PrusaSlicer-NonPlainar/xs/include/boost/test/floating_point_comparison.hpp

287 lines
9.9 KiB
C++

// (C) Copyright Gennadiy Rozental 2001-2008.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/test for the library home page.
//
// File : $RCSfile$
//
// Version : $Revision: 57992 $
//
// Description : defines algoirthms for comparing 2 floating point values
// ***************************************************************************
#ifndef BOOST_TEST_FLOATING_POINT_COMPARISON_HPP_071894GER
#define BOOST_TEST_FLOATING_POINT_COMPARISON_HPP_071894GER
// Boost.Test
#include <boost/test/detail/global_typedef.hpp>
#include <boost/test/utils/class_properties.hpp>
#include <boost/test/predicate_result.hpp>
// Boost
#include <boost/limits.hpp> // for std::numeric_limits
#include <boost/numeric/conversion/conversion_traits.hpp> // for numeric::conversion_traits
#include <boost/static_assert.hpp>
#include <boost/test/detail/suppress_warnings.hpp>
//____________________________________________________________________________//
namespace boost {
namespace test_tools {
using unit_test::readonly_property;
// ************************************************************************** //
// ************** floating_point_comparison_type ************** //
// ************************************************************************** //
enum floating_point_comparison_type {
FPC_STRONG, // "Very close" - equation 1' in docs, the default
FPC_WEAK // "Close enough" - equation 2' in docs.
};
// ************************************************************************** //
// ************** details ************** //
// ************************************************************************** //
namespace tt_detail {
// FPT is Floating-Point Type: float, double, long double or User-Defined.
template<typename FPT>
inline FPT
fpt_abs( FPT fpv )
{
return fpv < static_cast<FPT>(0) ? -fpv : fpv;
}
//____________________________________________________________________________//
template<typename FPT>
struct fpt_limits {
static FPT min_value()
{
return std::numeric_limits<FPT>::is_specialized
? (std::numeric_limits<FPT>::min)()
: 0;
}
static FPT max_value()
{
return std::numeric_limits<FPT>::is_specialized
? (std::numeric_limits<FPT>::max)()
: static_cast<FPT>(1000000); // for the our purpuses it doesn't really matter what value is returned here
}
};
//____________________________________________________________________________//
// both f1 and f2 are unsigned here
template<typename FPT>
inline FPT
safe_fpt_division( FPT f1, FPT f2 )
{
// Avoid overflow.
if( (f2 < static_cast<FPT>(1)) && (f1 > f2*fpt_limits<FPT>::max_value()) )
return fpt_limits<FPT>::max_value();
// Avoid underflow.
if( (f1 == static_cast<FPT>(0)) ||
((f2 > static_cast<FPT>(1)) && (f1 < f2*fpt_limits<FPT>::min_value())) )
return static_cast<FPT>(0);
return f1/f2;
}
//____________________________________________________________________________//
} // namespace tt_detail
// ************************************************************************** //
// ************** tolerance presentation types ************** //
// ************************************************************************** //
template<typename FPT>
struct percent_tolerance_t {
explicit percent_tolerance_t( FPT v ) : m_value( v ) {}
FPT m_value;
};
//____________________________________________________________________________//
template<typename Out,typename FPT>
Out& operator<<( Out& out, percent_tolerance_t<FPT> t )
{
return out << t.m_value;
}
//____________________________________________________________________________//
template<typename FPT>
inline percent_tolerance_t<FPT>
percent_tolerance( FPT v )
{
return percent_tolerance_t<FPT>( v );
}
//____________________________________________________________________________//
template<typename FPT>
struct fraction_tolerance_t {
explicit fraction_tolerance_t( FPT v ) : m_value( v ) {}
FPT m_value;
};
//____________________________________________________________________________//
template<typename Out,typename FPT>
Out& operator<<( Out& out, fraction_tolerance_t<FPT> t )
{
return out << t.m_value;
}
//____________________________________________________________________________//
template<typename FPT>
inline fraction_tolerance_t<FPT>
fraction_tolerance( FPT v )
{
return fraction_tolerance_t<FPT>( v );
}
//____________________________________________________________________________//
// ************************************************************************** //
// ************** close_at_tolerance ************** //
// ************************************************************************** //
template<typename FPT>
class close_at_tolerance {
public:
// Public typedefs
typedef bool result_type;
// Constructor
template<typename ToleranceBaseType>
explicit close_at_tolerance( percent_tolerance_t<ToleranceBaseType> tolerance,
floating_point_comparison_type fpc_type = FPC_STRONG )
: p_fraction_tolerance( tt_detail::fpt_abs( static_cast<FPT>(0.01)*tolerance.m_value ) )
, p_strong_or_weak( fpc_type == FPC_STRONG )
, m_report_modifier( 100. )
{}
template<typename ToleranceBaseType>
explicit close_at_tolerance( fraction_tolerance_t<ToleranceBaseType> tolerance,
floating_point_comparison_type fpc_type = FPC_STRONG )
: p_fraction_tolerance( tt_detail::fpt_abs( tolerance.m_value ) )
, p_strong_or_weak( fpc_type == FPC_STRONG )
, m_report_modifier( 1. )
{}
predicate_result operator()( FPT left, FPT right ) const
{
FPT diff = tt_detail::fpt_abs( left - right );
FPT d1 = tt_detail::safe_fpt_division( diff, tt_detail::fpt_abs( right ) );
FPT d2 = tt_detail::safe_fpt_division( diff, tt_detail::fpt_abs( left ) );
predicate_result res( p_strong_or_weak
? (d1 <= p_fraction_tolerance.get() && d2 <= p_fraction_tolerance.get())
: (d1 <= p_fraction_tolerance.get() || d2 <= p_fraction_tolerance.get()) );
if( !res )
res.message() << (( d1 <= p_fraction_tolerance.get() ? d2 : d1 ) * m_report_modifier);
return res;
}
// Public properties
readonly_property<FPT> p_fraction_tolerance;
readonly_property<bool> p_strong_or_weak;
private:
// Data members
FPT m_report_modifier;
};
//____________________________________________________________________________//
// ************************************************************************** //
// ************** check_is_close ************** //
// ************************************************************************** //
struct BOOST_TEST_DECL check_is_close_t {
// Public typedefs
typedef bool result_type;
template<typename FPT1, typename FPT2, typename ToleranceBaseType>
predicate_result
operator()( FPT1 left, FPT2 right, percent_tolerance_t<ToleranceBaseType> tolerance,
floating_point_comparison_type fpc_type = FPC_STRONG ) const
{
// deduce "better" type from types of arguments being compared
// if one type is floating and the second integral we use floating type and
// value of integral type is promoted to the floating. The same for float and double
// But we don't want to compare two values of integral types using this tool.
typedef typename numeric::conversion_traits<FPT1,FPT2>::supertype FPT;
BOOST_STATIC_ASSERT( !is_integral<FPT>::value );
close_at_tolerance<FPT> pred( tolerance, fpc_type );
return pred( left, right );
}
template<typename FPT1, typename FPT2, typename ToleranceBaseType>
predicate_result
operator()( FPT1 left, FPT2 right, fraction_tolerance_t<ToleranceBaseType> tolerance,
floating_point_comparison_type fpc_type = FPC_STRONG ) const
{
// same as in a comment above
typedef typename numeric::conversion_traits<FPT1,FPT2>::supertype FPT;
BOOST_STATIC_ASSERT( !is_integral<FPT>::value );
close_at_tolerance<FPT> pred( tolerance, fpc_type );
return pred( left, right );
}
};
namespace {
check_is_close_t const& check_is_close = unit_test::ut_detail::static_constant<check_is_close_t>::value;
}
//____________________________________________________________________________//
// ************************************************************************** //
// ************** check_is_small ************** //
// ************************************************************************** //
struct BOOST_TEST_DECL check_is_small_t {
// Public typedefs
typedef bool result_type;
template<typename FPT>
bool
operator()( FPT fpv, FPT tolerance ) const
{
return tt_detail::fpt_abs( fpv ) < tt_detail::fpt_abs( tolerance );
}
};
namespace {
check_is_small_t const& check_is_small = unit_test::ut_detail::static_constant<check_is_small_t>::value;
}
//____________________________________________________________________________//
} // namespace test_tools
} // namespace boost
//____________________________________________________________________________//
#include <boost/test/detail/enable_warnings.hpp>
#endif // BOOST_FLOATING_POINT_COMAPARISON_HPP_071894GER