PrusaSlicer-NonPlainar/xs/src/libslic3r/MultiPoint.cpp

254 lines
6.6 KiB
C++

#include "MultiPoint.hpp"
#include "BoundingBox.hpp"
namespace Slic3r {
MultiPoint::operator Points() const
{
return this->points;
}
void
MultiPoint::scale(double factor)
{
for (Points::iterator it = points.begin(); it != points.end(); ++it) {
(*it).scale(factor);
}
}
void
MultiPoint::translate(double x, double y)
{
for (Points::iterator it = points.begin(); it != points.end(); ++it) {
(*it).translate(x, y);
}
}
void
MultiPoint::translate(const Point &vector)
{
this->translate(vector.x, vector.y);
}
void MultiPoint::rotate(double cos_angle, double sin_angle)
{
for (Point &pt : this->points) {
double cur_x = double(pt.x);
double cur_y = double(pt.y);
pt.x = coord_t(round(cos_angle * cur_x - sin_angle * cur_y));
pt.y = coord_t(round(cos_angle * cur_y + sin_angle * cur_x));
}
}
void
MultiPoint::rotate(double angle, const Point &center)
{
double s = sin(angle);
double c = cos(angle);
for (Points::iterator it = points.begin(); it != points.end(); ++it) {
double dx = double(it->x - center.x);
double dy = double(it->y - center.y);
it->x = (coord_t)round(double(center.x) + c * dx - s * dy);
it->y = (coord_t)round(double(center.y) + c * dy + s * dx);
}
}
void
MultiPoint::reverse()
{
std::reverse(this->points.begin(), this->points.end());
}
Point
MultiPoint::first_point() const
{
return this->points.front();
}
double
MultiPoint::length() const
{
Lines lines = this->lines();
double len = 0;
for (Lines::iterator it = lines.begin(); it != lines.end(); ++it) {
len += it->length();
}
return len;
}
int
MultiPoint::find_point(const Point &point) const
{
for (Points::const_iterator it = this->points.begin(); it != this->points.end(); ++it) {
if (it->coincides_with(point)) return it - this->points.begin();
}
return -1; // not found
}
bool
MultiPoint::has_boundary_point(const Point &point) const
{
double dist = point.distance_to(point.projection_onto(*this));
return dist < SCALED_EPSILON;
}
BoundingBox
MultiPoint::bounding_box() const
{
return BoundingBox(this->points);
}
bool
MultiPoint::has_duplicate_points() const
{
for (size_t i = 1; i < points.size(); ++i)
if (points[i-1].coincides_with(points[i]))
return true;
return false;
}
bool
MultiPoint::remove_duplicate_points()
{
size_t j = 0;
for (size_t i = 1; i < points.size(); ++i) {
if (points[j].coincides_with(points[i])) {
// Just increase index i.
} else {
++ j;
if (j < i)
points[j] = points[i];
}
}
if (++ j < points.size()) {
points.erase(points.begin() + j, points.end());
return true;
}
return false;
}
bool
MultiPoint::intersection(const Line& line, Point* intersection) const
{
Lines lines = this->lines();
for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
if (it->intersection(line, intersection)) return true;
}
return false;
}
bool MultiPoint::first_intersection(const Line& line, Point* intersection) const
{
bool found = false;
double dmin = 0.;
for (const Line &l : this->lines()) {
Point ip;
if (l.intersection(line, &ip)) {
if (! found) {
found = true;
dmin = ip.distance_to(line.a);
*intersection = ip;
} else {
double d = ip.distance_to(line.a);
if (d < dmin) {
dmin = d;
*intersection = ip;
}
}
}
}
return found;
}
std::string
MultiPoint::dump_perl() const
{
std::ostringstream ret;
ret << "[";
for (Points::const_iterator p = this->points.begin(); p != this->points.end(); ++p) {
ret << p->dump_perl();
if (p != this->points.end()-1) ret << ",";
}
ret << "]";
return ret.str();
}
//FIXME This is very inefficient in term of memory use.
// The recursive algorithm shall run in place, not allocating temporary data in each recursion.
Points
MultiPoint::_douglas_peucker(const Points &points, const double tolerance)
{
assert(points.size() >= 2);
Points results;
double dmax = 0;
size_t index = 0;
Line full(points.front(), points.back());
for (Points::const_iterator it = points.begin() + 1; it != points.end(); ++it) {
// we use shortest distance, not perpendicular distance
double d = it->distance_to(full);
if (d > dmax) {
index = it - points.begin();
dmax = d;
}
}
if (dmax >= tolerance) {
Points dp0;
dp0.reserve(index + 1);
dp0.insert(dp0.end(), points.begin(), points.begin() + index + 1);
// Recursive call.
Points dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
results.reserve(results.size() + dp1.size() - 1);
results.insert(results.end(), dp1.begin(), dp1.end() - 1);
dp0.clear();
dp0.reserve(points.size() - index);
dp0.insert(dp0.end(), points.begin() + index, points.end());
// Recursive call.
dp1 = MultiPoint::_douglas_peucker(dp0, tolerance);
results.reserve(results.size() + dp1.size());
results.insert(results.end(), dp1.begin(), dp1.end());
} else {
results.push_back(points.front());
results.push_back(points.back());
}
return results;
}
BoundingBox get_extents(const MultiPoint &mp)
{
return BoundingBox(mp.points);
}
BoundingBox get_extents_rotated(const Points &points, double angle)
{
BoundingBox bbox;
if (! points.empty()) {
double s = sin(angle);
double c = cos(angle);
Points::const_iterator it = points.begin();
double cur_x = (double)it->x;
double cur_y = (double)it->y;
bbox.min.x = bbox.max.x = (coord_t)round(c * cur_x - s * cur_y);
bbox.min.y = bbox.max.y = (coord_t)round(c * cur_y + s * cur_x);
for (++it; it != points.end(); ++it) {
double cur_x = (double)it->x;
double cur_y = (double)it->y;
coord_t x = (coord_t)round(c * cur_x - s * cur_y);
coord_t y = (coord_t)round(c * cur_y + s * cur_x);
bbox.min.x = std::min(x, bbox.min.x);
bbox.min.y = std::min(y, bbox.min.y);
bbox.max.x = std::max(x, bbox.max.x);
bbox.max.y = std::max(y, bbox.max.y);
}
bbox.defined = true;
}
return bbox;
}
BoundingBox get_extents_rotated(const MultiPoint &mp, double angle)
{
return get_extents_rotated(mp.points, angle);
}
}