589 lines
23 KiB
C++
589 lines
23 KiB
C++
/*
|
|
Copyright 2008 Intel Corporation
|
|
|
|
Use, modification and distribution are subject to the Boost Software License,
|
|
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
http://www.boost.org/LICENSE_1_0.txt).
|
|
*/
|
|
#ifndef BOOST_POLYGON_PROPERTY_MERGE_HPP
|
|
#define BOOST_POLYGON_PROPERTY_MERGE_HPP
|
|
namespace boost { namespace polygon{
|
|
|
|
template <typename coordinate_type>
|
|
class property_merge_point {
|
|
private:
|
|
coordinate_type x_, y_;
|
|
public:
|
|
inline property_merge_point() : x_(), y_() {}
|
|
inline property_merge_point(coordinate_type x, coordinate_type y) : x_(x), y_(y) {}
|
|
//use builtin assign and copy
|
|
inline bool operator==(const property_merge_point& that) const { return x_ == that.x_ && y_ == that.y_; }
|
|
inline bool operator!=(const property_merge_point& that) const { return !((*this) == that); }
|
|
inline bool operator<(const property_merge_point& that) const {
|
|
if(x_ < that.x_) return true;
|
|
if(x_ > that.x_) return false;
|
|
return y_ < that.y_;
|
|
}
|
|
inline coordinate_type x() const { return x_; }
|
|
inline coordinate_type y() const { return y_; }
|
|
inline void x(coordinate_type value) { x_ = value; }
|
|
inline void y(coordinate_type value) { y_ = value; }
|
|
};
|
|
|
|
template <typename coordinate_type>
|
|
class property_merge_interval {
|
|
private:
|
|
coordinate_type low_, high_;
|
|
public:
|
|
inline property_merge_interval() : low_(), high_() {}
|
|
inline property_merge_interval(coordinate_type low, coordinate_type high) : low_(low), high_(high) {}
|
|
//use builtin assign and copy
|
|
inline bool operator==(const property_merge_interval& that) const { return low_ == that.low_ && high_ == that.high_; }
|
|
inline bool operator!=(const property_merge_interval& that) const { return !((*this) == that); }
|
|
inline bool operator<(const property_merge_interval& that) const {
|
|
if(low_ < that.low_) return true;
|
|
if(low_ > that.low_) return false;
|
|
return high_ < that.high_;
|
|
}
|
|
inline coordinate_type low() const { return low_; }
|
|
inline coordinate_type high() const { return high_; }
|
|
inline void low(coordinate_type value) { low_ = value; }
|
|
inline void high(coordinate_type value) { high_ = value; }
|
|
};
|
|
|
|
template <typename coordinate_type, typename property_type, typename polygon_set_type, typename keytype = std::set<property_type> >
|
|
class merge_scanline {
|
|
public:
|
|
//definitions
|
|
|
|
typedef keytype property_set;
|
|
typedef std::vector<std::pair<property_type, int> > property_map;
|
|
typedef std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > vertex_property;
|
|
typedef std::pair<property_merge_point<coordinate_type>, property_map> vertex_data;
|
|
typedef std::vector<vertex_property> property_merge_data;
|
|
//typedef std::map<property_set, polygon_set_type> Result;
|
|
typedef std::map<coordinate_type, property_map> scanline_type;
|
|
typedef typename scanline_type::iterator scanline_iterator;
|
|
typedef std::pair<property_merge_interval<coordinate_type>, std::pair<property_set, property_set> > edge_property;
|
|
typedef std::vector<edge_property> edge_property_vector;
|
|
|
|
//static public member functions
|
|
|
|
template <typename iT, typename orientation_2d_type>
|
|
static inline void
|
|
populate_property_merge_data(property_merge_data& pmd, iT input_begin, iT input_end,
|
|
const property_type& property, orientation_2d_type orient) {
|
|
for( ; input_begin != input_end; ++input_begin) {
|
|
std::pair<property_merge_point<coordinate_type>, std::pair<property_type, int> > element;
|
|
if(orient == HORIZONTAL)
|
|
element.first = property_merge_point<coordinate_type>((*input_begin).second.first, (*input_begin).first);
|
|
else
|
|
element.first = property_merge_point<coordinate_type>((*input_begin).first, (*input_begin).second.first);
|
|
element.second.first = property;
|
|
element.second.second = (*input_begin).second.second;
|
|
pmd.push_back(element);
|
|
}
|
|
}
|
|
|
|
//public member functions
|
|
|
|
merge_scanline() : output(), scanline(), currentVertex(), tmpVector(), previousY(), countFromBelow(), scanlinePosition() {}
|
|
merge_scanline(const merge_scanline& that) :
|
|
output(that.output),
|
|
scanline(that.scanline),
|
|
currentVertex(that.currentVertex),
|
|
tmpVector(that.tmpVector),
|
|
previousY(that.previousY),
|
|
countFromBelow(that.countFromBelow),
|
|
scanlinePosition(that.scanlinePosition)
|
|
{}
|
|
merge_scanline& operator=(const merge_scanline& that) {
|
|
output = that.output;
|
|
scanline = that.scanline;
|
|
currentVertex = that.currentVertex;
|
|
tmpVector = that.tmpVector;
|
|
previousY = that.previousY;
|
|
countFromBelow = that.countFromBelow;
|
|
scanlinePosition = that.scanlinePosition;
|
|
return *this;
|
|
}
|
|
|
|
template <typename result_type>
|
|
inline void perform_merge(result_type& result, property_merge_data& data) {
|
|
if(data.empty()) return;
|
|
//sort
|
|
polygon_sort(data.begin(), data.end(), less_vertex_data<vertex_property>());
|
|
//scanline
|
|
bool firstIteration = true;
|
|
scanlinePosition = scanline.end();
|
|
for(std::size_t i = 0; i < data.size(); ++i) {
|
|
if(firstIteration) {
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
currentVertex.first = data[i].first;
|
|
firstIteration = false;
|
|
} else {
|
|
if(data[i].first != currentVertex.first) {
|
|
if(data[i].first.x() != currentVertex.first.x()) {
|
|
processVertex(output);
|
|
//std::cout << scanline.size() << " ";
|
|
countFromBelow.clear(); //should already be clear
|
|
writeOutput(currentVertex.first.x(), result, output);
|
|
currentVertex.second.clear();
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
currentVertex.first = data[i].first;
|
|
//std::cout << assertRedundant(scanline) << "/" << scanline.size() << " ";
|
|
} else {
|
|
processVertex(output);
|
|
currentVertex.second.clear();
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
currentVertex.first = data[i].first;
|
|
}
|
|
} else {
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
}
|
|
}
|
|
}
|
|
processVertex(output);
|
|
writeOutput(currentVertex.first.x(), result, output);
|
|
//std::cout << assertRedundant(scanline) << "/" << scanline.size() << "\n";
|
|
//std::cout << scanline.size() << "\n";
|
|
}
|
|
|
|
private:
|
|
//private supporting types
|
|
|
|
template <class T>
|
|
class less_vertex_data {
|
|
public:
|
|
less_vertex_data() {}
|
|
bool operator()(const T& lvalue, const T& rvalue) const {
|
|
if(lvalue.first.x() < rvalue.first.x()) return true;
|
|
if(lvalue.first.x() > rvalue.first.x()) return false;
|
|
if(lvalue.first.y() < rvalue.first.y()) return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct lessPropertyCount {
|
|
lessPropertyCount() {}
|
|
bool operator()(const T& a, const T& b) {
|
|
return a.first < b.first;
|
|
}
|
|
};
|
|
|
|
//private static member functions
|
|
|
|
static inline void mergeProperty(property_map& lvalue, std::pair<property_type, int>& rvalue) {
|
|
typename property_map::iterator itr = std::lower_bound(lvalue.begin(), lvalue.end(), rvalue,
|
|
lessPropertyCount<std::pair<property_type, int> >());
|
|
if(itr == lvalue.end() ||
|
|
(*itr).first != rvalue.first) {
|
|
lvalue.insert(itr, rvalue);
|
|
} else {
|
|
(*itr).second += rvalue.second;
|
|
if((*itr).second == 0)
|
|
lvalue.erase(itr);
|
|
}
|
|
// if(assertSorted(lvalue)) {
|
|
// std::cout << "in mergeProperty\n";
|
|
// exit(0);
|
|
// }
|
|
}
|
|
|
|
// static inline bool assertSorted(property_map& pset) {
|
|
// bool result = false;
|
|
// for(std::size_t i = 1; i < pset.size(); ++i) {
|
|
// if(pset[i] < pset[i-1]) {
|
|
// std::cout << "Out of Order Error ";
|
|
// result = true;
|
|
// }
|
|
// if(pset[i].first == pset[i-1].first) {
|
|
// std::cout << "Duplicate Property Error ";
|
|
// result = true;
|
|
// }
|
|
// if(pset[0].second == 0 || pset[1].second == 0) {
|
|
// std::cout << "Empty Property Error ";
|
|
// result = true;
|
|
// }
|
|
// }
|
|
// return result;
|
|
// }
|
|
|
|
static inline void setProperty(property_set& pset, property_map& pmap) {
|
|
for(typename property_map::iterator itr = pmap.begin(); itr != pmap.end(); ++itr) {
|
|
if((*itr).second > 0) {
|
|
pset.insert(pset.end(), (*itr).first);
|
|
}
|
|
}
|
|
}
|
|
|
|
//private data members
|
|
|
|
edge_property_vector output;
|
|
scanline_type scanline;
|
|
vertex_data currentVertex;
|
|
property_map tmpVector;
|
|
coordinate_type previousY;
|
|
property_map countFromBelow;
|
|
scanline_iterator scanlinePosition;
|
|
|
|
//private member functions
|
|
|
|
inline void mergeCount(property_map& lvalue, property_map& rvalue) {
|
|
typename property_map::iterator litr = lvalue.begin();
|
|
typename property_map::iterator ritr = rvalue.begin();
|
|
tmpVector.clear();
|
|
while(litr != lvalue.end() && ritr != rvalue.end()) {
|
|
if((*litr).first <= (*ritr).first) {
|
|
if(!tmpVector.empty() &&
|
|
(*litr).first == tmpVector.back().first) {
|
|
tmpVector.back().second += (*litr).second;
|
|
} else {
|
|
tmpVector.push_back(*litr);
|
|
}
|
|
++litr;
|
|
} else if((*ritr).first <= (*litr).first) {
|
|
if(!tmpVector.empty() &&
|
|
(*ritr).first == tmpVector.back().first) {
|
|
tmpVector.back().second += (*ritr).second;
|
|
} else {
|
|
tmpVector.push_back(*ritr);
|
|
}
|
|
++ritr;
|
|
}
|
|
}
|
|
while(litr != lvalue.end()) {
|
|
if(!tmpVector.empty() &&
|
|
(*litr).first == tmpVector.back().first) {
|
|
tmpVector.back().second += (*litr).second;
|
|
} else {
|
|
tmpVector.push_back(*litr);
|
|
}
|
|
++litr;
|
|
}
|
|
while(ritr != rvalue.end()) {
|
|
if(!tmpVector.empty() &&
|
|
(*ritr).first == tmpVector.back().first) {
|
|
tmpVector.back().second += (*ritr).second;
|
|
} else {
|
|
tmpVector.push_back(*ritr);
|
|
}
|
|
++ritr;
|
|
}
|
|
lvalue.clear();
|
|
for(std::size_t i = 0; i < tmpVector.size(); ++i) {
|
|
if(tmpVector[i].second != 0) {
|
|
lvalue.push_back(tmpVector[i]);
|
|
}
|
|
}
|
|
// if(assertSorted(lvalue)) {
|
|
// std::cout << "in mergeCount\n";
|
|
// exit(0);
|
|
// }
|
|
}
|
|
|
|
inline void processVertex(edge_property_vector& output) {
|
|
if(!countFromBelow.empty()) {
|
|
//we are processing an interval of change in scanline state between
|
|
//previous vertex position and current vertex position where
|
|
//count from below represents the change on the interval
|
|
//foreach scanline element from previous to current we
|
|
//write the interval on the scanline that is changing
|
|
//the old value and the new value to output
|
|
property_merge_interval<coordinate_type> currentInterval(previousY, currentVertex.first.y());
|
|
coordinate_type currentY = currentInterval.low();
|
|
if(scanlinePosition == scanline.end() ||
|
|
(*scanlinePosition).first != previousY) {
|
|
scanlinePosition = scanline.lower_bound(previousY);
|
|
}
|
|
scanline_iterator previousScanlinePosition = scanlinePosition;
|
|
++scanlinePosition;
|
|
while(scanlinePosition != scanline.end()) {
|
|
coordinate_type elementY = (*scanlinePosition).first;
|
|
if(elementY <= currentInterval.high()) {
|
|
property_map& countOnLeft = (*previousScanlinePosition).second;
|
|
edge_property element;
|
|
output.push_back(element);
|
|
output.back().first = property_merge_interval<coordinate_type>((*previousScanlinePosition).first, elementY);
|
|
setProperty(output.back().second.first, countOnLeft);
|
|
mergeCount(countOnLeft, countFromBelow);
|
|
setProperty(output.back().second.second, countOnLeft);
|
|
if(output.back().second.first == output.back().second.second) {
|
|
output.pop_back(); //it was an internal vertical edge, not to be output
|
|
}
|
|
else if(output.size() > 1) {
|
|
edge_property& secondToLast = output[output.size()-2];
|
|
if(secondToLast.first.high() == output.back().first.low() &&
|
|
secondToLast.second.first == output.back().second.first &&
|
|
secondToLast.second.second == output.back().second.second) {
|
|
//merge output onto previous output because properties are
|
|
//identical on both sides implying an internal horizontal edge
|
|
secondToLast.first.high(output.back().first.high());
|
|
output.pop_back();
|
|
}
|
|
}
|
|
if(previousScanlinePosition == scanline.begin()) {
|
|
if(countOnLeft.empty()) {
|
|
scanline.erase(previousScanlinePosition);
|
|
}
|
|
} else {
|
|
scanline_iterator tmpitr = previousScanlinePosition;
|
|
--tmpitr;
|
|
if((*tmpitr).second == (*previousScanlinePosition).second)
|
|
scanline.erase(previousScanlinePosition);
|
|
}
|
|
|
|
} else if(currentY < currentInterval.high()){
|
|
//elementY > currentInterval.high()
|
|
//split the interval between previous and current scanline elements
|
|
std::pair<coordinate_type, property_map> elementScan;
|
|
elementScan.first = currentInterval.high();
|
|
elementScan.second = (*previousScanlinePosition).second;
|
|
scanlinePosition = scanline.insert(scanlinePosition, elementScan);
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
previousScanlinePosition = scanlinePosition;
|
|
currentY = previousY = elementY;
|
|
++scanlinePosition;
|
|
if(scanlinePosition == scanline.end() &&
|
|
currentY < currentInterval.high()) {
|
|
//insert a new element for top of range
|
|
std::pair<coordinate_type, property_map> elementScan;
|
|
elementScan.first = currentInterval.high();
|
|
scanlinePosition = scanline.insert(scanline.end(), elementScan);
|
|
}
|
|
}
|
|
if(scanlinePosition == scanline.end() &&
|
|
currentY < currentInterval.high()) {
|
|
//handle case where we iterated to end of the scanline
|
|
//we need to insert an element into the scanline at currentY
|
|
//with property value coming from below
|
|
//and another one at currentInterval.high() with empty property value
|
|
mergeCount(scanline[currentY], countFromBelow);
|
|
std::pair<coordinate_type, property_map> elementScan;
|
|
elementScan.first = currentInterval.high();
|
|
scanline.insert(scanline.end(), elementScan);
|
|
|
|
edge_property element;
|
|
output.push_back(element);
|
|
output.back().first = property_merge_interval<coordinate_type>(currentY, currentInterval.high());
|
|
setProperty(output.back().second.second, countFromBelow);
|
|
mergeCount(countFromBelow, currentVertex.second);
|
|
} else {
|
|
mergeCount(countFromBelow, currentVertex.second);
|
|
if(countFromBelow.empty()) {
|
|
if(previousScanlinePosition == scanline.begin()) {
|
|
if((*previousScanlinePosition).second.empty()) {
|
|
scanline.erase(previousScanlinePosition);
|
|
//previousScanlinePosition = scanline.end();
|
|
//std::cout << "ERASE_A ";
|
|
}
|
|
} else {
|
|
scanline_iterator tmpitr = previousScanlinePosition;
|
|
--tmpitr;
|
|
if((*tmpitr).second == (*previousScanlinePosition).second) {
|
|
scanline.erase(previousScanlinePosition);
|
|
//previousScanlinePosition = scanline.end();
|
|
//std::cout << "ERASE_B ";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
//count from below is empty, we are starting a new interval of change
|
|
countFromBelow = currentVertex.second;
|
|
scanlinePosition = scanline.lower_bound(currentVertex.first.y());
|
|
if(scanlinePosition != scanline.end()) {
|
|
if((*scanlinePosition).first != currentVertex.first.y()) {
|
|
if(scanlinePosition != scanline.begin()) {
|
|
//decrement to get the lower position of the first interval this vertex intersects
|
|
--scanlinePosition;
|
|
//insert a new element into the scanline for the incoming vertex
|
|
property_map& countOnLeft = (*scanlinePosition).second;
|
|
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
|
|
scanlinePosition = scanline.insert(scanlinePosition, element);
|
|
} else {
|
|
property_map countOnLeft;
|
|
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
|
|
scanlinePosition = scanline.insert(scanlinePosition, element);
|
|
}
|
|
}
|
|
} else {
|
|
property_map countOnLeft;
|
|
std::pair<coordinate_type, property_map> element(currentVertex.first.y(), countOnLeft);
|
|
scanlinePosition = scanline.insert(scanlinePosition, element);
|
|
}
|
|
}
|
|
previousY = currentVertex.first.y();
|
|
}
|
|
|
|
template <typename T>
|
|
inline int assertRedundant(T& t) {
|
|
if(t.empty()) return 0;
|
|
int count = 0;
|
|
typename T::iterator itr = t.begin();
|
|
if((*itr).second.empty())
|
|
++count;
|
|
typename T::iterator itr2 = itr;
|
|
++itr2;
|
|
while(itr2 != t.end()) {
|
|
if((*itr).second == (*itr2).second)
|
|
++count;
|
|
itr = itr2;
|
|
++itr2;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
template <typename T>
|
|
inline void performExtract(T& result, property_merge_data& data) {
|
|
if(data.empty()) return;
|
|
//sort
|
|
polygon_sort(data.begin(), data.end(), less_vertex_data<vertex_property>());
|
|
|
|
//scanline
|
|
bool firstIteration = true;
|
|
scanlinePosition = scanline.end();
|
|
for(std::size_t i = 0; i < data.size(); ++i) {
|
|
if(firstIteration) {
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
currentVertex.first = data[i].first;
|
|
firstIteration = false;
|
|
} else {
|
|
if(data[i].first != currentVertex.first) {
|
|
if(data[i].first.x() != currentVertex.first.x()) {
|
|
processVertex(output);
|
|
//std::cout << scanline.size() << " ";
|
|
countFromBelow.clear(); //should already be clear
|
|
writeGraph(currentVertex.first.x(), result, output, scanline);
|
|
currentVertex.second.clear();
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
currentVertex.first = data[i].first;
|
|
} else {
|
|
processVertex(output);
|
|
currentVertex.second.clear();
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
currentVertex.first = data[i].first;
|
|
}
|
|
} else {
|
|
mergeProperty(currentVertex.second, data[i].second);
|
|
}
|
|
}
|
|
}
|
|
processVertex(output);
|
|
writeGraph(currentVertex.first.x(), result, output, scanline);
|
|
//std::cout << scanline.size() << "\n";
|
|
}
|
|
|
|
template <typename T>
|
|
inline void insertEdges(T& graph, property_set& p1, property_set& p2) {
|
|
for(typename property_set::iterator itr = p1.begin(); itr != p1.end(); ++itr) {
|
|
for(typename property_set::iterator itr2 = p2.begin(); itr2 != p2.end(); ++itr2) {
|
|
if(*itr != *itr2) {
|
|
graph[*itr].insert(*itr2);
|
|
graph[*itr2].insert(*itr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
inline void propertySetAbove(coordinate_type y, property_set& ps, T& scanline) {
|
|
ps.clear();
|
|
typename T::iterator itr = scanline.find(y);
|
|
if(itr != scanline.end())
|
|
setProperty(ps, (*itr).second);
|
|
}
|
|
|
|
template <typename T>
|
|
inline void propertySetBelow(coordinate_type y, property_set& ps, T& scanline) {
|
|
ps.clear();
|
|
typename T::iterator itr = scanline.find(y);
|
|
if(itr != scanline.begin()) {
|
|
--itr;
|
|
setProperty(ps, (*itr).second);
|
|
}
|
|
}
|
|
|
|
template <typename T, typename T2>
|
|
inline void writeGraph(coordinate_type x, T& graph, edge_property_vector& output, T2& scanline) {
|
|
if(output.empty()) return;
|
|
edge_property* previousEdgeP = &(output[0]);
|
|
bool firstIteration = true;
|
|
property_set ps;
|
|
for(std::size_t i = 0; i < output.size(); ++i) {
|
|
edge_property& previousEdge = *previousEdgeP;
|
|
edge_property& edge = output[i];
|
|
if(previousEdge.first.high() == edge.first.low()) {
|
|
//horizontal edge
|
|
insertEdges(graph, edge.second.first, previousEdge.second.first);
|
|
//corner 1
|
|
insertEdges(graph, edge.second.first, previousEdge.second.second);
|
|
//other horizontal edge
|
|
insertEdges(graph, edge.second.second, previousEdge.second.second);
|
|
//corner 2
|
|
insertEdges(graph, edge.second.second, previousEdge.second.first);
|
|
} else {
|
|
if(!firstIteration){
|
|
//look up regions above previous edge
|
|
propertySetAbove(previousEdge.first.high(), ps, scanline);
|
|
insertEdges(graph, ps, previousEdge.second.first);
|
|
insertEdges(graph, ps, previousEdge.second.second);
|
|
}
|
|
//look up regions below current edge in the scanline
|
|
propertySetBelow(edge.first.high(), ps, scanline);
|
|
insertEdges(graph, ps, edge.second.first);
|
|
insertEdges(graph, ps, edge.second.second);
|
|
}
|
|
firstIteration = false;
|
|
//vertical edge
|
|
insertEdges(graph, edge.second.second, edge.second.first);
|
|
//shared region to left
|
|
insertEdges(graph, edge.second.second, edge.second.second);
|
|
//shared region to right
|
|
insertEdges(graph, edge.second.first, edge.second.first);
|
|
previousEdgeP = &(output[i]);
|
|
}
|
|
edge_property& previousEdge = *previousEdgeP;
|
|
propertySetAbove(previousEdge.first.high(), ps, scanline);
|
|
insertEdges(graph, ps, previousEdge.second.first);
|
|
insertEdges(graph, ps, previousEdge.second.second);
|
|
output.clear();
|
|
}
|
|
|
|
template <typename Result>
|
|
inline void writeOutput(coordinate_type x, Result& result, edge_property_vector& output) {
|
|
for(std::size_t i = 0; i < output.size(); ++i) {
|
|
edge_property& edge = output[i];
|
|
//edge.second.first is the property set on the left of the edge
|
|
if(!edge.second.first.empty()) {
|
|
typename Result::iterator itr = result.find(edge.second.first);
|
|
if(itr == result.end()) {
|
|
std::pair<property_set, polygon_set_type> element(edge.second.first, polygon_set_type(VERTICAL));
|
|
itr = result.insert(result.end(), element);
|
|
}
|
|
std::pair<interval_data<coordinate_type>, int> element2(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), -1); //right edge of figure
|
|
(*itr).second.insert(x, element2);
|
|
}
|
|
if(!edge.second.second.empty()) {
|
|
//edge.second.second is the property set on the right of the edge
|
|
typename Result::iterator itr = result.find(edge.second.second);
|
|
if(itr == result.end()) {
|
|
std::pair<property_set, polygon_set_type> element(edge.second.second, polygon_set_type(VERTICAL));
|
|
itr = result.insert(result.end(), element);
|
|
}
|
|
std::pair<interval_data<coordinate_type>, int> element3(interval_data<coordinate_type>(edge.first.low(), edge.first.high()), 1); //left edge of figure
|
|
(*itr).second.insert(x, element3);
|
|
}
|
|
}
|
|
output.clear();
|
|
}
|
|
};
|
|
|
|
}
|
|
}
|
|
#endif
|