|
contours[i].emplace_back(expolygon.contour, i, true, fuzzify_contours);
|
|
|
|
if (! expolygon.holes.empty()) {
|
|
holes[i].reserve(holes[i].size() + expolygon.holes.size());
|
|
for (const Polygon &hole : expolygon.holes)
|
|
holes[i].emplace_back(hole, i, false, fuzzify_holes);
|
|
}
|
|
}
|
|
}
|
|
last = std::move(offsets);
|
|
if (i == loop_number && (! has_gap_fill || params.config.fill_density.value == 0)) {
|
|
// The last run of this loop is executed to collect gaps for gap fill.
|
|
// As the gap fill is either disabled or not
|
|
break;
|
|
}
|
|
}
|
|
|
|
// nest loops: holes first
|
|
for (int d = 0; d <= loop_number; ++ d) {
|
|
PerimeterGeneratorLoops &holes_d = holes[d];
|
|
// loop through all holes having depth == d
|
|
for (int i = 0; i < (int)holes_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = holes_d[i];
|
|
// find the hole loop that contains this one, if any
|
|
for (int t = d + 1; t <= loop_number; ++ t) {
|
|
for (int j = 0; j < (int)holes[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
// if no hole contains this hole, find the contour loop that contains it
|
|
for (int t = loop_number; t >= 0; -- t) {
|
|
for (int j = 0; j < (int)contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
holes_d.erase(holes_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_LOOP;
|
|
}
|
|
}
|
|
}
|
|
NEXT_LOOP: ;
|
|
}
|
|
}
|
|
// nest contour loops
|
|
for (int d = loop_number; d >= 1; -- d) {
|
|
PerimeterGeneratorLoops &contours_d = contours[d];
|
|
// loop through all contours having depth == d
|
|
for (int i = 0; i < (int)contours_d.size(); ++ i) {
|
|
const PerimeterGeneratorLoop &loop = contours_d[i];
|
|
// find the contour loop that contains it
|
|
for (int t = d - 1; t >= 0; -- t) {
|
|
for (size_t j = 0; j < contours[t].size(); ++ j) {
|
|
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
|
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
|
candidate_parent.children.push_back(loop);
|
|
contours_d.erase(contours_d.begin() + i);
|
|
-- i;
|
|
goto NEXT_CONTOUR;
|
|
}
|
|
}
|
|
}
|
|
NEXT_CONTOUR: ;
|
|
}
|
|
}
|
|
// at this point, all loops should be in contours[0]
|
|
ExtrusionEntityCollection entities = traverse_loops(params, lower_slices_polygons_cache, contours.front(), thin_walls);
|
|
// if brim will be printed, reverse the order of perimeters so that
|
|
// we continue inwards after having finished the brim
|
|
// TODO: add test for perimeter order
|
|
if (params.config.external_perimeters_first ||
|
|
(params.layer_id == 0 && params.object_config.brim_width.value > 0))
|
|
entities.reverse();
|
|
// append perimeters for this slice as a collection
|
|
if (! entities.empty())
|
|
out_loops.append(entities);
|
|
} // for each loop of an island
|
|
|
|
// fill gaps
|
|
if (! gaps.empty()) {
|
|
// collapse
|
|
double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
|
|
double max = 2. * perimeter_spacing;
|
|
ExPolygons gaps_ex = diff_ex(
|
|
//FIXME offset2 would be enough and cheaper.
|
|
opening_ex(gaps, float(min / 2.)),
|
|
offset2_ex(gaps, - float(max / 2.), float(max / 2. + ClipperSafetyOffset)));
|
|
ThickPolylines polylines;
|
|
for (const ExPolygon &ex : gaps_ex)
|
|
ex.medial_axis(max, min, &polylines);
|
|
if (! polylines.empty()) {
|
|
ExtrusionEntityCollection gap_fill;
|
|
variable_width(polylines, erGapFill, params.solid_infill_flow, gap_fill.entities);
|
|
/* Make sure we don't infill narrow parts that are already gap-filled
|
|
(we only consider this surface's gaps to reduce the diff() complexity).
|
|
Growing actual extrusions ensures that gaps not filled by medial axis
|
|
are not subtracted from fill surfaces (they might be too short gaps
|
|
that medial axis skips but infill might join with other infill regions
|
|
and use zigzag). */
|
|
//FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
|
|
// therefore it may cover the area, but no the volume.
|
|
last = diff_ex(last, gap_fill.polygons_covered_by_width(10.f));
|
|
out_gap_fill.append(std::move(gap_fill.entities));
|
|
}
|
|
}
|
|
|
|
// create one more offset to be used as boundary for fill
|
|
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
|
// and then we offset back and forth by half the infill spacing to only consider the
|
|
// non-collapsing regions
|
|
coord_t inset =
|
|
(loop_number < 0) ? 0 :
|
|
(loop_number == 0) ?
|
|
// one loop
|
|
ext_perimeter_spacing / 2 :
|
|
// two or more loops?
|
|
perimeter_spacing / 2;
|
|
// only apply infill overlap if we actually have one perimeter
|
|
if (inset > 0)
|
|
inset -= coord_t(scale_(params.config.get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2))));
|
|
// simplify infill contours according to resolution
|
|
Polygons pp;
|
|
for (ExPolygon &ex : last)
|
|
ex.simplify_p(params.scaled_resolution, &pp);
|
|
// collapse too narrow infill areas
|
|
coord_t min_perimeter_infill_spacing = coord_t(solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE));
|
|
// append infill areas to fill_surfaces
|
|
out_fill_surfaces.append(
|
|
offset2_ex(
|
|
union_ex(pp),
|
|
float(- inset - min_perimeter_infill_spacing / 2.),
|
|
float(min_perimeter_infill_spacing / 2.)),
|
|
stInternal);
|
|
} // for each island
|
|
}
|
|
|
|
}
|