PrusaSlicer-NonPlainar/xs/src/libslic3r/Fill/FillPlanePath.cpp
2016-09-13 11:26:38 +02:00

204 lines
6.5 KiB
C++

#include "../ClipperUtils.hpp"
#include "../PolylineCollection.hpp"
#include "../Surface.hpp"
#include "FillPlanePath.hpp"
namespace Slic3r {
void FillPlanePath::_fill_surface_single(
const FillParams &params,
unsigned int thickness_layers,
const std::pair<float, Point> &direction,
ExPolygon &expolygon,
Polylines &polylines_out)
{
expolygon.rotate(- direction.first);
coord_t distance_between_lines = scale_(this->spacing) / params.density;
// align infill across layers using the object's bounding box
// Rotated bounding box of the whole object.
BoundingBox bounding_box = this->bounding_box.rotated(- direction.first);
Point shift = this->_centered() ?
bounding_box.center() :
bounding_box.min;
expolygon.translate(-shift.x, -shift.y);
bounding_box.translate(-shift.x, -shift.y);
Pointfs pts = _generate(
coord_t(ceil(coordf_t(bounding_box.min.x) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.min.y) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.x) / distance_between_lines)),
coord_t(ceil(coordf_t(bounding_box.max.y) / distance_between_lines)));
Polylines polylines;
if (pts.size() >= 2) {
// Convert points to a polyline, upscale.
polylines.push_back(Polyline());
Polyline &polyline = polylines.back();
polyline.points.reserve(pts.size());
for (Pointfs::iterator it = pts.begin(); it != pts.end(); ++ it)
polyline.points.push_back(Point(
coord_t(floor(it->x * distance_between_lines + 0.5)),
coord_t(floor(it->y * distance_between_lines + 0.5))));
// intersection(polylines_src, offset((Polygons)expolygon, scale_(0.02)), &polylines);
intersection(polylines, (Polygons)expolygon, &polylines);
/*
if (1) {
require "Slic3r/SVG.pm";
print "Writing fill.svg\n";
Slic3r::SVG::output("fill.svg",
no_arrows => 1,
polygons => \@$expolygon,
green_polygons => [ $bounding_box->polygon ],
polylines => [ $polyline ],
red_polylines => \@paths,
);
}
*/
// paths must be repositioned and rotated back
for (Polylines::iterator it = polylines.begin(); it != polylines.end(); ++ it) {
it->translate(shift.x, shift.y);
it->rotate(direction.first);
}
}
// Move the polylines to the output, avoid a deep copy.
size_t j = polylines_out.size();
polylines_out.resize(j + polylines.size(), Polyline());
for (size_t i = 0; i < polylines.size(); ++ i)
std::swap(polylines_out[j ++], polylines[i]);
}
// Follow an Archimedean spiral, in polar coordinates: r=a+b\theta
Pointfs FillArchimedeanChords::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y)
{
// Radius to achieve.
coordf_t rmax = std::sqrt(coordf_t(max_x)*coordf_t(max_x)+coordf_t(max_y)*coordf_t(max_y)) * std::sqrt(2.) + 1.5;
// Now unwind the spiral.
coordf_t a = 1.;
coordf_t b = 1./(2.*M_PI);
coordf_t theta = 0.;
coordf_t r = 1;
Pointfs out;
//FIXME Vojtech: If used as a solid infill, there is a gap left at the center.
out.push_back(Pointf(0, 0));
out.push_back(Pointf(1, 0));
while (r < rmax) {
theta += 1. / r;
r = a + b * theta;
out.push_back(Pointf(r * cos(theta), r * sin(theta)));
}
return out;
}
// Adapted from
// http://cpansearch.perl.org/src/KRYDE/Math-PlanePath-122/lib/Math/PlanePath/HilbertCurve.pm
//
// state=0 3--2 plain
// |
// 0--1
//
// state=4 1--2 transpose
// | |
// 0 3
//
// state=8
//
// state=12 3 0 rot180 + transpose
// | |
// 2--1
//
static inline Point hilbert_n_to_xy(const size_t n)
{
static const int next_state[16] = { 4,0,0,12, 0,4,4,8, 12,8,8,4, 8,12,12,0 };
static const int digit_to_x[16] = { 0,1,1,0, 0,0,1,1, 1,0,0,1, 1,1,0,0 };
static const int digit_to_y[16] = { 0,0,1,1, 0,1,1,0, 1,1,0,0, 1,0,0,1 };
// Number of 2 bit digits.
size_t ndigits = 0;
{
size_t nc = n;
while(nc > 0) {
nc >>= 2;
++ ndigits;
}
}
int state = (ndigits & 1) ? 4 : 0;
int dirstate = (ndigits & 1) ? 0 : 4;
coord_t x = 0;
coord_t y = 0;
for (int i = (int)ndigits - 1; i >= 0; -- i) {
int digit = (n >> (i * 2)) & 3;
state += digit;
if (digit != 3)
dirstate = state; // lowest non-3 digit
x |= digit_to_x[state] << i;
y |= digit_to_y[state] << i;
state = next_state[state];
}
return Point(x, y);
}
Pointfs FillHilbertCurve::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y)
{
// Minimum power of two square to fit the domain.
size_t sz = 2;
size_t pw = 1;
{
size_t sz0 = std::max(max_x + 1 - min_x, max_y + 1 - min_y);
while (sz < sz0) {
sz = sz << 1;
++ pw;
}
}
size_t sz2 = sz * sz;
Pointfs line;
line.reserve(sz2);
for (size_t i = 0; i < sz2; ++ i) {
Point p = hilbert_n_to_xy(i);
line.push_back(Pointf(p.x + min_x, p.y + min_y));
}
return line;
}
Pointfs FillOctagramSpiral::_generate(coord_t min_x, coord_t min_y, coord_t max_x, coord_t max_y)
{
// Radius to achieve.
coordf_t rmax = std::sqrt(coordf_t(max_x)*coordf_t(max_x)+coordf_t(max_y)*coordf_t(max_y)) * std::sqrt(2.) + 1.5;
// Now unwind the spiral.
coordf_t r = 0;
coordf_t r_inc = sqrt(2.);
Pointfs out;
out.push_back(Pointf(0, 0));
while (r < rmax) {
r += r_inc;
coordf_t rx = r / sqrt(2.);
coordf_t r2 = r + rx;
out.push_back(Pointf( r, 0.));
out.push_back(Pointf( r2, rx));
out.push_back(Pointf( rx, rx));
out.push_back(Pointf( rx, r2));
out.push_back(Pointf(0., r));
out.push_back(Pointf(-rx, r2));
out.push_back(Pointf(-rx, rx));
out.push_back(Pointf(-r2, rx));
out.push_back(Pointf(-r, 0.));
out.push_back(Pointf(-r2, -rx));
out.push_back(Pointf(-rx, -rx));
out.push_back(Pointf(-rx, -r2));
out.push_back(Pointf(0., -r));
out.push_back(Pointf( rx, -r2));
out.push_back(Pointf( rx, -rx));
out.push_back(Pointf( r2+r_inc, -rx));
}
return out;
}
} // namespace Slic3r