PrusaSlicer-NonPlainar/src/libslic3r/Fill/FillEnsuring.cpp
2023-05-12 11:29:50 +02:00

441 lines
24 KiB
C++

#include "../ClipperUtils.hpp"
#include "../ShortestPath.hpp"
#include "../Arachne/WallToolPaths.hpp"
#include "AABBTreeLines.hpp"
#include "ExPolygon.hpp"
#include "FillEnsuring.hpp"
#include "Line.hpp"
#include "Point.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
#include "SVG.hpp"
#include "libslic3r.h"
#include <algorithm>
#include <boost/log/trivial.hpp>
#include <functional>
#include <string>
#include <type_traits>
#include <unordered_set>
#include <vector>
namespace Slic3r {
ThickPolylines FillEnsuring::fill_surface_arachne(const Surface *surface, const FillParams &params)
{
assert(params.use_arachne);
assert(this->print_config != nullptr && this->print_object_config != nullptr && this->print_region_config != nullptr);
auto rotate_thick_polylines = [](ThickPolylines &tpolylines, double cos_angle, double sin_angle) {
for (ThickPolyline &tp : tpolylines) {
for (auto &p : tp.points) {
double px = double(p.x());
double py = double(p.y());
p.x() = coord_t(round(cos_angle * px - sin_angle * py));
p.y() = coord_t(round(cos_angle * py + sin_angle * px));
}
}
};
auto segments_overlap = [](coord_t alow, coord_t ahigh, coord_t blow, coord_t bhigh) {
return (alow >= blow && alow <= bhigh) || (ahigh >= blow && ahigh <= bhigh) || (blow >= alow && blow <= ahigh) ||
(bhigh >= alow && bhigh <= ahigh);
};
const coord_t scaled_spacing = scaled<coord_t>(this->spacing);
double squared_distance_limit_reconnection = 4 * double(scaled_spacing) * double(scaled_spacing);
Polygons filled_area = to_polygons(surface->expolygon);
double aligning_angle = -this->angle + PI * 0.5;
polygons_rotate(filled_area, aligning_angle);
Polygons internal_area = shrink(filled_area, 0.5 * scaled_spacing - scale_(this->overlap));
BoundingBox bb = get_extents(filled_area);
const size_t n_vlines = (bb.max.x() - bb.min.x() + scaled_spacing - 1) / scaled_spacing;
std::vector<Line> vertical_lines(2 * n_vlines + 1);
coord_t y_min = bb.min.y();
coord_t y_max = bb.max.y();
for (size_t i = 0; i < n_vlines; i++) {
coord_t x0 = bb.min.x() + i * double(scaled_spacing) - scaled_spacing * 0.5;
coord_t x1 = bb.min.x() + i * double(scaled_spacing);
vertical_lines[i * 2].a = Point{x0, y_min};
vertical_lines[i * 2].b = Point{x0, y_max};
vertical_lines[i * 2 + 1].a = Point{x1, y_min};
vertical_lines[i * 2 + 1].b = Point{x1, y_max};
}
vertical_lines.back().a = Point{coord_t(bb.min.x() + n_vlines * double(scaled_spacing) + scaled_spacing * 0.5), y_min};
vertical_lines.back().b = Point{vertical_lines.back().a.x(), y_max};
auto area_walls = AABBTreeLines::LinesDistancer<Line>{to_lines(internal_area)};
std::vector<std::vector<std::pair<Vec<2, coord_t>, size_t>>> vertical_lines_intersections(vertical_lines.size());
for (int i = 0; i < vertical_lines.size(); i++) {
vertical_lines_intersections[i] = area_walls.intersections_with_line<true>(vertical_lines[i]);
}
std::vector<std::vector<Line>> polygon_sections(n_vlines);
for (size_t i = 0; i < n_vlines; i++) {
const auto &central_intersections = vertical_lines_intersections[i * 2 + 1];
const auto &left_intersections = vertical_lines_intersections[i * 2];
const auto &right_intersections = vertical_lines_intersections[i * 2 + 2];
for (int intersection_idx = 0; intersection_idx < int(central_intersections.size()) - 1; intersection_idx++) {
const auto &a = central_intersections[intersection_idx];
const auto &b = central_intersections[intersection_idx + 1];
if (area_walls.outside((a.first + b.first) / 2) < 0) {
// central part is inside. Now check for reasonable side distances
auto get_closest_intersection_squared_dist =
[](const std::pair<Vec<2, coord_t>, size_t> &point,
const std::vector<std::pair<Vec<2, coord_t>, size_t>> &sorted_intersections) {
if (sorted_intersections.empty()) {
return 0.0;
}
auto closest_higher = std::upper_bound(sorted_intersections.begin(), sorted_intersections.end(), point,
[](const std::pair<Vec<2, coord_t>, size_t> &left,
const std::pair<Vec<2, coord_t>, size_t> &right) {
return left.first.y() < right.first.y();
});
if (closest_higher == sorted_intersections.end()) {
return (point.first - sorted_intersections.back().first).cast<double>().squaredNorm();
}
double candidate_dist = (point.first - closest_higher->first).cast<double>().squaredNorm();
if (closest_higher != sorted_intersections.begin()) {
double closest_lower_dist = (point.first - (--closest_higher)->first).cast<double>().squaredNorm();
candidate_dist = std::min(candidate_dist, closest_lower_dist);
}
return candidate_dist;
};
Point section_a = a.first;
Point section_b = b.first;
double max_a_squared_dist = std::max(get_closest_intersection_squared_dist(a, left_intersections),
get_closest_intersection_squared_dist(a, right_intersections));
double max_b_squared_dist = std::max(get_closest_intersection_squared_dist(b, left_intersections),
get_closest_intersection_squared_dist(b, right_intersections));
if (max_a_squared_dist > 0.3 * squared_distance_limit_reconnection) {
section_a.y() += 4.0 * scaled_spacing;
}
if (max_b_squared_dist > 0.3 * squared_distance_limit_reconnection) {
section_b.y() -= 4.0 * scaled_spacing;
}
if (section_a.y() < section_b.y()) {
polygon_sections[i].emplace_back(section_a, section_b);
}
}
}
}
struct Node
{
int section_idx;
int line_idx;
int skips_taken = 0;
bool neighbours_explored = false;
std::vector<std::pair<int,int>> neighbours{};
};
coord_t length_filter = scale_(4);
size_t skips_allowed = 2;
size_t min_removal_conut = 4;
for (int section_idx = 0; section_idx < polygon_sections.size(); section_idx++) {
for (int line_idx = 0; line_idx < polygon_sections[section_idx].size(); line_idx++) {
if (const Line &line = polygon_sections[section_idx][line_idx]; line.a != line.b && line.length() < length_filter) {
std::set<std::pair<int, int>> to_remove{{section_idx, line_idx}};
std::vector<Node> to_visit{{section_idx, line_idx}};
bool initial_touches_long_lines = false;
if (section_idx > 0) {
for (int prev_line_idx = 0; prev_line_idx < polygon_sections[section_idx - 1].size(); prev_line_idx++) {
if (const Line &nl = polygon_sections[section_idx - 1][prev_line_idx];
nl.a != nl.b && segments_overlap(line.a.y(), line.b.y(), nl.a.y(), nl.b.y())) {
initial_touches_long_lines = true;
}
}
}
while (!to_visit.empty()) {
Node curr = to_visit.back();
const Line &curr_l = polygon_sections[curr.section_idx][curr.line_idx];
if (curr.neighbours_explored) {
bool is_valid_for_removal = (curr_l.length() < length_filter) &&
((int(to_remove.size()) - curr.skips_taken > min_removal_conut) ||
(curr.neighbours.empty() && !initial_touches_long_lines));
if (!is_valid_for_removal) {
for (const auto &n : curr.neighbours) {
if (to_remove.find(n) != to_remove.end()) {
is_valid_for_removal = true;
break;
}
}
}
if (!is_valid_for_removal) {
to_remove.erase({curr.section_idx, curr.line_idx});
}
to_visit.pop_back();
} else {
to_visit.back().neighbours_explored = true;
int curr_index = to_visit.size() - 1;
bool can_use_skip = curr_l.length() <= length_filter && curr.skips_taken < skips_allowed;
if (curr.section_idx + 1 < polygon_sections.size()) {
for (int lidx = 0; lidx < polygon_sections[curr.section_idx + 1].size(); lidx++) {
if (const Line &nl = polygon_sections[curr.section_idx + 1][lidx];
nl.a != nl.b && segments_overlap(curr_l.a.y(), curr_l.b.y(), nl.a.y(), nl.b.y()) &&
(nl.length() < length_filter || can_use_skip)) {
to_visit[curr_index].neighbours.push_back({curr.section_idx + 1, lidx});
to_remove.insert({curr.section_idx + 1, lidx});
Node next_node{curr.section_idx + 1, lidx, curr.skips_taken + (nl.length() >= length_filter)};
to_visit.push_back(next_node);
}
}
}
}
}
for (const auto &pair : to_remove) {
Line &l = polygon_sections[pair.first][pair.second];
l.a = l.b;
}
}
}
}
for (size_t section_idx = 0; section_idx < polygon_sections.size(); section_idx++) {
polygon_sections[section_idx].erase(std::remove_if(polygon_sections[section_idx].begin(), polygon_sections[section_idx].end(),
[](const Line &s) { return s.a == s.b; }),
polygon_sections[section_idx].end());
std::sort(polygon_sections[section_idx].begin(), polygon_sections[section_idx].end(),
[](const Line &a, const Line &b) { return a.a.y() < b.b.y(); });
}
ThickPolylines thick_polylines_out;
{
ThickPolylines current_traced_paths;
for (const auto &polygon_slice : polygon_sections) {
std::unordered_set<const Line *> used_segments;
for (ThickPolyline &traced_path : current_traced_paths) {
Point max_y = traced_path.last_point();
Point min_y = traced_path.points[traced_path.size() - 2];
if (max_y.y() < min_y.y())
std::swap(max_y, min_y);
auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), min_y,
[](const Point &low, const Line &seg) { return seg.b.y() > low.y(); });
auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), max_y,
[](const Point &high, const Line &seg) { return seg.a.y() > high.y(); });
bool segment_added = false;
for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) {
if (used_segments.find(&(*candidate)) != used_segments.end()) {
continue;
}
if ((traced_path.last_point() - candidate->a).cast<double>().squaredNorm() < squared_distance_limit_reconnection) {
traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->a);
traced_path.width.push_back(scaled_spacing);
traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->b);
traced_path.width.push_back(scaled_spacing);
used_segments.insert(&(*candidate));
segment_added = true;
} else if ((traced_path.last_point() - candidate->b).cast<double>().squaredNorm() <
squared_distance_limit_reconnection) {
traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->b);
traced_path.width.push_back(scaled_spacing);
traced_path.width.push_back(scaled_spacing);
traced_path.points.push_back(candidate->a);
traced_path.width.push_back(scaled_spacing);
used_segments.insert(&(*candidate));
segment_added = true;
}
}
if (!segment_added) {
// Zero overlapping segments. Finish the polyline.
thick_polylines_out.push_back(std::move(traced_path));
traced_path.clear();
}
}
current_traced_paths.erase(std::remove_if(current_traced_paths.begin(), current_traced_paths.end(),
[](const ThickPolyline &tp) { return tp.empty(); }),
current_traced_paths.end());
for (const Line &segment : polygon_slice) {
if (used_segments.find(&segment) == used_segments.end()) {
ThickPolyline &new_path = current_traced_paths.emplace_back();
new_path.points.push_back(segment.a);
new_path.width.push_back(scaled_spacing);
new_path.points.push_back(segment.b);
new_path.width.push_back(scaled_spacing);
new_path.endpoints = {true, true};
}
}
}
thick_polylines_out.insert(thick_polylines_out.end(), current_traced_paths.begin(), current_traced_paths.end());
}
Polygons reconstructed_area{};
// reconstruct polygon from polygon sections
{
struct TracedPoly
{
std::vector<Point> lows;
std::vector<Point> highs;
};
std::vector<TracedPoly> current_traced_polys;
for (const auto &polygon_slice : polygon_sections) {
std::unordered_set<const Line *> used_segments;
for (TracedPoly &traced_poly : current_traced_polys) {
auto candidates_begin = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.lows.back(),
[](const Point &low, const Line &seg) { return seg.b.y() > low.y(); });
auto candidates_end = std::upper_bound(polygon_slice.begin(), polygon_slice.end(), traced_poly.highs.back(),
[](const Point &high, const Line &seg) { return seg.a.y() > high.y(); });
bool segment_added = false;
for (auto candidate = candidates_begin; candidate != candidates_end && !segment_added; candidate++) {
if (used_segments.find(&(*candidate)) != used_segments.end()) {
continue;
}
if ((traced_poly.lows.back() - candidates_begin->a).cast<double>().squaredNorm() < squared_distance_limit_reconnection) {
traced_poly.lows.push_back(candidates_begin->a);
} else {
traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0});
traced_poly.lows.push_back(candidates_begin->a - Point{scaled_spacing / 2, 0});
traced_poly.lows.push_back(candidates_begin->a);
}
if ((traced_poly.highs.back() - candidates_begin->b).cast<double>().squaredNorm() <
squared_distance_limit_reconnection) {
traced_poly.highs.push_back(candidates_begin->b);
} else {
traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0});
traced_poly.highs.push_back(candidates_begin->b - Point{scaled_spacing / 2, 0});
traced_poly.highs.push_back(candidates_begin->b);
}
segment_added = true;
used_segments.insert(&(*candidates_begin));
}
if (!segment_added) {
// Zero or multiple overlapping segments. Resolving this is nontrivial,
// so we just close this polygon and maybe open several new. This will hopefully happen much less often
traced_poly.lows.push_back(traced_poly.lows.back() + Point{scaled_spacing / 2, 0});
traced_poly.highs.push_back(traced_poly.highs.back() + Point{scaled_spacing / 2, 0});
Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows));
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
traced_poly.lows.clear();
traced_poly.highs.clear();
}
}
current_traced_polys.erase(std::remove_if(current_traced_polys.begin(), current_traced_polys.end(),
[](const TracedPoly &tp) { return tp.lows.empty(); }),
current_traced_polys.end());
for (const auto &segment : polygon_slice) {
if (used_segments.find(&segment) == used_segments.end()) {
TracedPoly &new_tp = current_traced_polys.emplace_back();
new_tp.lows.push_back(segment.a - Point{scaled_spacing / 2, 0});
new_tp.lows.push_back(segment.a);
new_tp.highs.push_back(segment.b - Point{scaled_spacing / 2, 0});
new_tp.highs.push_back(segment.b);
}
}
}
// add not closed polys
for (TracedPoly &traced_poly : current_traced_polys) {
Polygon &new_poly = reconstructed_area.emplace_back(std::move(traced_poly.lows));
new_poly.points.insert(new_poly.points.end(), traced_poly.highs.rbegin(), traced_poly.highs.rend());
}
}
reconstructed_area = closing(reconstructed_area, float(SCALED_EPSILON), float(SCALED_EPSILON));
ExPolygons gaps_for_additional_filling = diff_ex(filled_area, reconstructed_area);
if (this->overlap != 0) {
gaps_for_additional_filling = offset_ex(gaps_for_additional_filling, scaled<float>(this->overlap));
}
// gaps_for_additional_filling = opening_ex(gaps_for_additional_filling, 0.3 * scaled_spacing);
BoundingBox bbox = get_extents(filled_area);
bbox.offset(scale_(1.));
::Slic3r::SVG svg(debug_out_path(("surface" + std::to_string(surface->area())).c_str()).c_str(), bbox);
svg.draw(to_lines(filled_area), "red", scale_(0.4));
svg.draw(to_lines(reconstructed_area), "blue", scale_(0.3));
svg.draw(to_lines(gaps_for_additional_filling), "green", scale_(0.2));
svg.draw(vertical_lines, "black", scale_(0.1));
svg.Close();
for (ExPolygon &ex_poly : gaps_for_additional_filling) {
Point bbox_size = ex_poly.contour.bounding_box().size();
coord_t loops_count = std::max(bbox_size.x(), bbox_size.y()) / scaled_spacing + 1;
Polygons polygons = to_polygons(ex_poly);
Arachne::WallToolPaths wall_tool_paths(polygons, scaled_spacing, scaled_spacing, loops_count, 0, params.layer_height, *this->print_object_config, *this->print_config);
if (std::vector<Arachne::VariableWidthLines> loops = wall_tool_paths.getToolPaths(); !loops.empty()) {
std::vector<const Arachne::ExtrusionLine *> all_extrusions;
for (Arachne::VariableWidthLines &loop : loops) {
if (loop.empty())
continue;
for (const Arachne::ExtrusionLine &wall : loop)
all_extrusions.emplace_back(&wall);
}
// Split paths using a nearest neighbor search.
size_t firts_poly_idx = thick_polylines_out.size();
Point last_pos(0, 0);
for (const Arachne::ExtrusionLine *extrusion : all_extrusions) {
if (extrusion->empty())
continue;
ThickPolyline thick_polyline = Arachne::to_thick_polyline(*extrusion);
if (thick_polyline.length() == 0.)
//FIXME this should not happen.
continue;
assert(thick_polyline.size() > 1);
assert(thick_polyline.length() > 0.);
//assert(thick_polyline.points.size() == thick_polyline.width.size());
if (extrusion->is_closed)
thick_polyline.start_at_index(nearest_point_index(thick_polyline.points, last_pos));
assert(thick_polyline.size() > 1);
//assert(thick_polyline.points.size() == thick_polyline.width.size());
thick_polylines_out.emplace_back(std::move(thick_polyline));
last_pos = thick_polylines_out.back().last_point();
}
// clip the paths to prevent the extruder from getting exactly on the first point of the loop
// Keep valid paths only.
size_t j = firts_poly_idx;
for (size_t i = firts_poly_idx; i < thick_polylines_out.size(); ++i) {
assert(thick_polylines_out[i].size() > 1);
assert(thick_polylines_out[i].length() > 0.);
//assert(thick_polylines_out[i].points.size() == thick_polylines_out[i].width.size());
thick_polylines_out[i].clip_end(this->loop_clipping);
assert(thick_polylines_out[i].size() > 1);
if (thick_polylines_out[i].is_valid()) {
if (j < i)
thick_polylines_out[j] = std::move(thick_polylines_out[i]);
++j;
}
}
if (j < thick_polylines_out.size())
thick_polylines_out.erase(thick_polylines_out.begin() + int(j), thick_polylines_out.end());
}
}
// reconnect ThickPolylines
rotate_thick_polylines(thick_polylines_out, cos(-aligning_angle), sin(-aligning_angle));
return thick_polylines_out;
}
} // namespace Slic3r