decda76344
1) Shortening the anchor lines when touching another infill line to avoid over extrusion. 2) Reduction of the Intersection structure complexity by referencing the source lines.
455 lines
20 KiB
C++
455 lines
20 KiB
C++
#ifndef slic3r_Point_hpp_
|
|
#define slic3r_Point_hpp_
|
|
|
|
#include "libslic3r.h"
|
|
#include <cstddef>
|
|
#include <vector>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <unordered_map>
|
|
|
|
#include <Eigen/Geometry>
|
|
|
|
namespace Slic3r {
|
|
|
|
class Line;
|
|
class MultiPoint;
|
|
class Point;
|
|
typedef Point Vector;
|
|
|
|
// Eigen types, to replace the Slic3r's own types in the future.
|
|
// Vector types with a fixed point coordinate base type.
|
|
typedef Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign> Vec2crd;
|
|
typedef Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign> Vec3crd;
|
|
typedef Eigen::Matrix<int, 2, 1, Eigen::DontAlign> Vec2i;
|
|
typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> Vec3i;
|
|
typedef Eigen::Matrix<int32_t, 2, 1, Eigen::DontAlign> Vec2i32;
|
|
typedef Eigen::Matrix<int64_t, 2, 1, Eigen::DontAlign> Vec2i64;
|
|
typedef Eigen::Matrix<int32_t, 3, 1, Eigen::DontAlign> Vec3i32;
|
|
typedef Eigen::Matrix<int64_t, 3, 1, Eigen::DontAlign> Vec3i64;
|
|
|
|
// Vector types with a double coordinate base type.
|
|
typedef Eigen::Matrix<float, 2, 1, Eigen::DontAlign> Vec2f;
|
|
typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
|
|
typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vec2d;
|
|
typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
|
|
|
|
typedef std::vector<Point> Points;
|
|
typedef std::vector<Point*> PointPtrs;
|
|
typedef std::vector<const Point*> PointConstPtrs;
|
|
typedef std::vector<Vec3crd> Points3;
|
|
typedef std::vector<Vec2d> Pointfs;
|
|
typedef std::vector<Vec2d> Vec2ds;
|
|
typedef std::vector<Vec3d> Pointf3s;
|
|
|
|
typedef Eigen::Matrix<float, 2, 2, Eigen::DontAlign> Matrix2f;
|
|
typedef Eigen::Matrix<double, 2, 2, Eigen::DontAlign> Matrix2d;
|
|
typedef Eigen::Matrix<float, 3, 3, Eigen::DontAlign> Matrix3f;
|
|
typedef Eigen::Matrix<double, 3, 3, Eigen::DontAlign> Matrix3d;
|
|
|
|
typedef Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign> Transform2f;
|
|
typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
|
|
typedef Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign> Transform3f;
|
|
typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;
|
|
|
|
inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); }
|
|
|
|
// One likely does not want to perform the cross product with a 32bit accumulator.
|
|
//inline int32_t cross2(const Vec2i32 &v1, const Vec2i32 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
|
|
|
|
template<class T, int N> Eigen::Matrix<T, 2, 1, Eigen::DontAlign>
|
|
to_2d(const Eigen::Matrix<T, N, 1, Eigen::DontAlign> &ptN) { return {ptN(0), ptN(1)}; }
|
|
|
|
//inline Vec2i32 to_2d(const Vec3i32 &pt3) { return Vec2i32(pt3(0), pt3(1)); }
|
|
//inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
|
|
//inline Vec2f to_2d(const Vec3f &pt3) { return Vec2f (pt3(0), pt3(1)); }
|
|
//inline Vec2d to_2d(const Vec3d &pt3) { return Vec2d (pt3(0), pt3(1)); }
|
|
|
|
inline Vec3d to_3d(const Vec2d &v, double z) { return Vec3d(v(0), v(1), z); }
|
|
inline Vec3f to_3d(const Vec2f &v, float z) { return Vec3f(v(0), v(1), z); }
|
|
inline Vec3i64 to_3d(const Vec2i64 &v, float z) { return Vec3i64(int64_t(v(0)), int64_t(v(1)), int64_t(z)); }
|
|
inline Vec3crd to_3d(const Vec3crd &p, coord_t z) { return Vec3crd(p(0), p(1), z); }
|
|
|
|
inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
|
|
inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
|
inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
|
|
inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
|
|
inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
|
inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
|
|
|
|
inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
|
inline std::string to_string(const Vec2d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
|
|
inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
|
|
inline std::string to_string(const Vec3d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
|
|
|
|
std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
|
|
Pointf3s transform(const Pointf3s& points, const Transform3d& t);
|
|
|
|
template<int N, class T> using Vec = Eigen::Matrix<T, N, 1, Eigen::DontAlign, N, 1>;
|
|
|
|
class Point : public Vec2crd
|
|
{
|
|
public:
|
|
typedef coord_t coord_type;
|
|
|
|
Point() : Vec2crd(0, 0) {}
|
|
Point(int32_t x, int32_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
|
|
Point(int64_t x, int64_t y) : Vec2crd(coord_t(x), coord_t(y)) {}
|
|
Point(double x, double y) : Vec2crd(coord_t(lrint(x)), coord_t(lrint(y))) {}
|
|
Point(const Point &rhs) { *this = rhs; }
|
|
explicit Point(const Vec2d& rhs) : Vec2crd(coord_t(lrint(rhs.x())), coord_t(lrint(rhs.y()))) {}
|
|
// This constructor allows you to construct Point from Eigen expressions
|
|
template<typename OtherDerived>
|
|
Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
|
|
static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
|
|
static Point new_scale(const Vec2d &v) { return Point(coord_t(scale_(v.x())), coord_t(scale_(v.y()))); }
|
|
|
|
// This method allows you to assign Eigen expressions to MyVectorType
|
|
template<typename OtherDerived>
|
|
Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
|
|
{
|
|
this->Vec2crd::operator=(other);
|
|
return *this;
|
|
}
|
|
|
|
bool operator< (const Point& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
|
|
|
|
Point& operator+=(const Point& rhs) { (*this)(0) += rhs(0); (*this)(1) += rhs(1); return *this; }
|
|
Point& operator-=(const Point& rhs) { (*this)(0) -= rhs(0); (*this)(1) -= rhs(1); return *this; }
|
|
Point& operator*=(const double &rhs) { (*this)(0) = coord_t((*this)(0) * rhs); (*this)(1) = coord_t((*this)(1) * rhs); return *this; }
|
|
Point operator*(const double &rhs) { return Point((*this)(0) * rhs, (*this)(1) * rhs); }
|
|
|
|
void rotate(double angle) { this->rotate(std::cos(angle), std::sin(angle)); }
|
|
void rotate(double cos_a, double sin_a) {
|
|
double cur_x = (double)(*this)(0);
|
|
double cur_y = (double)(*this)(1);
|
|
(*this)(0) = (coord_t)round(cos_a * cur_x - sin_a * cur_y);
|
|
(*this)(1) = (coord_t)round(cos_a * cur_y + sin_a * cur_x);
|
|
}
|
|
|
|
void rotate(double angle, const Point ¢er);
|
|
Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
|
|
Point rotated(double cos_a, double sin_a) const { Point res(*this); res.rotate(cos_a, sin_a); return res; }
|
|
Point rotated(double angle, const Point ¢er) const { Point res(*this); res.rotate(angle, center); return res; }
|
|
int nearest_point_index(const Points &points) const;
|
|
int nearest_point_index(const PointConstPtrs &points) const;
|
|
int nearest_point_index(const PointPtrs &points) const;
|
|
bool nearest_point(const Points &points, Point* point) const;
|
|
double ccw(const Point &p1, const Point &p2) const;
|
|
double ccw(const Line &line) const;
|
|
double ccw_angle(const Point &p1, const Point &p2) const;
|
|
Point projection_onto(const MultiPoint &poly) const;
|
|
Point projection_onto(const Line &line) const;
|
|
};
|
|
|
|
inline bool is_approx(const Point &p1, const Point &p2, coord_t epsilon = coord_t(SCALED_EPSILON))
|
|
{
|
|
Point d = (p2 - p1).cwiseAbs();
|
|
return d.x() < epsilon && d.y() < epsilon;
|
|
}
|
|
|
|
inline bool is_approx(const Vec2f &p1, const Vec2f &p2, float epsilon = float(EPSILON))
|
|
{
|
|
Vec2f d = (p2 - p1).cwiseAbs();
|
|
return d.x() < epsilon && d.y() < epsilon;
|
|
}
|
|
|
|
inline bool is_approx(const Vec2d &p1, const Vec2d &p2, double epsilon = EPSILON)
|
|
{
|
|
Vec2d d = (p2 - p1).cwiseAbs();
|
|
return d.x() < epsilon && d.y() < epsilon;
|
|
}
|
|
|
|
inline bool is_approx(const Vec3f &p1, const Vec3f &p2, float epsilon = float(EPSILON))
|
|
{
|
|
Vec3f d = (p2 - p1).cwiseAbs();
|
|
return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
|
|
}
|
|
|
|
inline bool is_approx(const Vec3d &p1, const Vec3d &p2, double epsilon = EPSILON)
|
|
{
|
|
Vec3d d = (p2 - p1).cwiseAbs();
|
|
return d.x() < epsilon && d.y() < epsilon && d.z() < epsilon;
|
|
}
|
|
|
|
inline Point lerp(const Point &a, const Point &b, double t)
|
|
{
|
|
assert((t >= -EPSILON) && (t <= 1. + EPSILON));
|
|
return ((1. - t) * a.cast<double>() + t * b.cast<double>()).cast<coord_t>();
|
|
}
|
|
|
|
namespace int128 {
|
|
// Exact orientation predicate,
|
|
// returns +1: CCW, 0: collinear, -1: CW.
|
|
int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
|
|
// Exact orientation predicate,
|
|
// returns +1: CCW, 0: collinear, -1: CW.
|
|
int cross(const Vec2crd &v1, const Vec2crd &v2);
|
|
}
|
|
|
|
// To be used by std::unordered_map, std::unordered_multimap and friends.
|
|
struct PointHash {
|
|
size_t operator()(const Vec2crd &pt) const {
|
|
return std::hash<coord_t>()(pt(0)) ^ std::hash<coord_t>()(pt(1));
|
|
}
|
|
};
|
|
|
|
// A generic class to search for a closest Point in a given radius.
|
|
// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
|
|
// The PointAccessor has to return const Point*.
|
|
// If a nullptr is returned, it is ignored by the query.
|
|
template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
|
|
{
|
|
public:
|
|
ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
|
|
m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
|
|
{
|
|
// Resolution of a grid, twice the search radius + some epsilon.
|
|
coord_t gridres = 2 * m_search_radius + 4;
|
|
m_grid_resolution = gridres;
|
|
assert(m_grid_resolution > 0);
|
|
assert(m_grid_resolution < (coord_t(1) << 30));
|
|
// Compute m_grid_log2 = log2(m_grid_resolution)
|
|
if (m_grid_resolution > 32767) {
|
|
m_grid_resolution >>= 16;
|
|
m_grid_log2 += 16;
|
|
}
|
|
if (m_grid_resolution > 127) {
|
|
m_grid_resolution >>= 8;
|
|
m_grid_log2 += 8;
|
|
}
|
|
if (m_grid_resolution > 7) {
|
|
m_grid_resolution >>= 4;
|
|
m_grid_log2 += 4;
|
|
}
|
|
if (m_grid_resolution > 1) {
|
|
m_grid_resolution >>= 2;
|
|
m_grid_log2 += 2;
|
|
}
|
|
if (m_grid_resolution > 0)
|
|
++ m_grid_log2;
|
|
m_grid_resolution = 1 << m_grid_log2;
|
|
assert(m_grid_resolution >= gridres);
|
|
assert(gridres > m_grid_resolution / 2);
|
|
}
|
|
|
|
void insert(const ValueType &value) {
|
|
const Vec2crd *pt = m_point_accessor(value);
|
|
if (pt != nullptr)
|
|
m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
|
|
}
|
|
|
|
void insert(ValueType &&value) {
|
|
const Vec2crd *pt = m_point_accessor(value);
|
|
if (pt != nullptr)
|
|
m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
|
|
}
|
|
|
|
// Erase a data point equal to value. (ValueType has to declare the operator==).
|
|
// Returns true if the data point equal to value was found and removed.
|
|
bool erase(const ValueType &value) {
|
|
const Point *pt = m_point_accessor(value);
|
|
if (pt != nullptr) {
|
|
// Range of fragment starts around grid_corner, close to pt.
|
|
auto range = m_map.equal_range(Point((*pt)(0)>>m_grid_log2, (*pt)(1)>>m_grid_log2));
|
|
// Remove the first item.
|
|
for (auto it = range.first; it != range.second; ++ it) {
|
|
if (it->second == value) {
|
|
m_map.erase(it);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return a pair of <ValueType*, distance_squared>
|
|
std::pair<const ValueType*, double> find(const Vec2crd &pt) {
|
|
// Iterate over 4 closest grid cells around pt,
|
|
// find the closest start point inside these cells to pt.
|
|
const ValueType *value_min = nullptr;
|
|
double dist_min = std::numeric_limits<double>::max();
|
|
// Round pt to a closest grid_cell corner.
|
|
Vec2crd grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2);
|
|
// For four neighbors of grid_corner:
|
|
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
|
|
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
|
|
// Range of fragment starts around grid_corner, close to pt.
|
|
auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y));
|
|
// Find the map entry closest to pt.
|
|
for (auto it = range.first; it != range.second; ++it) {
|
|
const ValueType &value = it->second;
|
|
const Vec2crd *pt2 = m_point_accessor(value);
|
|
if (pt2 != nullptr) {
|
|
const double d2 = (pt - *pt2).cast<double>().squaredNorm();
|
|
if (d2 < dist_min) {
|
|
dist_min = d2;
|
|
value_min = &value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (value_min != nullptr && dist_min < coordf_t(m_search_radius) * coordf_t(m_search_radius)) ?
|
|
std::make_pair(value_min, dist_min) :
|
|
std::make_pair(nullptr, std::numeric_limits<double>::max());
|
|
}
|
|
|
|
// Returns all pairs of values and squared distances.
|
|
std::vector<std::pair<const ValueType*, double>> find_all(const Vec2crd &pt) {
|
|
// Iterate over 4 closest grid cells around pt,
|
|
// Round pt to a closest grid_cell corner.
|
|
Vec2crd grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2);
|
|
// For four neighbors of grid_corner:
|
|
std::vector<std::pair<const ValueType*, double>> out;
|
|
const double r2 = double(m_search_radius) * m_search_radius;
|
|
for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
|
|
for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
|
|
// Range of fragment starts around grid_corner, close to pt.
|
|
auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y));
|
|
// Find the map entry closest to pt.
|
|
for (auto it = range.first; it != range.second; ++it) {
|
|
const ValueType &value = it->second;
|
|
const Vec2crd *pt2 = m_point_accessor(value);
|
|
if (pt2 != nullptr) {
|
|
const double d2 = (pt - *pt2).cast<double>().squaredNorm();
|
|
if (d2 <= r2)
|
|
out.emplace_back(&value, d2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
private:
|
|
typedef typename std::unordered_multimap<Vec2crd, ValueType, PointHash> map_type;
|
|
PointAccessor m_point_accessor;
|
|
map_type m_map;
|
|
coord_t m_search_radius;
|
|
coord_t m_grid_resolution;
|
|
coord_t m_grid_log2;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
|
|
|
|
|
|
// /////////////////////////////////////////////////////////////////////////////
|
|
// Type safe conversions to and from scaled and unscaled coordinates
|
|
// /////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Semantics are the following:
|
|
// Upscaling (scaled()): only from floating point types (or Vec) to either
|
|
// floating point or integer 'scaled coord' coordinates.
|
|
// Downscaling (unscaled()): from arithmetic (or Vec) to floating point only
|
|
|
|
// Conversion definition from unscaled to floating point scaled
|
|
template<class Tout,
|
|
class Tin,
|
|
class = FloatingOnly<Tin>>
|
|
inline constexpr FloatingOnly<Tout> scaled(const Tin &v) noexcept
|
|
{
|
|
return Tout(v / Tin(SCALING_FACTOR));
|
|
}
|
|
|
|
// Conversion definition from unscaled to integer 'scaled coord'.
|
|
// TODO: is the rounding necessary? Here it is commented out to show that
|
|
// it can be different for integers but it does not have to be. Using
|
|
// std::round means loosing noexcept and constexpr modifiers
|
|
template<class Tout = coord_t, class Tin, class = FloatingOnly<Tin>>
|
|
inline constexpr ScaledCoordOnly<Tout> scaled(const Tin &v) noexcept
|
|
{
|
|
//return static_cast<Tout>(std::round(v / SCALING_FACTOR));
|
|
return Tout(v / Tin(SCALING_FACTOR));
|
|
}
|
|
|
|
// Conversion for Eigen vectors (N dimensional points)
|
|
template<class Tout = coord_t,
|
|
class Tin,
|
|
int N,
|
|
class = FloatingOnly<Tin>,
|
|
int...EigenArgs>
|
|
inline Eigen::Matrix<ArithmeticOnly<Tout>, N, EigenArgs...>
|
|
scaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v)
|
|
{
|
|
return (v / SCALING_FACTOR).template cast<Tout>();
|
|
}
|
|
|
|
// Conversion from arithmetic scaled type to floating point unscaled
|
|
template<class Tout = double,
|
|
class Tin,
|
|
class = ArithmeticOnly<Tin>,
|
|
class = FloatingOnly<Tout>>
|
|
inline constexpr Tout unscaled(const Tin &v) noexcept
|
|
{
|
|
return Tout(v * Tout(SCALING_FACTOR));
|
|
}
|
|
|
|
// Unscaling for Eigen vectors. Input base type can be arithmetic, output base
|
|
// type can only be floating point.
|
|
template<class Tout = double,
|
|
class Tin,
|
|
int N,
|
|
class = ArithmeticOnly<Tin>,
|
|
class = FloatingOnly<Tout>,
|
|
int...EigenArgs>
|
|
inline constexpr Eigen::Matrix<Tout, N, EigenArgs...>
|
|
unscaled(const Eigen::Matrix<Tin, N, EigenArgs...> &v) noexcept
|
|
{
|
|
return v.template cast<Tout>() * SCALING_FACTOR;
|
|
}
|
|
|
|
} // namespace Slic3r
|
|
|
|
// start Boost
|
|
#include <boost/version.hpp>
|
|
#include <boost/polygon/polygon.hpp>
|
|
namespace boost { namespace polygon {
|
|
template <>
|
|
struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
|
|
|
|
template <>
|
|
struct point_traits<Slic3r::Point> {
|
|
typedef coord_t coordinate_type;
|
|
|
|
static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
|
|
return (coordinate_type)point((orient == HORIZONTAL) ? 0 : 1);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct point_mutable_traits<Slic3r::Point> {
|
|
typedef coord_t coordinate_type;
|
|
static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
|
|
point((orient == HORIZONTAL) ? 0 : 1) = value;
|
|
}
|
|
static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
|
|
return Slic3r::Point(x_value, y_value);
|
|
}
|
|
};
|
|
} }
|
|
// end Boost
|
|
|
|
// Serialization through the Cereal library
|
|
namespace cereal {
|
|
// template<class Archive> void serialize(Archive& archive, Slic3r::Vec2crd &v) { archive(v.x(), v.y()); }
|
|
// template<class Archive> void serialize(Archive& archive, Slic3r::Vec3crd &v) { archive(v.x(), v.y(), v.z()); }
|
|
template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i &v) { archive(v.x(), v.y()); }
|
|
template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i &v) { archive(v.x(), v.y(), v.z()); }
|
|
// template<class Archive> void serialize(Archive& archive, Slic3r::Vec2i64 &v) { archive(v.x(), v.y()); }
|
|
// template<class Archive> void serialize(Archive& archive, Slic3r::Vec3i64 &v) { archive(v.x(), v.y(), v.z()); }
|
|
template<class Archive> void serialize(Archive& archive, Slic3r::Vec2f &v) { archive(v.x(), v.y()); }
|
|
template<class Archive> void serialize(Archive& archive, Slic3r::Vec3f &v) { archive(v.x(), v.y(), v.z()); }
|
|
template<class Archive> void serialize(Archive& archive, Slic3r::Vec2d &v) { archive(v.x(), v.y()); }
|
|
template<class Archive> void serialize(Archive& archive, Slic3r::Vec3d &v) { archive(v.x(), v.y(), v.z()); }
|
|
|
|
template<class Archive> void load(Archive& archive, Slic3r::Matrix2f &m) { archive.loadBinary((char*)m.data(), sizeof(float) * 4); }
|
|
template<class Archive> void save(Archive& archive, Slic3r::Matrix2f &m) { archive.saveBinary((char*)m.data(), sizeof(float) * 4); }
|
|
}
|
|
|
|
#endif
|