PrusaSlicer-NonPlainar/src/libslic3r/MultiMaterialSegmentation.cpp
2021-10-14 09:39:23 +02:00

1777 lines
96 KiB
C++

#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "EdgeGrid.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include "VoronoiVisualUtils.hpp"
#include "MutablePolygon.hpp"
#include "format.hpp"
#include <utility>
#include <cfloat>
#include <unordered_set>
#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
#include <mutex>
#include <boost/thread/lock_guard.hpp>
namespace Slic3r {
struct ColoredLine {
Line line;
int color;
int poly_idx = -1;
int local_line_idx = -1;
};
}
#include <boost/polygon/polygon.hpp>
namespace boost::polygon {
template <>
struct geometry_concept<Slic3r::ColoredLine> { typedef segment_concept type; };
template <>
struct segment_traits<Slic3r::ColoredLine> {
typedef coord_t coordinate_type;
typedef Slic3r::Point point_type;
static inline point_type get(const Slic3r::ColoredLine& line, const direction_1d& dir) {
return dir.to_int() ? line.line.b : line.line.a;
}
};
}
//#define MMU_SEGMENTATION_DEBUG_GRAPH
//#define MMU_SEGMENTATION_DEBUG_REGIONS
//#define MMU_SEGMENTATION_DEBUG_INPUT
namespace Slic3r {
// Assumes that is at most same projected_l length or below than projection_l
static bool project_line_on_line(const Line &projection_l, const Line &projected_l, Line *new_projected)
{
const Vec2d v1 = (projection_l.b - projection_l.a).cast<double>();
const Vec2d va = (projected_l.a - projection_l.a).cast<double>();
const Vec2d vb = (projected_l.b - projection_l.a).cast<double>();
const double l2 = v1.squaredNorm(); // avoid a sqrt
if (l2 == 0.0)
return false;
double t1 = va.dot(v1) / l2;
double t2 = vb.dot(v1) / l2;
t1 = std::clamp(t1, 0., 1.);
t2 = std::clamp(t2, 0., 1.);
assert(t1 >= 0.);
assert(t2 >= 0.);
assert(t1 <= 1.);
assert(t2 <= 1.);
Point p1 = projection_l.a + (t1 * v1).cast<coord_t>();
Point p2 = projection_l.a + (t2 * v1).cast<coord_t>();
*new_projected = Line(p1, p2);
return true;
}
struct PaintedLine
{
size_t contour_idx;
size_t line_idx;
Line projected_line;
int color;
};
struct PaintedLineVisitor
{
PaintedLineVisitor(const EdgeGrid::Grid &grid, std::vector<PaintedLine> &painted_lines, std::mutex &painted_lines_mutex, size_t reserve) : grid(grid), painted_lines(painted_lines), painted_lines_mutex(painted_lines_mutex)
{
painted_lines_set.reserve(reserve);
}
void reset() { painted_lines_set.clear(); }
bool operator()(coord_t iy, coord_t ix)
{
// Called with a row and column of the grid cell, which is intersected by a line.
auto cell_data_range = grid.cell_data_range(iy, ix);
const Vec2d v1 = line_to_test.vector().cast<double>();
const double v1_sqr_norm = v1.squaredNorm();
const double heuristic_thr_part = line_to_test.length() + append_threshold;
for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
Line grid_line = grid.line(*it_contour_and_segment);
const Vec2d v2 = grid_line.vector().cast<double>();
double heuristic_thr_sqr = Slic3r::sqr(heuristic_thr_part + grid_line.length());
// An inexpensive heuristic to test whether line_to_test and grid_line can be somewhere close enough to each other.
// This helps filter out cases when the following expensive calculations are useless.
if ((grid_line.a - line_to_test.a).cast<double>().squaredNorm() > heuristic_thr_sqr ||
(grid_line.b - line_to_test.a).cast<double>().squaredNorm() > heuristic_thr_sqr ||
(grid_line.a - line_to_test.b).cast<double>().squaredNorm() > heuristic_thr_sqr ||
(grid_line.b - line_to_test.b).cast<double>().squaredNorm() > heuristic_thr_sqr)
continue;
// When lines have too different length, it is necessary to normalize them
if (Slic3r::sqr(v1.dot(v2)) > cos_threshold2 * v1_sqr_norm * v2.squaredNorm()) {
// The two vectors are nearly collinear (their mutual angle is lower than 30 degrees)
if (painted_lines_set.find(*it_contour_and_segment) == painted_lines_set.end()) {
if (grid_line.distance_to_squared(line_to_test.a) < append_threshold2 ||
grid_line.distance_to_squared(line_to_test.b) < append_threshold2 ||
line_to_test.distance_to_squared(grid_line.a) < append_threshold2 ||
line_to_test.distance_to_squared(grid_line.b) < append_threshold2) {
Line line_to_test_projected;
project_line_on_line(grid_line, line_to_test, &line_to_test_projected);
if ((line_to_test_projected.a - grid_line.a).cast<double>().squaredNorm() > (line_to_test_projected.b - grid_line.a).cast<double>().squaredNorm())
line_to_test_projected.reverse();
painted_lines_set.insert(*it_contour_and_segment);
{
boost::lock_guard<std::mutex> lock(painted_lines_mutex);
painted_lines.push_back({it_contour_and_segment->first, it_contour_and_segment->second, line_to_test_projected, this->color});
}
}
}
}
}
// Continue traversing the grid along the edge.
return true;
}
const EdgeGrid::Grid &grid;
std::vector<PaintedLine> &painted_lines;
std::mutex &painted_lines_mutex;
Line line_to_test;
std::unordered_set<std::pair<size_t, size_t>, boost::hash<std::pair<size_t, size_t>>> painted_lines_set;
int color = -1;
static inline const double cos_threshold2 = Slic3r::sqr(cos(M_PI * 30. / 180.));
static inline const double append_threshold = 50 * SCALED_EPSILON;
static inline const double append_threshold2 = Slic3r::sqr(append_threshold);
};
static std::vector<ColoredLine> to_colored_lines(const EdgeGrid::Contour &contour, int color)
{
std::vector<ColoredLine> lines;
if (contour.num_segments() > 2) {
lines.reserve(contour.num_segments());
for (auto it = contour.begin(); it != contour.end() - 1; ++it)
lines.push_back({Line(*it, *(it + 1)), color});
lines.push_back({Line(contour.back(), contour.front()), color});
}
return lines;
}
static Polygon colored_points_to_polygon(const std::vector<ColoredLine> &lines)
{
Polygon out;
out.points.reserve(lines.size());
for (const ColoredLine &l : lines)
out.points.emplace_back(l.line.a);
return out;
}
static Polygons colored_points_to_polygon(const std::vector<std::vector<ColoredLine>> &lines)
{
Polygons out;
out.reserve(lines.size());
for (const std::vector<ColoredLine> &l : lines)
out.emplace_back(colored_points_to_polygon(l));
return out;
}
// Flatten the vector of vectors into a vector.
static inline std::vector<ColoredLine> to_lines(const std::vector<std::vector<ColoredLine>> &c_lines)
{
size_t n_lines = 0;
for (const auto &c_line : c_lines)
n_lines += c_line.size();
std::vector<ColoredLine> lines;
lines.reserve(n_lines);
for (const auto &c_line : c_lines)
lines.insert(lines.end(), c_line.begin(), c_line.end());
return lines;
}
static bool vertex_equal_to_point(const Voronoi::VD::vertex_type &vertex, const Vec2d &ipt)
{
// Convert ipt to doubles, force the 80bit FPU temporary to 64bit and then compare.
// This should work with any settings of math compiler switches and the C++ compiler
// shall understand the memcpies as type punning and it shall optimize them out.
using ulp_cmp_type = boost::polygon::detail::ulp_comparison<double>;
ulp_cmp_type ulp_cmp;
static constexpr int ULPS = boost::polygon::voronoi_diagram_traits<double>::vertex_equality_predicate_type::ULPS;
return ulp_cmp(vertex.x(), ipt.x(), ULPS) == ulp_cmp_type::EQUAL &&
ulp_cmp(vertex.y(), ipt.y(), ULPS) == ulp_cmp_type::EQUAL;
}
static inline bool vertex_equal_to_point(const Voronoi::VD::vertex_type *vertex, const Vec2d &ipt)
{
return vertex_equal_to_point(*vertex, ipt);
}
static std::vector<std::pair<size_t, size_t>> get_segments(const std::vector<ColoredLine> &polygon)
{
std::vector<std::pair<size_t, size_t>> segments;
size_t segment_end = 0;
while (segment_end + 1 < polygon.size() && polygon[segment_end].color == polygon[segment_end + 1].color)
segment_end++;
if (segment_end == polygon.size() - 1)
return {std::make_pair(0, polygon.size() - 1)};
size_t first_different_color = (segment_end + 1) % polygon.size();
for (size_t line_offset_idx = 0; line_offset_idx < polygon.size(); ++line_offset_idx) {
size_t start_s = (first_different_color + line_offset_idx) % polygon.size();
size_t end_s = start_s;
while (line_offset_idx + 1 < polygon.size() && polygon[start_s].color == polygon[(first_different_color + line_offset_idx + 1) % polygon.size()].color) {
end_s = (first_different_color + line_offset_idx + 1) % polygon.size();
line_offset_idx++;
}
segments.emplace_back(start_s, end_s);
}
return segments;
}
static std::vector<std::vector<std::pair<size_t, size_t>>> get_all_segments(const std::vector<std::vector<ColoredLine>> &color_poly)
{
std::vector<std::vector<std::pair<size_t, size_t>>> all_segments(color_poly.size());
for (size_t poly_idx = 0; poly_idx < color_poly.size(); ++poly_idx) {
const std::vector<ColoredLine> &c_polygon = color_poly[poly_idx];
all_segments[poly_idx] = get_segments(c_polygon);
}
return all_segments;
}
static std::vector<ColoredLine> colorize_line(const Line & line_to_process,
const size_t start_idx,
const size_t end_idx,
std::vector<PaintedLine> &painted_lines)
{
std::vector<PaintedLine> internal_painted;
for (size_t line_idx = start_idx; line_idx <= end_idx; ++line_idx)
internal_painted.emplace_back(painted_lines[line_idx]);
const int filter_eps_value = scale_(0.1f);
std::vector<PaintedLine> filtered_lines;
filtered_lines.emplace_back(internal_painted.front());
for (size_t line_idx = 1; line_idx < internal_painted.size(); ++line_idx) {
// line_to_process is already all colored. Skip another possible duplicate coloring.
if(filtered_lines.back().projected_line.b == line_to_process.b)
break;
PaintedLine &prev = filtered_lines.back();
PaintedLine &curr = internal_painted[line_idx];
double prev_length = prev.projected_line.length();
double curr_dist_start = (curr.projected_line.a - prev.projected_line.a).cast<double>().norm();
double dist_between_lines = curr_dist_start - prev_length;
if (dist_between_lines >= 0) {
if (prev.color == curr.color) {
if (dist_between_lines <= filter_eps_value) {
prev.projected_line.b = curr.projected_line.b;
} else {
filtered_lines.emplace_back(curr);
}
} else {
filtered_lines.emplace_back(curr);
}
} else {
double curr_dist_end = (curr.projected_line.b - prev.projected_line.a).cast<double>().norm();
if (curr_dist_end <= prev_length) {
} else {
if (prev.color == curr.color) {
prev.projected_line.b = curr.projected_line.b;
} else {
curr.projected_line.a = prev.projected_line.b;
filtered_lines.emplace_back(curr);
}
}
}
}
std::vector<ColoredLine> final_lines;
double dist_to_start = (filtered_lines.front().projected_line.a - line_to_process.a).cast<double>().norm();
if (dist_to_start <= filter_eps_value) {
filtered_lines.front().projected_line.a = line_to_process.a;
final_lines.push_back({filtered_lines.front().projected_line, filtered_lines.front().color});
} else {
final_lines.push_back({Line(line_to_process.a, filtered_lines.front().projected_line.a), 0});
final_lines.push_back({filtered_lines.front().projected_line, filtered_lines.front().color});
}
for (size_t line_idx = 1; line_idx < filtered_lines.size(); ++line_idx) {
ColoredLine &prev = final_lines.back();
PaintedLine &curr = filtered_lines[line_idx];
double line_dist = (curr.projected_line.a - prev.line.b).cast<double>().norm();
if (line_dist <= filter_eps_value) {
if (prev.color == curr.color) {
prev.line.b = curr.projected_line.b;
} else {
prev.line.b = curr.projected_line.a;
final_lines.push_back({curr.projected_line, curr.color});
}
} else {
final_lines.push_back({Line(prev.line.b, curr.projected_line.a), 0});
final_lines.push_back({curr.projected_line, curr.color});
}
}
double dist_to_end = (final_lines.back().line.b - line_to_process.b).cast<double>().norm();
if (dist_to_end <= filter_eps_value)
final_lines.back().line.b = line_to_process.b;
else
final_lines.push_back({Line(final_lines.back().line.b, line_to_process.b), 0});
for (size_t line_idx = 1; line_idx < final_lines.size(); ++line_idx)
assert(final_lines[line_idx - 1].line.b == final_lines[line_idx].line.a);
for (size_t line_idx = 2; line_idx < final_lines.size(); ++line_idx) {
const ColoredLine &line_0 = final_lines[line_idx - 2];
ColoredLine & line_1 = final_lines[line_idx - 1];
const ColoredLine &line_2 = final_lines[line_idx - 0];
if (line_0.color == line_2.color && line_0.color != line_1.color)
if (line_1.line.length() <= scale_(0.2)) line_1.color = line_0.color;
}
std::vector<ColoredLine> colored_lines_simple;
colored_lines_simple.emplace_back(final_lines.front());
for (size_t line_idx = 1; line_idx < final_lines.size(); ++line_idx) {
const ColoredLine &line_0 = final_lines[line_idx];
if (colored_lines_simple.back().color == line_0.color)
colored_lines_simple.back().line.b = line_0.line.b;
else
colored_lines_simple.emplace_back(line_0);
}
final_lines = colored_lines_simple;
if (final_lines.size() > 1) {
if (final_lines.front().color != final_lines[1].color && final_lines.front().line.length() <= scale_(0.2)) {
final_lines[1].line.a = final_lines.front().line.a;
final_lines.erase(final_lines.begin());
}
}
if (final_lines.size() > 1) {
if (final_lines.back().color != final_lines[final_lines.size() - 2].color && final_lines.back().line.length() <= scale_(0.2)) {
final_lines[final_lines.size() - 2].line.b = final_lines.back().line.b;
final_lines.pop_back();
}
}
return final_lines;
}
static std::vector<ColoredLine> colorize_polygon(const EdgeGrid::Contour &contour, const size_t start_idx, const size_t end_idx, std::vector<PaintedLine> &painted_lines)
{
std::vector<ColoredLine> new_lines;
new_lines.reserve(end_idx - start_idx + 1);
for (size_t idx = 0; idx < painted_lines[start_idx].line_idx; ++idx)
new_lines.emplace_back(ColoredLine{contour.get_segment(idx), 0});
for (size_t first_idx = start_idx; first_idx <= end_idx; ++first_idx) {
size_t second_idx = first_idx;
while (second_idx <= end_idx && painted_lines[first_idx].line_idx == painted_lines[second_idx].line_idx) ++second_idx;
--second_idx;
assert(painted_lines[first_idx].line_idx == painted_lines[second_idx].line_idx);
std::vector<ColoredLine> lines_c_line = colorize_line(contour.get_segment(painted_lines[first_idx].line_idx), first_idx, second_idx, painted_lines);
new_lines.insert(new_lines.end(), lines_c_line.begin(), lines_c_line.end());
if (second_idx + 1 <= end_idx)
for (size_t idx = painted_lines[second_idx].line_idx + 1; idx < painted_lines[second_idx + 1].line_idx; ++idx)
new_lines.emplace_back(ColoredLine{contour.get_segment(idx), 0});
first_idx = second_idx;
}
for (size_t idx = painted_lines[end_idx].line_idx + 1; idx < contour.num_segments(); ++idx)
new_lines.emplace_back(ColoredLine{contour.get_segment(idx), 0});
for (size_t line_idx = 2; line_idx < new_lines.size(); ++line_idx) {
const ColoredLine &line_0 = new_lines[line_idx - 2];
ColoredLine & line_1 = new_lines[line_idx - 1];
const ColoredLine &line_2 = new_lines[line_idx - 0];
if (line_0.color == line_2.color && line_0.color != line_1.color && line_0.color >= 1) {
if (line_1.line.length() <= scale_(0.5)) line_1.color = line_0.color;
}
}
for (size_t line_idx = 3; line_idx < new_lines.size(); ++line_idx) {
const ColoredLine &line_0 = new_lines[line_idx - 3];
ColoredLine & line_1 = new_lines[line_idx - 2];
ColoredLine & line_2 = new_lines[line_idx - 1];
const ColoredLine &line_3 = new_lines[line_idx - 0];
if (line_0.color == line_3.color && (line_0.color != line_1.color || line_0.color != line_2.color) && line_0.color >= 1 && line_3.color >= 1) {
if ((line_1.line.length() + line_2.line.length()) <= scale_(0.5)) {
line_1.color = line_0.color;
line_2.color = line_0.color;
}
}
}
std::vector<std::pair<size_t, size_t>> segments = get_segments(new_lines);
auto segment_length = [&new_lines](const std::pair<size_t, size_t> &segment) {
double total_length = 0;
for (size_t seg_start_idx = segment.first; seg_start_idx != segment.second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
total_length += new_lines[seg_start_idx].line.length();
total_length += new_lines[segment.second].line.length();
return total_length;
};
for (size_t pair_idx = 1; pair_idx < segments.size(); ++pair_idx) {
int color0 = new_lines[segments[pair_idx - 1].first].color;
int color1 = new_lines[segments[pair_idx - 0].first].color;
double seg0l = segment_length(segments[pair_idx - 1]);
double seg1l = segment_length(segments[pair_idx - 0]);
if (color0 != color1 && seg0l >= scale_(0.1) && seg1l <= scale_(0.2)) {
for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
new_lines[seg_start_idx].color = color0;
new_lines[segments[pair_idx].second].color = color0;
}
}
segments = get_segments(new_lines);
for (size_t pair_idx = 1; pair_idx < segments.size(); ++pair_idx) {
int color0 = new_lines[segments[pair_idx - 1].first].color;
int color1 = new_lines[segments[pair_idx - 0].first].color;
double seg1l = segment_length(segments[pair_idx - 0]);
if (color0 >= 1 && color0 != color1 && seg1l <= scale_(0.2)) {
for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
new_lines[seg_start_idx].color = color0;
new_lines[segments[pair_idx].second].color = color0;
}
}
for (size_t pair_idx = 2; pair_idx < segments.size(); ++pair_idx) {
int color0 = new_lines[segments[pair_idx - 2].first].color;
int color1 = new_lines[segments[pair_idx - 1].first].color;
int color2 = new_lines[segments[pair_idx - 0].first].color;
if (color0 > 0 && color0 == color2 && color0 != color1 && segment_length(segments[pair_idx - 1]) <= scale_(0.5)) {
for (size_t seg_start_idx = segments[pair_idx].first; seg_start_idx != segments[pair_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
new_lines[seg_start_idx].color = color0;
new_lines[segments[pair_idx].second].color = color0;
}
}
return new_lines;
}
static std::vector<std::vector<ColoredLine>> colorize_polygons(const std::vector<EdgeGrid::Contour> &contours, std::vector<PaintedLine> &painted_lines)
{
const size_t start_idx = 0;
const size_t end_idx = painted_lines.size() - 1;
std::vector<std::vector<ColoredLine>> new_polygons;
new_polygons.reserve(contours.size());
for (size_t idx = 0; idx < painted_lines[start_idx].contour_idx; ++idx)
new_polygons.emplace_back(to_colored_lines(contours[idx], 0));
for (size_t first_idx = start_idx; first_idx <= end_idx; ++first_idx) {
size_t second_idx = first_idx;
while (second_idx <= end_idx && painted_lines[first_idx].contour_idx == painted_lines[second_idx].contour_idx)
++second_idx;
--second_idx;
assert(painted_lines[first_idx].contour_idx == painted_lines[second_idx].contour_idx);
new_polygons.emplace_back(colorize_polygon(contours[painted_lines[first_idx].contour_idx], first_idx, second_idx, painted_lines));
if (second_idx + 1 <= end_idx)
for (size_t idx = painted_lines[second_idx].contour_idx + 1; idx < painted_lines[second_idx + 1].contour_idx; ++idx)
new_polygons.emplace_back(to_colored_lines(contours[idx], 0));
first_idx = second_idx;
}
for (size_t idx = painted_lines[end_idx].contour_idx + 1; idx < contours.size(); ++idx)
new_polygons.emplace_back(to_colored_lines(contours[idx], 0));
return new_polygons;
}
using boost::polygon::voronoi_diagram;
static inline Point mk_point(const Voronoi::VD::vertex_type *point) { return {coord_t(point->x()), coord_t(point->y())}; }
static inline Point mk_point(const Voronoi::Internal::point_type &point) { return {coord_t(point.x()), coord_t(point.y())}; }
static inline Point mk_point(const voronoi_diagram<double>::vertex_type &point) { return {coord_t(point.x()), coord_t(point.y())}; }
static inline Point mk_point(const Vec2d &point) { return {coord_t(std::round(point.x())), coord_t(std::round(point.y()))}; }
static inline Vec2d mk_vec2(const voronoi_diagram<double>::vertex_type *point) { return {point->x(), point->y()}; }
struct MMU_Graph
{
enum class ARC_TYPE { BORDER, NON_BORDER };
struct Arc
{
size_t from_idx;
size_t to_idx;
int color;
ARC_TYPE type;
bool operator==(const Arc &rhs) const { return (from_idx == rhs.from_idx) && (to_idx == rhs.to_idx) && (color == rhs.color) && (type == rhs.type); }
bool operator!=(const Arc &rhs) const { return !operator==(rhs); }
};
struct Node
{
Vec2d point;
std::list<size_t> arc_idxs;
void remove_edge(const size_t to_idx, MMU_Graph &graph)
{
for (auto arc_it = this->arc_idxs.begin(); arc_it != this->arc_idxs.end(); ++arc_it) {
MMU_Graph::Arc &arc = graph.arcs[*arc_it];
if (arc.to_idx == to_idx) {
assert(arc.type != ARC_TYPE::BORDER);
this->arc_idxs.erase(arc_it);
break;
}
}
}
};
std::vector<MMU_Graph::Node> nodes;
std::vector<MMU_Graph::Arc> arcs;
size_t all_border_points{};
std::vector<size_t> polygon_idx_offset;
std::vector<size_t> polygon_sizes;
void remove_edge(const size_t from_idx, const size_t to_idx)
{
nodes[from_idx].remove_edge(to_idx, *this);
nodes[to_idx].remove_edge(from_idx, *this);
}
[[nodiscard]] size_t get_global_index(const size_t poly_idx, const size_t point_idx) const { return polygon_idx_offset[poly_idx] + point_idx; }
void append_edge(const size_t &from_idx, const size_t &to_idx, int color = -1, ARC_TYPE type = ARC_TYPE::NON_BORDER)
{
// Don't append duplicate edges between the same nodes.
for (const size_t &arc_idx : this->nodes[from_idx].arc_idxs)
if (arcs[arc_idx].to_idx == to_idx)
return;
for (const size_t &arc_idx : this->nodes[to_idx].arc_idxs)
if (arcs[arc_idx].to_idx == to_idx)
return;
this->nodes[from_idx].arc_idxs.push_back(this->arcs.size());
this->arcs.push_back({from_idx, to_idx, color, type});
// Always insert only one directed arc for the input polygons.
// Two directed arcs in both directions are inserted if arcs aren't between points of the input polygons.
if (type == ARC_TYPE::NON_BORDER) {
this->nodes[to_idx].arc_idxs.push_back(this->arcs.size());
this->arcs.push_back({to_idx, from_idx, color, type});
}
}
// It assumes that between points of the input polygons is always only one directed arc,
// with the same direction as lines of the input polygon.
[[nodiscard]] MMU_Graph::Arc get_border_arc(size_t idx) const {
assert(idx < this->all_border_points);
return this->arcs[idx];
}
[[nodiscard]] size_t nodes_count() const { return this->nodes.size(); }
void remove_nodes_with_one_arc()
{
std::queue<size_t> update_queue;
for (const MMU_Graph::Node &node : this->nodes) {
size_t node_idx = &node - &this->nodes.front();
// Skip nodes that represent points of input polygons.
if (node.arc_idxs.size() == 1 && node_idx >= this->all_border_points)
update_queue.emplace(&node - &this->nodes.front());
}
while (!update_queue.empty()) {
size_t node_from_idx = update_queue.front();
MMU_Graph::Node &node_from = this->nodes[update_queue.front()];
update_queue.pop();
if (node_from.arc_idxs.empty())
continue;
assert(node_from.arc_idxs.size() == 1);
size_t node_to_idx = arcs[node_from.arc_idxs.front()].to_idx;
MMU_Graph::Node &node_to = this->nodes[node_to_idx];
this->remove_edge(node_from_idx, node_to_idx);
if (node_to.arc_idxs.size() == 1 && node_to_idx >= this->all_border_points)
update_queue.emplace(node_to_idx);
}
}
void add_contours(const std::vector<std::vector<ColoredLine>> &color_poly)
{
this->all_border_points = nodes.size();
this->polygon_sizes = std::vector<size_t>(color_poly.size());
for (size_t polygon_idx = 0; polygon_idx < color_poly.size(); ++polygon_idx)
this->polygon_sizes[polygon_idx] = color_poly[polygon_idx].size();
this->polygon_idx_offset = std::vector<size_t>(color_poly.size());
this->polygon_idx_offset[0] = 0;
for (size_t polygon_idx = 1; polygon_idx < color_poly.size(); ++polygon_idx) {
this->polygon_idx_offset[polygon_idx] = this->polygon_idx_offset[polygon_idx - 1] + color_poly[polygon_idx - 1].size();
}
size_t poly_idx = 0;
for (const std::vector<ColoredLine> &color_lines : color_poly) {
size_t line_idx = 0;
for (const ColoredLine &color_line : color_lines) {
size_t from_idx = this->get_global_index(poly_idx, line_idx);
size_t to_idx = this->get_global_index(poly_idx, (line_idx + 1) % color_lines.size());
this->append_edge(from_idx, to_idx, color_line.color, ARC_TYPE::BORDER);
++line_idx;
}
++poly_idx;
}
}
// Nodes 0..all_border_points are only one with are on countour. Other vertexis are consider as not on coouter. So we check if base on attach index
inline bool is_vertex_on_contour(const Voronoi::VD::vertex_type *vertex) const
{
assert(vertex != nullptr);
return vertex->color() < this->all_border_points;
}
[[nodiscard]] inline bool is_edge_attach_to_contour(const voronoi_diagram<double>::const_edge_iterator &edge_iterator) const
{
return this->is_vertex_on_contour(edge_iterator->vertex0()) || this->is_vertex_on_contour(edge_iterator->vertex1());
}
[[nodiscard]] inline bool is_edge_connecting_two_contour_vertices(const voronoi_diagram<double>::const_edge_iterator &edge_iterator) const
{
return this->is_vertex_on_contour(edge_iterator->vertex0()) && this->is_vertex_on_contour(edge_iterator->vertex1());
}
// All Voronoi vertices are post-processes to merge very close vertices to single. Witch eliminates issues with intersection edges.
// Also, Voronoi vertices outside of the bounding of input polygons are throw away by marking them.
void append_voronoi_vertices(const Geometry::VoronoiDiagram &vd, const Polygons &color_poly_tmp, BoundingBox bbox) {
bbox.offset(SCALED_EPSILON);
struct CPoint
{
CPoint() = delete;
CPoint(const Vec2d &point, size_t contour_idx, size_t point_idx) : m_point_double(point), m_point(mk_point(point)), m_point_idx(point_idx), m_contour_idx(contour_idx) {}
CPoint(const Vec2d &point, size_t point_idx) : m_point_double(point), m_point(mk_point(point)), m_point_idx(point_idx), m_contour_idx(0) {}
const Vec2d m_point_double;
const Point m_point;
size_t m_point_idx;
size_t m_contour_idx;
[[nodiscard]] const Vec2d &point_double() const { return m_point_double; }
[[nodiscard]] const Point &point() const { return m_point; }
bool operator==(const CPoint &rhs) const { return this->m_point_double == rhs.m_point_double && this->m_contour_idx == rhs.m_contour_idx && this->m_point_idx == rhs.m_point_idx; }
};
struct CPointAccessor { const Point* operator()(const CPoint &pt) const { return &pt.point(); }};
typedef ClosestPointInRadiusLookup<CPoint, CPointAccessor> CPointLookupType;
CPointLookupType closest_voronoi_point(coord_t(SCALED_EPSILON));
CPointLookupType closest_contour_point(3 * coord_t(SCALED_EPSILON));
for (const Polygon &polygon : color_poly_tmp)
for (const Point &pt : polygon.points)
closest_contour_point.insert(CPoint(Vec2d(pt.x(), pt.y()), &polygon - &color_poly_tmp.front(), &pt - &polygon.points.front()));
for (const voronoi_diagram<double>::vertex_type &vertex : vd.vertices()) {
vertex.color(-1);
Vec2d vertex_point_double = Vec2d(vertex.x(), vertex.y());
Point vertex_point = mk_point(vertex);
const Vec2d &first_point_double = this->nodes[this->get_border_arc(vertex.incident_edge()->cell()->source_index()).from_idx].point;
const Vec2d &second_point_double = this->nodes[this->get_border_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx].point;
if (vertex_equal_to_point(&vertex, first_point_double)) {
assert(vertex.color() != vertex.incident_edge()->cell()->source_index());
assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index());
vertex.color(this->get_border_arc(vertex.incident_edge()->cell()->source_index()).from_idx);
} else if (vertex_equal_to_point(&vertex, second_point_double)) {
assert(vertex.color() != vertex.incident_edge()->cell()->source_index());
assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index());
vertex.color(this->get_border_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx);
} else if (bbox.contains(vertex_point)) {
if (auto [contour_pt, c_dist_sqr] = closest_contour_point.find(vertex_point); contour_pt != nullptr && c_dist_sqr < Slic3r::sqr(3 * SCALED_EPSILON)) {
vertex.color(this->get_global_index(contour_pt->m_contour_idx, contour_pt->m_point_idx));
} else if (auto [voronoi_pt, v_dist_sqr] = closest_voronoi_point.find(vertex_point); voronoi_pt == nullptr || v_dist_sqr >= Slic3r::sqr(SCALED_EPSILON / 10.0)) {
closest_voronoi_point.insert(CPoint(vertex_point_double, this->nodes_count()));
vertex.color(this->nodes_count());
this->nodes.push_back({vertex_point_double});
} else {
// Boost Voronoi diagram generator sometimes creates two very closed points instead of one point.
// For the example points (146872.99999999997, -146872.99999999997) and (146873, -146873), this example also included in Voronoi generator test cases.
std::vector<std::pair<const CPoint *, double>> all_closes_c_points = closest_voronoi_point.find_all(vertex_point);
int merge_to_point = -1;
for (const std::pair<const CPoint *, double> &c_point : all_closes_c_points)
if ((vertex_point_double - c_point.first->point_double()).squaredNorm() <= Slic3r::sqr(EPSILON)) {
merge_to_point = int(c_point.first->m_point_idx);
break;
}
if (merge_to_point != -1) {
vertex.color(merge_to_point);
} else {
closest_voronoi_point.insert(CPoint(vertex_point_double, this->nodes_count()));
vertex.color(this->nodes_count());
this->nodes.push_back({vertex_point_double});
}
}
}
}
}
void garbage_collect()
{
std::vector<int> nodes_map(this->nodes.size(), -1);
int nodes_count = 0;
size_t arcs_count = 0;
for (const MMU_Graph::Node &node : this->nodes)
if (size_t node_idx = &node - &this->nodes.front(); !node.arc_idxs.empty()) {
nodes_map[node_idx] = nodes_count++;
arcs_count += node.arc_idxs.size();
}
std::vector<MMU_Graph::Node> new_nodes;
std::vector<MMU_Graph::Arc> new_arcs;
new_nodes.reserve(nodes_count);
new_arcs.reserve(arcs_count);
for (const MMU_Graph::Node &node : this->nodes)
if (size_t node_idx = &node - &this->nodes.front(); nodes_map[node_idx] >= 0) {
new_nodes.push_back({node.point});
for (const size_t &arc_idx : node.arc_idxs) {
const Arc &arc = this->arcs[arc_idx];
new_nodes.back().arc_idxs.emplace_back(new_arcs.size());
new_arcs.push_back({size_t(nodes_map[arc.from_idx]), size_t(nodes_map[arc.to_idx]), arc.color, arc.type});
}
}
this->nodes = std::move(new_nodes);
this->arcs = std::move(new_arcs);
}
};
static inline void mark_processed(const voronoi_diagram<double>::const_edge_iterator &edge_iterator)
{
edge_iterator->color(true);
edge_iterator->twin()->color(true);
}
// Return true, if "p" is closer to line.a, then line.b
static inline bool is_point_closer_to_beginning_of_line(const Line &line, const Point &p)
{
return (p - line.a).cast<double>().squaredNorm() < (p - line.b).cast<double>().squaredNorm();
}
static inline bool has_same_color(const ColoredLine &cl1, const ColoredLine &cl2) { return cl1.color == cl2.color; }
// Determines if the line points from the point between two contour lines is pointing inside polygon or outside.
static inline bool points_inside(const Line &contour_first, const Line &contour_second, const Point &new_point)
{
// Used in points_inside for decision if line leading thought the common point of two lines is pointing inside polygon or outside
auto three_points_inward_normal = [](const Point &left, const Point &middle, const Point &right) -> Vec2d {
assert(left != middle);
assert(middle != right);
return (perp(Point(middle - left)).cast<double>().normalized() + perp(Point(right - middle)).cast<double>().normalized()).normalized();
};
assert(contour_first.b == contour_second.a);
Vec2d inward_normal = three_points_inward_normal(contour_first.a, contour_first.b, contour_second.b);
Vec2d edge_norm = (new_point - contour_first.b).cast<double>().normalized();
double side = inward_normal.dot(edge_norm);
// assert(side != 0.);
return side > 0.;
}
static inline bool line_intersection_with_epsilon(const Line &line_to_extend, const Line &other, Point *intersection)
{
Line extended_line = line_to_extend;
extended_line.extend(15 * SCALED_EPSILON);
return extended_line.intersection(other, intersection);
}
// For every ColoredLine in lines_colored_out, assign the index of the polygon to which belongs and also the index of this line inside of the polygon.
static inline void init_polygon_indices(const MMU_Graph &graph,
const std::vector<std::vector<ColoredLine>> &color_poly,
std::vector<ColoredLine> &lines_colored_out)
{
size_t poly_idx = 0;
for (const std::vector<ColoredLine> &color_lines : color_poly) {
size_t line_idx = 0;
for (size_t color_line_idx = 0; color_line_idx < color_lines.size(); ++color_line_idx) {
size_t from_idx = graph.get_global_index(poly_idx, line_idx);
lines_colored_out[from_idx].poly_idx = int(poly_idx);
lines_colored_out[from_idx].local_line_idx = int(line_idx);
++line_idx;
}
++poly_idx;
}
}
// Voronoi edges produced by Voronoi generator cloud have coordinates that don't fit inside coord_t (int32_t).
// Because of that, this function tries to clip edges that have one endpoint of the edge inside the BoundingBox.
static inline Line clip_finite_voronoi_edge(const Voronoi::VD::edge_type &edge, const BoundingBoxf &bbox)
{
assert(edge.is_finite());
Vec2d v0 = mk_vec2(edge.vertex0());
Vec2d v1 = mk_vec2(edge.vertex1());
bool contains_v0 = bbox.contains(v0);
bool contains_v1 = bbox.contains(v1);
if ((contains_v0 && contains_v1) || (!contains_v0 && !contains_v1))
return {mk_point(edge.vertex0()), mk_point(edge.vertex1())};
Vec2d vector = (v1 - v0).normalized() * bbox.size().norm();
if (!contains_v0)
v0 = (v1 - vector);
else
v1 = (v0 + vector);
return {v0.cast<coord_t>(), v1.cast<coord_t>()};
}
static MMU_Graph build_graph(size_t layer_idx, const std::vector<std::vector<ColoredLine>> &color_poly)
{
Geometry::VoronoiDiagram vd;
std::vector<ColoredLine> lines_colored = to_lines(color_poly);
const Polygons color_poly_tmp = colored_points_to_polygon(color_poly);
const Points points = to_points(color_poly_tmp);
const Lines lines = to_lines(color_poly_tmp);
// The algorithm adds edges to the graph that are between two different colors.
// If a polygon is colored entirely with one color, we need to add at least one edge from that polygon artificially.
// Adding this edge is necessary for cases where the expolygon has an outer contour colored whole with one color
// and a hole colored with a different color. If an edge wasn't added to the graph,
// the entire expolygon would be colored with single random color instead of two different.
std::vector<bool> force_edge_adding(color_poly.size());
// For each polygon, check if it is all colored with the same color. If it is, we need to force adding one edge to it.
for (const std::vector<ColoredLine> &c_poly : color_poly) {
bool force_edge = true;
for (const ColoredLine &c_line : c_poly)
if (c_line.color != c_poly.front().color) {
force_edge = false;
break;
}
force_edge_adding[&c_poly - &color_poly.front()] = force_edge;
}
boost::polygon::construct_voronoi(lines_colored.begin(), lines_colored.end(), &vd);
MMU_Graph graph;
graph.nodes.reserve(points.size() + vd.vertices().size());
for (const Point &point : points)
graph.nodes.push_back({Vec2d(double(point.x()), double(point.y()))});
graph.add_contours(color_poly);
init_polygon_indices(graph, color_poly, lines_colored);
assert(graph.nodes.size() == lines_colored.size());
BoundingBox bbox = get_extents(color_poly_tmp);
graph.append_voronoi_vertices(vd, color_poly_tmp, bbox);
auto get_prev_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram<double>::const_edge_iterator &edge_it) -> ColoredLine {
size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx;
size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size();
size_t contour_prev_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx,
(contour_line_local_idx > 0) ? contour_line_local_idx - 1 : contour_line_size - 1);
return lines_colored[contour_prev_idx];
};
auto get_next_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram<double>::const_edge_iterator &edge_it) -> ColoredLine {
size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx;
size_t contour_line_size = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size();
size_t contour_next_idx = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx,
(contour_line_local_idx + 1) % contour_line_size);
return lines_colored[contour_next_idx];
};
bbox.offset(scale_(10.));
const BoundingBoxf bbox_clip(bbox.min.cast<double>(), bbox.max.cast<double>());
const double bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y()));
// Make a copy of the input segments with the double type.
std::vector<Voronoi::Internal::segment_type> segments;
for (const Line &line : lines)
segments.emplace_back(Voronoi::Internal::point_type(double(line.a(0)), double(line.a(1))),
Voronoi::Internal::point_type(double(line.b(0)), double(line.b(1))));
for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) {
// Skip second half-edge
if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color())
continue;
if (edge_it->is_infinite() && (edge_it->vertex0() != nullptr || edge_it->vertex1() != nullptr)) {
// Infinite edge is leading through a point on the counter, but there are no Voronoi vertices.
// So we could fix this case by computing the intersection between the contour line and infinity edge.
std::vector<Voronoi::Internal::point_type> samples;
Voronoi::Internal::clip_infinite_edge(points, segments, *edge_it, bbox_dim_max, &samples);
if (samples.empty())
continue;
const Line edge_line(mk_point(samples[0]), mk_point(samples[1]));
const ColoredLine &contour_line = lines_colored[edge_it->cell()->source_index()];
Point contour_intersection;
if (line_intersection_with_epsilon(contour_line.line, edge_line, &contour_intersection)) {
const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_it->cell()->source_index());
const size_t from_idx = (edge_it->vertex1() != nullptr) ? edge_it->vertex1()->color() : edge_it->vertex0()->color();
size_t to_idx = ((contour_line.line.a - contour_intersection).cast<double>().squaredNorm() <
(contour_line.line.b - contour_intersection).cast<double>().squaredNorm()) ?
graph_arc.from_idx :
graph_arc.to_idx;
if (from_idx != to_idx && from_idx < graph.nodes_count() && to_idx < graph.nodes_count()) {
graph.append_edge(from_idx, to_idx);
mark_processed(edge_it);
}
}
} else if (edge_it->is_finite()) {
// Both points are on contour, so skip them. In cases of duplicate Voronoi vertices, skip edges between the same two points.
if (graph.is_edge_connecting_two_contour_vertices(edge_it) || (edge_it->vertex0()->color() == edge_it->vertex1()->color()))
continue;
const Line edge_line = clip_finite_voronoi_edge(*edge_it, bbox_clip);
const Line contour_line = lines_colored[edge_it->cell()->source_index()].line;
const ColoredLine colored_line = lines_colored[edge_it->cell()->source_index()];
const ColoredLine contour_line_prev = get_prev_contour_line(edge_it);
const ColoredLine contour_line_next = get_next_contour_line(edge_it);
if (edge_it->vertex0()->color() >= graph.nodes_count() || edge_it->vertex1()->color() >= graph.nodes_count()) {
enum class Vertex { VERTEX0, VERTEX1 };
auto append_edge_if_intersects_with_contour = [&graph, &lines_colored, &edge_line, &contour_line](const voronoi_diagram<double>::const_edge_iterator &edge_iterator, const Vertex vertex) {
Point intersection;
Line contour_line_twin = lines_colored[edge_iterator->twin()->cell()->source_index()].line;
if (line_intersection_with_epsilon(contour_line_twin, edge_line, &intersection)) {
const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_iterator->twin()->cell()->source_index());
const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line_twin, intersection) ? graph_arc.from_idx :
graph_arc.to_idx;
graph.append_edge(vertex == Vertex::VERTEX0 ? edge_iterator->vertex0()->color() : edge_iterator->vertex1()->color(), to_idx_l);
} else if (line_intersection_with_epsilon(contour_line, edge_line, &intersection)) {
const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_iterator->cell()->source_index());
const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line, intersection) ? graph_arc.from_idx : graph_arc.to_idx;
graph.append_edge(vertex == Vertex::VERTEX0 ? edge_iterator->vertex0()->color() : edge_iterator->vertex1()->color(), to_idx_l);
}
mark_processed(edge_iterator);
};
if (edge_it->vertex0()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex0()))
append_edge_if_intersects_with_contour(edge_it, Vertex::VERTEX0);
if (edge_it->vertex1()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex1()))
append_edge_if_intersects_with_contour(edge_it, Vertex::VERTEX1);
} else if (graph.is_edge_attach_to_contour(edge_it)) {
mark_processed(edge_it);
// Skip edges witch connection two points on a contour
if (graph.is_edge_connecting_two_contour_vertices(edge_it))
continue;
const size_t from_idx = edge_it->vertex0()->color();
const size_t to_idx = edge_it->vertex1()->color();
if (graph.is_vertex_on_contour(edge_it->vertex0())) {
if (is_point_closer_to_beginning_of_line(contour_line, edge_line.a)) {
if ((!has_same_color(contour_line_prev, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line_prev.line, contour_line, edge_line.b)) {
graph.append_edge(from_idx, to_idx);
force_edge_adding[colored_line.poly_idx] = false;
}
} else {
if ((!has_same_color(contour_line_next, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line, contour_line_next.line, edge_line.b)) {
graph.append_edge(from_idx, to_idx);
force_edge_adding[colored_line.poly_idx] = false;
}
}
} else {
assert(graph.is_vertex_on_contour(edge_it->vertex1()));
if (is_point_closer_to_beginning_of_line(contour_line, edge_line.b)) {
if ((!has_same_color(contour_line_prev, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line_prev.line, contour_line, edge_line.a)) {
graph.append_edge(from_idx, to_idx);
force_edge_adding[colored_line.poly_idx] = false;
}
} else {
if ((!has_same_color(contour_line_next, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line, contour_line_next.line, edge_line.a)) {
graph.append_edge(from_idx, to_idx);
force_edge_adding[colored_line.poly_idx] = false;
}
}
}
} else if (Point intersection; line_intersection_with_epsilon(contour_line, edge_line, &intersection)) {
mark_processed(edge_it);
Vec2d real_v0_double = graph.nodes[edge_it->vertex0()->color()].point;
Vec2d real_v1_double = graph.nodes[edge_it->vertex1()->color()].point;
Point real_v0 = Point(coord_t(real_v0_double.x()), coord_t(real_v0_double.y()));
Point real_v1 = Point(coord_t(real_v1_double.x()), coord_t(real_v1_double.y()));
if (is_point_closer_to_beginning_of_line(contour_line, intersection)) {
Line first_part(intersection, real_v0);
Line second_part(intersection, real_v1);
if (!has_same_color(contour_line_prev, colored_line)) {
if (points_inside(contour_line_prev.line, contour_line, first_part.b))
graph.append_edge(edge_it->vertex0()->color(), graph.get_border_arc(edge_it->cell()->source_index()).from_idx);
if (points_inside(contour_line_prev.line, contour_line, second_part.b))
graph.append_edge(edge_it->vertex1()->color(), graph.get_border_arc(edge_it->cell()->source_index()).from_idx);
}
} else {
const size_t int_point_idx = graph.get_border_arc(edge_it->cell()->source_index()).to_idx;
const Vec2d int_point_double = graph.nodes[int_point_idx].point;
const Point int_point = Point(coord_t(int_point_double.x()), coord_t(int_point_double.y()));
const Line first_part(int_point, real_v0);
const Line second_part(int_point, real_v1);
if (!has_same_color(contour_line_next, colored_line)) {
if (points_inside(contour_line, contour_line_next.line, first_part.b))
graph.append_edge(edge_it->vertex0()->color(), int_point_idx);
if (points_inside(contour_line, contour_line_next.line, second_part.b))
graph.append_edge(edge_it->vertex1()->color(), int_point_idx);
}
}
}
}
}
for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) {
// Skip second half-edge and processed edges
if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color())
continue;
if (edge_it->is_finite() && !bool(edge_it->color()) && edge_it->vertex0()->color() < graph.nodes_count() &&
edge_it->vertex1()->color() < graph.nodes_count()) {
// Skip cases, when the edge is between two same vertices, which is in cases two near vertices were merged together.
if (edge_it->vertex0()->color() == edge_it->vertex1()->color())
continue;
size_t from_idx = edge_it->vertex0()->color();
size_t to_idx = edge_it->vertex1()->color();
graph.append_edge(from_idx, to_idx);
}
mark_processed(edge_it);
}
graph.remove_nodes_with_one_arc();
return graph;
}
static inline Polygon to_polygon(const std::vector<Linef> &lines)
{
Polygon poly_out;
poly_out.points.reserve(lines.size());
for (const Linef &line : lines)
poly_out.points.emplace_back(mk_point(line.a));
return poly_out;
}
// Returns list of polygons and assigned colors.
// It iterates through all nodes on the border between two different colors, and from this point,
// start selection always left most edges for every node to construct CCW polygons.
// Assumes that graph is planar (without self-intersection edges)
static std::vector<std::pair<Polygon, size_t>> extract_colored_segments(const MMU_Graph &graph)
{
std::vector<bool> used_arcs(graph.arcs.size(), false);
// When there is no next arc, then is returned original_arc or edge with is marked as used
auto get_next = [&graph, &used_arcs](const Linef &process_line, const MMU_Graph::Arc &original_arc) -> const MMU_Graph::Arc & {
std::vector<std::pair<const MMU_Graph::Arc *, double>> sorted_arcs;
for (const size_t &arc_idx : graph.nodes[original_arc.to_idx].arc_idxs) {
const MMU_Graph::Arc &arc = graph.arcs[arc_idx];
if (graph.nodes[arc.to_idx].point == process_line.a || used_arcs[arc_idx])
continue;
assert(original_arc.to_idx == arc.from_idx);
Vec2d process_line_vec_n = (process_line.a - process_line.b).normalized();
Vec2d neighbour_line_vec_n = (graph.nodes[arc.to_idx].point - graph.nodes[arc.from_idx].point).normalized();
double angle = ::acos(std::clamp(neighbour_line_vec_n.dot(process_line_vec_n), -1.0, 1.0));
if (Slic3r::cross2(neighbour_line_vec_n, process_line_vec_n) < 0.0)
angle = 2.0 * (double) PI - angle;
sorted_arcs.emplace_back(&arc, angle);
}
std::sort(sorted_arcs.begin(), sorted_arcs.end(),
[](std::pair<const MMU_Graph::Arc *, double> &l, std::pair<const MMU_Graph::Arc *, double> &r) -> bool { return l.second < r.second; });
// Try to return left most edge witch is unused
for (auto &sorted_arc : sorted_arcs)
if (size_t arc_idx = sorted_arc.first - &graph.arcs.front(); !used_arcs[arc_idx])
return *sorted_arc.first;
if (sorted_arcs.empty())
return original_arc;
return *(sorted_arcs.front().first);
};
auto all_arc_used = [&used_arcs](const MMU_Graph::Node &node) -> bool {
return std::all_of(node.arc_idxs.cbegin(), node.arc_idxs.cend(), [&used_arcs](const size_t &arc_idx) -> bool { return used_arcs[arc_idx]; });
};
std::vector<std::pair<Polygon, size_t>> polygons_segments;
for (size_t node_idx = 0; node_idx < graph.all_border_points; ++node_idx) {
const MMU_Graph::Node &node = graph.nodes[node_idx];
for (const size_t &arc_idx : node.arc_idxs) {
const MMU_Graph::Arc &arc = graph.arcs[arc_idx];
if (arc.type == MMU_Graph::ARC_TYPE::NON_BORDER || used_arcs[arc_idx])
continue;
Linef process_line(node.point, graph.nodes[arc.to_idx].point);
used_arcs[arc_idx] = true;
std::vector<Linef> face_lines;
face_lines.emplace_back(process_line);
Vec2d start_p = process_line.a;
Linef p_vec = process_line;
const MMU_Graph::Arc *p_arc = &arc;
do {
const MMU_Graph::Arc &next = get_next(p_vec, *p_arc);
size_t next_arc_idx = &next - &graph.arcs.front();
face_lines.emplace_back(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point);
if (used_arcs[next_arc_idx])
break;
used_arcs[next_arc_idx] = true;
p_vec = Linef(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point);
p_arc = &next;
} while (graph.nodes[p_arc->to_idx].point != start_p || !all_arc_used(graph.nodes[p_arc->to_idx]));
Polygon poly = to_polygon(face_lines);
if (poly.is_counter_clockwise() && poly.is_valid())
polygons_segments.emplace_back(poly, arc.color);
}
}
return polygons_segments;
}
// Used in remove_multiple_edges_in_vertices()
// Returns length of edge with is connected to contour. To this length is include other edges with follows it if they are almost straight (with the
// tolerance of 15) And also if node between two subsequent edges is connected only to these two edges.
static inline double compute_edge_length(const MMU_Graph &graph, const size_t start_idx, const size_t &start_arc_idx)
{
assert(start_arc_idx < graph.arcs.size());
std::vector<bool> used_arcs(graph.arcs.size(), false);
used_arcs[start_arc_idx] = true;
const MMU_Graph::Arc *arc = &graph.arcs[start_arc_idx];
size_t idx = start_idx;
double line_total_length = (graph.nodes[arc->to_idx].point - graph.nodes[idx].point).norm();;
while (graph.nodes[arc->to_idx].arc_idxs.size() == 2) {
bool found = false;
for (const size_t &arc_idx : graph.nodes[arc->to_idx].arc_idxs) {
if (const MMU_Graph::Arc &arc_n = graph.arcs[arc_idx]; arc_n.type == MMU_Graph::ARC_TYPE::NON_BORDER && !used_arcs[arc_idx] && arc_n.to_idx != idx) {
Linef first_line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point);
Linef second_line(graph.nodes[arc->to_idx].point, graph.nodes[arc_n.to_idx].point);
Vec2d first_line_vec = (first_line.a - first_line.b);
Vec2d second_line_vec = (second_line.b - second_line.a);
Vec2d first_line_vec_n = first_line_vec.normalized();
Vec2d second_line_vec_n = second_line_vec.normalized();
double angle = ::acos(std::clamp(first_line_vec_n.dot(second_line_vec_n), -1.0, 1.0));
if (Slic3r::cross2(first_line_vec_n, second_line_vec_n) < 0.0)
angle = 2.0 * (double) PI - angle;
if (std::abs(angle - PI) >= (PI / 12))
continue;
idx = arc->to_idx;
arc = &arc_n;
line_total_length += (graph.nodes[arc->to_idx].point - graph.nodes[idx].point).norm();
used_arcs[arc_idx] = true;
found = true;
break;
}
}
if (!found)
break;
}
return line_total_length;
}
// Used for fixing double Voronoi edges for concave parts of the polygon.
static void remove_multiple_edges_in_vertices(MMU_Graph &graph, const std::vector<std::vector<ColoredLine>> &color_poly)
{
std::vector<std::vector<std::pair<size_t, size_t>>> colored_segments = get_all_segments(color_poly);
for (const std::vector<std::pair<size_t, size_t>> &colored_segment_p : colored_segments) {
size_t poly_idx = &colored_segment_p - &colored_segments.front();
for (const std::pair<size_t, size_t> &colored_segment : colored_segment_p) {
size_t first_idx = graph.get_global_index(poly_idx, colored_segment.first);
size_t second_idx = graph.get_global_index(poly_idx, (colored_segment.second + 1) % graph.polygon_sizes[poly_idx]);
Linef seg_line(graph.nodes[first_idx].point, graph.nodes[second_idx].point);
if (graph.nodes[first_idx].arc_idxs.size() >= 3) {
std::vector<std::pair<MMU_Graph::Arc *, double>> arc_to_check;
for (const size_t &arc_idx : graph.nodes[first_idx].arc_idxs) {
MMU_Graph::Arc &n_arc = graph.arcs[arc_idx];
if (n_arc.type == MMU_Graph::ARC_TYPE::NON_BORDER) {
double total_len = compute_edge_length(graph, first_idx, arc_idx);
arc_to_check.emplace_back(&n_arc, total_len);
}
}
std::sort(arc_to_check.begin(), arc_to_check.end(),
[](std::pair<MMU_Graph::Arc *, double> &l, std::pair<MMU_Graph::Arc *, double> &r) -> bool { return l.second > r.second; });
while (arc_to_check.size() > 1) {
graph.remove_edge(first_idx, arc_to_check.back().first->to_idx);
arc_to_check.pop_back();
}
}
}
}
}
static void cut_segmented_layers(const std::vector<ExPolygons> &input_expolygons,
std::vector<std::vector<std::pair<ExPolygon, size_t>>> &segmented_regions,
const float cut_width,
const std::function<void()> &throw_on_cancel_callback)
{
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - cutting segmented layers in parallel - begin";
tbb::parallel_for(tbb::blocked_range<size_t>(0, segmented_regions.size()),[&segmented_regions, &input_expolygons, &cut_width, &throw_on_cancel_callback](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
throw_on_cancel_callback();
std::vector<std::pair<ExPolygon, size_t>> segmented_regions_cuts;
for (const std::pair<ExPolygon, size_t> &colored_expoly : segmented_regions[layer_idx]) {
ExPolygons cut_colored_expoly = diff_ex(colored_expoly.first, offset_ex(input_expolygons[layer_idx], cut_width));
for (ExPolygon &expoly : cut_colored_expoly)
segmented_regions_cuts.emplace_back(std::move(expoly), colored_expoly.second);
}
segmented_regions[layer_idx] = std::move(segmented_regions_cuts);
}
}); // end of parallel_for
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - cutting segmented layers in parallel - end";
}
//#define MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
// Returns MMU segmentation of top and bottom layers based on painting in MMU segmentation gizmo
static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bottom_layers(const PrintObject &print_object,
const std::vector<ExPolygons> &input_expolygons,
const std::function<void()> &throw_on_cancel_callback)
{
const size_t num_extruders = print_object.print()->config().nozzle_diameter.size() + 1;
const size_t num_layers = input_expolygons.size();
const ConstLayerPtrsAdaptor layers = print_object.layers();
// Maximum number of top / bottom layers accounts for maximum overlap of one thread group into a neighbor thread group.
int max_top_layers = 0;
int max_bottom_layers = 0;
int granularity = 1;
for (size_t i = 0; i < print_object.num_printing_regions(); ++ i) {
const PrintRegionConfig &config = print_object.printing_region(i).config();
max_top_layers = std::max(max_top_layers, config.top_solid_layers.value);
max_bottom_layers = std::max(max_bottom_layers, config.bottom_solid_layers.value);
granularity = std::max(granularity, std::max(config.top_solid_layers.value, config.bottom_solid_layers.value) - 1);
}
// Project upwards pointing painted triangles over top surfaces,
// project downards pointing painted triangles over bottom surfaces.
std::vector<std::vector<Polygons>> top_raw(num_extruders), bottom_raw(num_extruders);
std::vector<float> zs = zs_from_layers(print_object.layers());
Transform3d object_trafo = print_object.trafo_centered();
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
static int iRun = 0;
#endif // NDEBUG
if (max_top_layers > 0 || max_bottom_layers > 0) {
for (const ModelVolume *mv : print_object.model_object()->volumes)
if (mv->is_model_part()) {
const Transform3d volume_trafo = object_trafo * mv->get_matrix();
for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++ extruder_idx) {
const indexed_triangle_set painted = mv->mmu_segmentation_facets.get_facets_strict(*mv, EnforcerBlockerType(extruder_idx));
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
{
static int iRun = 0;
its_write_obj(painted, debug_out_path("mm-painted-patch-%d-%d.obj", iRun ++, extruder_idx).c_str());
}
#endif // MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
if (! painted.indices.empty()) {
std::vector<Polygons> top, bottom;
slice_mesh_slabs(painted, zs, volume_trafo, max_top_layers > 0 ? &top : nullptr, max_bottom_layers > 0 ? &bottom : nullptr, throw_on_cancel_callback);
auto merge = [](std::vector<Polygons> &&src, std::vector<Polygons> &dst) {
auto it_src = find_if(src.begin(), src.end(), [](const Polygons &p){ return ! p.empty(); });
if (it_src != src.end()) {
if (dst.empty()) {
dst = std::move(src);
} else {
assert(src.size() == dst.size());
auto it_dst = dst.begin() + (it_src - src.begin());
for (; it_src != src.end(); ++ it_src, ++ it_dst)
if (! it_src->empty()) {
if (it_dst->empty())
*it_dst = std::move(*it_src);
else
append(*it_dst, std::move(*it_src));
}
}
}
};
merge(std::move(top), top_raw[extruder_idx]);
merge(std::move(bottom), bottom_raw[extruder_idx]);
}
}
}
}
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
{
const char* colors[] = { "aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy", "olive", "purple", "red", "silver", "teal", "yellow" };
static int iRun = 0;
for (size_t layer_id = 0; layer_id < zs.size(); ++layer_id) {
std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> svg;
for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++ extruder_idx) {
if (! top_raw[extruder_idx].empty() && ! top_raw[extruder_idx][layer_id].empty())
if (ExPolygons expoly = union_ex(top_raw[extruder_idx][layer_id]); ! expoly.empty()) {
const char *color = colors[extruder_idx];
svg.emplace_back(expoly, SVG::ExPolygonAttributes{ format("top%d", extruder_idx), color, color, color });
}
if (! bottom_raw[extruder_idx].empty() && ! bottom_raw[extruder_idx][layer_id].empty())
if (ExPolygons expoly = union_ex(bottom_raw[extruder_idx][layer_id]); ! expoly.empty()) {
const char *color = colors[extruder_idx + 8];
svg.emplace_back(expoly, SVG::ExPolygonAttributes{ format("bottom%d", extruder_idx), color, color, color });
}
}
SVG::export_expolygons(debug_out_path("mm-segmentation-top-bottom-%d-%d-%lf.svg", iRun, layer_id, zs[layer_id]), svg);
}
++ iRun;
}
#endif // MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
std::vector<std::vector<ExPolygons>> triangles_by_color_bottom(num_extruders);
std::vector<std::vector<ExPolygons>> triangles_by_color_top(num_extruders);
triangles_by_color_bottom.assign(num_extruders, std::vector<ExPolygons>(num_layers * 2));
triangles_by_color_top.assign(num_extruders, std::vector<ExPolygons>(num_layers * 2));
struct LayerColorStat {
// Number of regions for a queried color.
int num_regions { 0 };
// Maximum perimeter extrusion width for a queried color.
float extrusion_width { 0.f };
// Minimum radius of a region to be printable. Used to filter regions by morphological opening.
float small_region_threshold { 0.f };
// Maximum number of top layers for a queried color.
int top_solid_layers { 0 };
// Maximum number of bottom layers for a queried color.
int bottom_solid_layers { 0 };
};
auto layer_color_stat = [&layers = std::as_const(layers)](const size_t layer_idx, const size_t color_idx) -> LayerColorStat {
LayerColorStat out;
const Layer &layer = *layers[layer_idx];
for (const LayerRegion *region : layer.regions())
if (const PrintRegionConfig &config = region->region().config();
// color_idx == 0 means "don't know" extruder aka the underlying extruder.
// As this region may split existing regions, we collect statistics over all regions for color_idx == 0.
color_idx == 0 || config.perimeter_extruder == int(color_idx)) {
out.extrusion_width = std::max<float>(out.extrusion_width, float(config.perimeter_extrusion_width));
out.top_solid_layers = std::max<int>(out.top_solid_layers, config.top_solid_layers);
out.bottom_solid_layers = std::max<int>(out.bottom_solid_layers, config.bottom_solid_layers);
out.small_region_threshold = config.gap_fill_enabled.value && config.gap_fill_speed.value > 0 ?
// Gap fill enabled. Enable a single line of 1/2 extrusion width.
0.5f * float(config.perimeter_extrusion_width) :
// Gap fill disabled. Enable two lines slightly overlapping.
float(config.perimeter_extrusion_width) + 0.7f * Flow::rounded_rectangle_extrusion_spacing(float(config.perimeter_extrusion_width), float(layer.height));
out.small_region_threshold = scaled<float>(out.small_region_threshold * 0.5f);
++ out.num_regions;
}
assert(out.num_regions > 0);
out.extrusion_width = scaled<float>(out.extrusion_width);
return out;
};
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers, granularity), [&granularity, &num_layers, &num_extruders, &layer_color_stat, &top_raw, &triangles_by_color_top,
&throw_on_cancel_callback, &input_expolygons, &bottom_raw, &triangles_by_color_bottom](const tbb::blocked_range<size_t> &range) {
size_t group_idx = range.begin() / granularity;
size_t layer_idx_offset = (group_idx & 1) * num_layers;
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
for (size_t color_idx = 0; color_idx < num_extruders; ++ color_idx) {
throw_on_cancel_callback();
LayerColorStat stat = layer_color_stat(layer_idx, color_idx);
if (std::vector<Polygons> &top = top_raw[color_idx]; ! top.empty() && ! top[layer_idx].empty())
if (ExPolygons top_ex = union_ex(top[layer_idx]); ! top_ex.empty()) {
// Clean up thin projections. They are not printable anyways.
top_ex = offset2_ex(top_ex, - stat.small_region_threshold, + stat.small_region_threshold);
if (! top_ex.empty()) {
append(triangles_by_color_top[color_idx][layer_idx + layer_idx_offset], top_ex);
float offset = 0.f;
ExPolygons layer_slices_trimmed = input_expolygons[layer_idx];
for (int last_idx = int(layer_idx) - 1; last_idx >= std::max(int(layer_idx - stat.top_solid_layers), int(0)); --last_idx) {
offset -= stat.extrusion_width;
layer_slices_trimmed = intersection_ex(layer_slices_trimmed, input_expolygons[last_idx]);
ExPolygons last = offset2_ex(intersection_ex(top_ex, offset_ex(layer_slices_trimmed, offset)),
- stat.small_region_threshold, + stat.small_region_threshold);
if (last.empty())
break;
append(triangles_by_color_top[color_idx][last_idx + layer_idx_offset], std::move(last));
}
}
}
if (std::vector<Polygons> &bottom = bottom_raw[color_idx]; ! bottom.empty() && ! bottom[layer_idx].empty())
if (ExPolygons bottom_ex = union_ex(bottom[layer_idx]); ! bottom_ex.empty()) {
// Clean up thin projections. They are not printable anyways.
bottom_ex = offset2_ex(bottom_ex, - stat.small_region_threshold, + stat.small_region_threshold);
if (! bottom_ex.empty()) {
append(triangles_by_color_bottom[color_idx][layer_idx + layer_idx_offset], bottom_ex);
float offset = 0.f;
ExPolygons layer_slices_trimmed = input_expolygons[layer_idx];
for (size_t last_idx = layer_idx + 1; last_idx < std::min(layer_idx + stat.bottom_solid_layers, num_layers); ++last_idx) {
offset -= stat.extrusion_width;
layer_slices_trimmed = intersection_ex(layer_slices_trimmed, input_expolygons[last_idx]);
ExPolygons last = offset2_ex(intersection_ex(bottom_ex, offset_ex(layer_slices_trimmed, offset)),
- stat.small_region_threshold, + stat.small_region_threshold);
if (last.empty())
break;
append(triangles_by_color_bottom[color_idx][last_idx + layer_idx_offset], std::move(last));
}
}
}
}
}
});
std::vector<std::vector<ExPolygons>> triangles_by_color_merged(num_extruders);
triangles_by_color_merged.assign(num_extruders, std::vector<ExPolygons>(num_layers));
tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&triangles_by_color_merged, &triangles_by_color_bottom, &triangles_by_color_top, &num_layers, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
throw_on_cancel_callback();
for (size_t color_idx = 0; color_idx < triangles_by_color_merged.size(); ++color_idx) {
auto &self = triangles_by_color_merged[color_idx][layer_idx];
append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx]));
append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx + num_layers]));
append(self, std::move(triangles_by_color_top[color_idx][layer_idx]));
append(self, std::move(triangles_by_color_top[color_idx][layer_idx + num_layers]));
self = union_ex(self);
}
// Trim one region by the other if some of the regions overlap.
for (size_t color_idx = 1; color_idx < triangles_by_color_merged.size(); ++ color_idx)
triangles_by_color_merged[color_idx][layer_idx] = diff_ex(triangles_by_color_merged[color_idx][layer_idx],
triangles_by_color_merged[color_idx - 1][layer_idx]);
}
});
return triangles_by_color_merged;
}
static std::vector<std::vector<std::pair<ExPolygon, size_t>>> merge_segmented_layers(
const std::vector<std::vector<std::pair<ExPolygon, size_t>>> &segmented_regions,
std::vector<std::vector<ExPolygons>> &&top_and_bottom_layers,
const std::function<void()> &throw_on_cancel_callback)
{
std::vector<std::vector<std::pair<ExPolygon, size_t>>> segmented_regions_merged(segmented_regions.size());
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - merging segmented layers in parallel - begin";
tbb::parallel_for(tbb::blocked_range<size_t>(0, segmented_regions.size()), [&segmented_regions, &top_and_bottom_layers, &segmented_regions_merged, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
for (const std::pair<ExPolygon, size_t> &colored_expoly : segmented_regions[layer_idx]) {
throw_on_cancel_callback();
// Zero is the default color of the volume.
if(colored_expoly.second == 0)
continue;
ExPolygons cut_colored_expoly = {colored_expoly.first};
for (const std::vector<ExPolygons> &top_and_bottom_layer : top_and_bottom_layers)
cut_colored_expoly = diff_ex(cut_colored_expoly, top_and_bottom_layer[layer_idx]);
for (ExPolygon &ex_poly : cut_colored_expoly)
segmented_regions_merged[layer_idx].emplace_back(std::move(ex_poly), colored_expoly.second - 1);
}
for (size_t color_idx = 1; color_idx < top_and_bottom_layers.size(); ++color_idx)
for (ExPolygon &expoly : top_and_bottom_layers[color_idx][layer_idx])
segmented_regions_merged[layer_idx].emplace_back(std::move(expoly), color_idx - 1);
}
}); // end of parallel_for
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - merging segmented layers in parallel - end";
return segmented_regions_merged;
}
#ifdef MMU_SEGMENTATION_DEBUG_REGIONS
static void export_regions_to_svg(const std::string &path, const std::vector<std::pair<ExPolygon, size_t>> &regions, const ExPolygons &lslices)
{
const std::vector<std::string> colors = {"blue", "cyan", "red", "orange", "magenta", "pink", "purple", "yellow"};
coordf_t stroke_width = scale_(0.05);
BoundingBox bbox = get_extents(lslices);
bbox.offset(scale_(1.));
::Slic3r::SVG svg(path.c_str(), bbox);
svg.draw_outline(lslices, "green", "lime", stroke_width);
for (const std::pair<ExPolygon, size_t> &region : regions) {
int region_color = int(region.second);
if (region_color >= 0 && region_color < int(colors.size()))
svg.draw(region.first, colors[region_color]);
else
svg.draw(region.first, "black");
}
}
#endif // MMU_SEGMENTATION_DEBUG_REGIONS
#ifdef MMU_SEGMENTATION_DEBUG_GRAPH
static void export_graph_to_svg(const std::string &path, const MMU_Graph &graph, const ExPolygons &lslices)
{
const std::vector<std::string> colors = {"blue", "cyan", "red", "orange", "magenta", "pink", "purple", "green", "yellow"};
coordf_t stroke_width = scale_(0.05);
BoundingBox bbox = get_extents(lslices);
bbox.offset(scale_(1.));
::Slic3r::SVG svg(path.c_str(), bbox);
for (const MMU_Graph::Node &node : graph.nodes)
for (const size_t &arc_idx : node.arc_idxs) {
const MMU_Graph::Arc &arc = graph.arcs[arc_idx];
Line arc_line(mk_point(node.point), mk_point(graph.nodes[arc.to_idx].point));
if (arc.type == MMU_Graph::ARC_TYPE::BORDER && arc.color >= 0 && arc.color < int(colors.size()))
svg.draw(arc_line, colors[arc.color], stroke_width);
else
svg.draw(arc_line, "black", stroke_width);
}
}
#endif // MMU_SEGMENTATION_DEBUG_GRAPH
#ifdef MMU_SEGMENTATION_DEBUG_INPUT
void export_processed_input_expolygons_to_svg(const std::string &path, const LayerRegionPtrs &regions, const ExPolygons &processed_input_expolygons)
{
coordf_t stroke_width = scale_(0.05);
BoundingBox bbox = get_extents(regions);
bbox.merge(get_extents(processed_input_expolygons));
bbox.offset(scale_(1.));
::Slic3r::SVG svg(path.c_str(), bbox);
for (LayerRegion *region : regions)
svg.draw_outline(region->slices.surfaces, "blue", "cyan", stroke_width);
svg.draw_outline(processed_input_expolygons, "red", "pink", stroke_width);
}
#endif // MMU_SEGMENTATION_DEBUG_INPUT
// Check if all ColoredLine representing a single layer uses the same color.
static bool has_layer_only_one_color(const std::vector<std::vector<ColoredLine>> &colored_polygons)
{
assert(!colored_polygons.empty());
assert(!colored_polygons.front().empty());
int first_line_color = colored_polygons.front().front().color;
for (const std::vector<ColoredLine> &colored_polygon : colored_polygons)
for (const ColoredLine &colored_line : colored_polygon)
if (first_line_color != colored_line.color)
return false;
return true;
}
std::vector<std::vector<std::pair<ExPolygon, size_t>>> multi_material_segmentation_by_painting(const PrintObject &print_object, const std::function<void()> &throw_on_cancel_callback)
{
std::vector<std::vector<std::pair<ExPolygon, size_t>>> segmented_regions(print_object.layers().size());
std::vector<std::vector<PaintedLine>> painted_lines(print_object.layers().size());
std::array<std::mutex, 64> painted_lines_mutex;
std::vector<EdgeGrid::Grid> edge_grids(print_object.layers().size());
const ConstLayerPtrsAdaptor layers = print_object.layers();
std::vector<ExPolygons> input_expolygons(layers.size());
throw_on_cancel_callback();
// Merge all regions and remove small holes
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - slices preparation in parallel - begin";
tbb::parallel_for(tbb::blocked_range<size_t>(0, layers.size()), [&layers, &input_expolygons, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
throw_on_cancel_callback();
ExPolygons ex_polygons;
for (LayerRegion *region : layers[layer_idx]->regions())
for (const Surface &surface : region->slices.surfaces)
Slic3r::append(ex_polygons, offset_ex(surface.expolygon, float(10 * SCALED_EPSILON)));
// All expolygons are expanded by SCALED_EPSILON, merged, and then shrunk again by SCALED_EPSILON
// to ensure that very close polygons will be merged.
ex_polygons = union_ex(ex_polygons);
// Remove all expolygons and holes with an area less than 0.1mm^2
remove_small_and_small_holes(ex_polygons, Slic3r::sqr(scale_(0.1f)));
// Occasionally, some input polygons contained self-intersections that caused problems with Voronoi diagrams
// and consequently with the extraction of colored segments by function extract_colored_segments.
// Calling simplify_polygons removes these self-intersections.
// Also, occasionally input polygons contained several points very close together (distance between points is 1 or so).
// Such close points sometimes caused that the Voronoi diagram has self-intersecting edges around these vertices.
// This consequently leads to issues with the extraction of colored segments by function extract_colored_segments.
// Calling expolygons_simplify fixed these issues.
input_expolygons[layer_idx] = smooth_outward(expolygons_simplify(offset_ex(ex_polygons, -10.f * float(SCALED_EPSILON)), 5 * SCALED_EPSILON), 10 * coord_t(SCALED_EPSILON));
#ifdef MMU_SEGMENTATION_DEBUG_INPUT
{
static int iRun = 0;
export_processed_input_expolygons_to_svg(debug_out_path("mm-input-%d-%d.svg", layer_idx, iRun++), layers[layer_idx]->regions(), input_expolygons[layer_idx]);
}
#endif // MMU_SEGMENTATION_DEBUG_INPUT
}
}); // end of parallel_for
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - slices preparation in parallel - end";
for (size_t layer_idx = 0; layer_idx < layers.size(); ++layer_idx) {
throw_on_cancel_callback();
BoundingBox bbox(get_extents(layers[layer_idx]->regions()));
bbox.merge(get_extents(input_expolygons[layer_idx]));
// Projected triangles may slightly exceed the input polygons.
bbox.offset(20 * SCALED_EPSILON);
edge_grids[layer_idx].set_bbox(bbox);
edge_grids[layer_idx].create(input_expolygons[layer_idx], coord_t(scale_(10.)));
}
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - projection of painted triangles - begin";
for (const ModelVolume *mv : print_object.model_object()->volumes) {
const size_t num_extruders = print_object.print()->config().nozzle_diameter.size() + 1;
tbb::parallel_for(tbb::blocked_range<size_t>(1, num_extruders), [&mv, &print_object, &edge_grids, &painted_lines, &painted_lines_mutex, &input_expolygons, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
for (size_t extruder_idx = range.begin(); extruder_idx < range.end(); ++extruder_idx) {
throw_on_cancel_callback();
const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, EnforcerBlockerType(extruder_idx));
if (!mv->is_model_part() || custom_facets.indices.empty())
continue;
const Transform3f tr = print_object.trafo().cast<float>() * mv->get_matrix().cast<float>();
tbb::parallel_for(tbb::blocked_range<size_t>(0, custom_facets.indices.size()), [&tr, &custom_facets, &print_object, &edge_grids, &input_expolygons, &painted_lines, &painted_lines_mutex, &extruder_idx](const tbb::blocked_range<size_t> &range) {
for (size_t facet_idx = range.begin(); facet_idx < range.end(); ++facet_idx) {
float min_z = std::numeric_limits<float>::max();
float max_z = std::numeric_limits<float>::lowest();
std::array<Vec3f, 3> facet;
for (int p_idx = 0; p_idx < 3; ++p_idx) {
facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)];
max_z = std::max(max_z, facet[p_idx].z());
min_z = std::min(min_z, facet[p_idx].z());
}
// Sort the vertices by z-axis for simplification of projected_facet on slices
std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); });
// Find lowest slice not below the triangle.
auto first_layer = std::upper_bound(print_object.layers().begin(), print_object.layers().end(), float(min_z - EPSILON),
[](float z, const Layer *l1) { return z < l1->slice_z; });
auto last_layer = std::upper_bound(print_object.layers().begin(), print_object.layers().end(), float(max_z + EPSILON),
[](float z, const Layer *l1) { return z < l1->slice_z; });
--last_layer;
for (auto layer_it = first_layer; layer_it != (last_layer + 1); ++layer_it) {
const Layer *layer = *layer_it;
size_t layer_idx = layer_it - print_object.layers().begin();
if (input_expolygons[layer_idx].empty() || facet[0].z() > layer->slice_z || layer->slice_z > facet[2].z())
continue;
// https://kandepet.com/3d-printing-slicing-3d-objects/
float t = (float(layer->slice_z) - facet[0].z()) / (facet[2].z() - facet[0].z());
Vec3f line_start_f = facet[0] + t * (facet[2] - facet[0]);
Vec3f line_end_f;
if (facet[1].z() > layer->slice_z) {
// [P0, P2] and [P0, P1]
float t1 = (float(layer->slice_z) - facet[0].z()) / (facet[1].z() - facet[0].z());
line_end_f = facet[0] + t1 * (facet[1] - facet[0]);
} else {
// [P0, P2] and [P1, P2]
float t2 = (float(layer->slice_z) - facet[1].z()) / (facet[2].z() - facet[1].z());
line_end_f = facet[1] + t2 * (facet[2] - facet[1]);
}
Point line_start(scale_(line_start_f.x()), scale_(line_start_f.y()));
Point line_end(scale_(line_end_f.x()), scale_(line_end_f.y()));
line_start -= print_object.center_offset();
line_end -= print_object.center_offset();
size_t mutex_idx = layer_idx & 0x3F;
assert(mutex_idx < painted_lines_mutex.size());
PaintedLineVisitor visitor(edge_grids[layer_idx], painted_lines[layer_idx], painted_lines_mutex[mutex_idx], 16);
visitor.line_to_test.a = line_start;
visitor.line_to_test.b = line_end;
visitor.color = int(extruder_idx);
edge_grids[layer_idx].visit_cells_intersecting_line(line_start, line_end, visitor);
}
}
}); // end of parallel_for
}
}); // end of parallel_for
}
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - projection of painted triangles - end";
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - painted layers count: "
<< std::count_if(painted_lines.begin(), painted_lines.end(), [](const std::vector<PaintedLine> &pl) { return !pl.empty(); });
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - layers segmentation in parallel - begin";
tbb::parallel_for(tbb::blocked_range<size_t>(0, print_object.layers().size()), [&edge_grids, &input_expolygons, &painted_lines, &segmented_regions, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
throw_on_cancel_callback();
auto comp = [&edge_grids, layer_idx](const PaintedLine &first, const PaintedLine &second) {
Point first_start_p = edge_grids[layer_idx].contours()[first.contour_idx].segment_start(first.line_idx);
return first.contour_idx < second.contour_idx ||
(first.contour_idx == second.contour_idx &&
(first.line_idx < second.line_idx ||
(first.line_idx == second.line_idx &&
((first.projected_line.a - first_start_p).cast<double>().squaredNorm() < (second.projected_line.a - first_start_p).cast<double>().squaredNorm() ||
((first.projected_line.a - first_start_p).cast<double>().squaredNorm() == (second.projected_line.a - first_start_p).cast<double>().squaredNorm() &&
(first.projected_line.b - first.projected_line.a).cast<double>().squaredNorm() < (second.projected_line.b - second.projected_line.a).cast<double>().squaredNorm())))));
};
std::sort(painted_lines[layer_idx].begin(), painted_lines[layer_idx].end(), comp);
std::vector<PaintedLine> &painted_lines_single = painted_lines[layer_idx];
if (!painted_lines_single.empty()) {
std::vector<std::vector<ColoredLine>> color_poly = colorize_polygons(edge_grids[layer_idx].contours(), painted_lines_single);
assert(!color_poly.empty());
assert(!color_poly.front().empty());
if (has_layer_only_one_color(color_poly)) {
// If the whole layer is painted using the same color, it is not needed to construct a Voronoi diagram for the segmentation of this layer.
for (const ExPolygon &ex_polygon : input_expolygons[layer_idx])
segmented_regions[layer_idx].emplace_back(ex_polygon, size_t(color_poly.front().front().color));
} else {
MMU_Graph graph = build_graph(layer_idx, color_poly);
remove_multiple_edges_in_vertices(graph, color_poly);
graph.remove_nodes_with_one_arc();
#ifdef MMU_SEGMENTATION_DEBUG_GRAPH
{
static int iRun = 0;
export_graph_to_svg(debug_out_path("mm-graph-final-%d-%d.svg", layer_idx, iRun++), graph, input_expolygons[layer_idx]);
}
#endif // MMU_SEGMENTATION_DEBUG_GRAPH
std::vector<std::pair<Polygon, size_t>> segmentation = extract_colored_segments(graph);
for (std::pair<Polygon, size_t> &region : segmentation)
segmented_regions[layer_idx].emplace_back(std::move(region));
}
#ifdef MMU_SEGMENTATION_DEBUG_REGIONS
{
static int iRun = 0;
export_regions_to_svg(debug_out_path("mm-regions-sides-%d-%d.svg", layer_idx, iRun++), segmented_regions[layer_idx], input_expolygons[layer_idx]);
}
#endif // MMU_SEGMENTATION_DEBUG_REGIONS
}
}
}); // end of parallel_for
BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - layers segmentation in parallel - end";
throw_on_cancel_callback();
if (auto w = print_object.config().mmu_segmented_region_max_width; w > 0.f) {
cut_segmented_layers(input_expolygons, segmented_regions, float(-scale_(w)), throw_on_cancel_callback);
throw_on_cancel_callback();
}
// return segmented_regions;
std::vector<std::vector<ExPolygons>> top_and_bottom_layers = mmu_segmentation_top_and_bottom_layers(print_object, input_expolygons, throw_on_cancel_callback);
throw_on_cancel_callback();
std::vector<std::vector<std::pair<ExPolygon, size_t>>> segmented_regions_merged = merge_segmented_layers(segmented_regions, std::move(top_and_bottom_layers), throw_on_cancel_callback);
throw_on_cancel_callback();
#ifdef MMU_SEGMENTATION_DEBUG_REGIONS
{
static int iRun = 0;
for (size_t layer_idx = 0; layer_idx < print_object.layers().size(); ++layer_idx)
export_regions_to_svg(debug_out_path("mm-regions-merged-%d-%d.svg", layer_idx, iRun++), segmented_regions_merged[layer_idx], input_expolygons[layer_idx]);
}
#endif // MMU_SEGMENTATION_DEBUG_REGIONS
return segmented_regions_merged;
}
} // namespace Slic3r