2120 lines
82 KiB
Perl
2120 lines
82 KiB
Perl
# Implements pure perl packages
|
||
#
|
||
# Slic3r::GUI::3DScene::Base;
|
||
# Slic3r::GUI::3DScene::Volume;
|
||
# Slic3r::GUI::3DScene;
|
||
#
|
||
# It uses static methods of a C++ class Slic3r::GUI::_3DScene::GLVertexArray
|
||
# for efficient building of vertex arrays for OpenGL rendering.
|
||
#
|
||
# Slic3r::GUI::Plater::3D derives from Slic3r::GUI::3DScene,
|
||
# Slic3r::GUI::Plater::3DPreview, Slic3r::GUI::Plater::3DToolpaths,
|
||
# Slic3r::GUI::Plater::ObjectCutDialog and Slic3r::GUI::Plater::ObjectPartsPanel
|
||
# own $self->{canvas} of the Slic3r::GUI::3DScene type.
|
||
#
|
||
# Therefore the 3DScene supports renderng of STLs, extrusions and cutting planes,
|
||
# and camera manipulation.
|
||
|
||
package Slic3r::GUI::3DScene::Base;
|
||
use strict;
|
||
use warnings;
|
||
|
||
use Wx qw(:timer :bitmap);
|
||
use Wx::Event qw(EVT_PAINT EVT_SIZE EVT_ERASE_BACKGROUND EVT_IDLE EVT_MOUSEWHEEL EVT_MOUSE_EVENTS EVT_TIMER);
|
||
# must load OpenGL *before* Wx::GLCanvas
|
||
use OpenGL qw(:glconstants :glfunctions :glufunctions :gluconstants);
|
||
use base qw(Wx::GLCanvas Class::Accessor);
|
||
use Math::Trig qw(asin tan);
|
||
use List::Util qw(reduce min max first);
|
||
use Slic3r::Geometry qw(X Y Z MIN MAX triangle_normal normalize deg2rad tan scale unscale scaled_epsilon);
|
||
use Slic3r::Geometry::Clipper qw(offset_ex intersection_pl);
|
||
use Wx::GLCanvas qw(:all);
|
||
use Slic3r::Geometry qw(PI);
|
||
|
||
# _dirty: boolean flag indicating, that the screen has to be redrawn on EVT_IDLE.
|
||
# volumes: reference to vector of Slic3r::GUI::3DScene::Volume.
|
||
# _camera_type: 'perspective' or 'ortho'
|
||
__PACKAGE__->mk_accessors( qw(_quat _dirty init
|
||
enable_picking
|
||
enable_moving
|
||
on_viewport_changed
|
||
on_hover
|
||
on_select
|
||
on_double_click
|
||
on_right_click
|
||
on_move
|
||
on_model_update
|
||
volumes
|
||
_sphi _stheta
|
||
cutting_plane_z
|
||
cut_lines_vertices
|
||
bed_shape
|
||
bed_triangles
|
||
bed_grid_lines
|
||
background
|
||
origin
|
||
_mouse_pos
|
||
_hover_volume_idx
|
||
|
||
_drag_volume_idx
|
||
_drag_start_pos
|
||
_drag_start_xy
|
||
_dragged
|
||
|
||
layer_editing_enabled
|
||
_layer_height_edited
|
||
|
||
_camera_type
|
||
_camera_target
|
||
_camera_distance
|
||
_zoom
|
||
) );
|
||
|
||
use constant TRACKBALLSIZE => 0.8;
|
||
use constant TURNTABLE_MODE => 1;
|
||
use constant GROUND_Z => -0.02;
|
||
# For mesh selection: Not selected - bright yellow.
|
||
use constant DEFAULT_COLOR => [1,1,0];
|
||
# For mesh selection: Selected - bright green.
|
||
use constant SELECTED_COLOR => [0,1,0,1];
|
||
# For mesh selection: Mouse hovers over the object, but object not selected yet - dark green.
|
||
use constant HOVER_COLOR => [0.4,0.9,0,1];
|
||
|
||
# phi / theta angles to orient the camera.
|
||
use constant VIEW_DEFAULT => [45.0,45.0];
|
||
use constant VIEW_LEFT => [90.0,90.0];
|
||
use constant VIEW_RIGHT => [-90.0,90.0];
|
||
use constant VIEW_TOP => [0.0,0.0];
|
||
use constant VIEW_BOTTOM => [0.0,180.0];
|
||
use constant VIEW_FRONT => [0.0,90.0];
|
||
use constant VIEW_REAR => [180.0,90.0];
|
||
|
||
use constant MANIPULATION_IDLE => 0;
|
||
use constant MANIPULATION_DRAGGING => 1;
|
||
use constant MANIPULATION_LAYER_HEIGHT => 2;
|
||
|
||
use constant GIMBALL_LOCK_THETA_MAX => 170;
|
||
|
||
use constant VARIABLE_LAYER_THICKNESS_BAR_WIDTH => 70;
|
||
use constant VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT => 22;
|
||
|
||
# make OpenGL::Array thread-safe
|
||
{
|
||
no warnings 'redefine';
|
||
*OpenGL::Array::CLONE_SKIP = sub { 1 };
|
||
}
|
||
|
||
sub new {
|
||
my ($class, $parent) = @_;
|
||
|
||
# We can only enable multi sample anti aliasing wih wxWidgets 3.0.3 and with a hacked Wx::GLCanvas,
|
||
# which exports some new WX_GL_XXX constants, namely WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES.
|
||
my $can_multisample =
|
||
Wx::wxVERSION >= 3.000003 &&
|
||
defined Wx::GLCanvas->can('WX_GL_SAMPLE_BUFFERS') &&
|
||
defined Wx::GLCanvas->can('WX_GL_SAMPLES');
|
||
my $attrib = [WX_GL_RGBA, WX_GL_DOUBLEBUFFER, WX_GL_DEPTH_SIZE, 24];
|
||
if ($can_multisample) {
|
||
# Request a window with multi sampled anti aliasing. This is a new feature in Wx 3.0.3 (backported from 3.1.0).
|
||
# Use eval to avoid compilation, if the subs WX_GL_SAMPLE_BUFFERS and WX_GL_SAMPLES are missing.
|
||
eval 'push(@$attrib, (WX_GL_SAMPLE_BUFFERS, 1, WX_GL_SAMPLES, 4));';
|
||
}
|
||
# wxWidgets expect the attrib list to be ended by zero.
|
||
push(@$attrib, 0);
|
||
|
||
# we request a depth buffer explicitely because it looks like it's not created by
|
||
# default on Linux, causing transparency issues
|
||
my $self = $class->SUPER::new($parent, -1, Wx::wxDefaultPosition, Wx::wxDefaultSize, 0, "", $attrib);
|
||
if (Wx::wxVERSION >= 3.000003) {
|
||
# Wx 3.0.3 contains an ugly hack to support some advanced OpenGL attributes through the attribute list.
|
||
# The attribute list is transferred between the wxGLCanvas and wxGLContext constructors using a single static array s_wglContextAttribs.
|
||
# Immediatelly force creation of the OpenGL context to consume the static variable s_wglContextAttribs.
|
||
$self->GetContext();
|
||
}
|
||
|
||
$self->background(1);
|
||
$self->_quat((0, 0, 0, 1));
|
||
$self->_stheta(45);
|
||
$self->_sphi(45);
|
||
$self->_zoom(1);
|
||
|
||
# 3D point in model space
|
||
$self->_camera_type('ortho');
|
||
# $self->_camera_type('perspective');
|
||
$self->_camera_target(Slic3r::Pointf3->new(0,0,0));
|
||
$self->_camera_distance(0.);
|
||
|
||
# Size of a layer height texture, used by a shader to color map the object print layers.
|
||
$self->layer_editing_enabled(0);
|
||
# 512x512 bitmaps are supported everywhere, but that may not be sufficent for super large print volumes.
|
||
$self->{layer_preview_z_texture_width} = 1024;
|
||
$self->{layer_preview_z_texture_height} = 1024;
|
||
$self->{layer_height_edit_band_width} = 2.;
|
||
$self->{layer_height_edit_strength} = 0.005;
|
||
$self->{layer_height_edit_last_object_id} = -1;
|
||
$self->{layer_height_edit_last_z} = 0.;
|
||
$self->{layer_height_edit_last_action} = 0;
|
||
|
||
$self->reset_objects;
|
||
|
||
EVT_PAINT($self, sub {
|
||
my $dc = Wx::PaintDC->new($self);
|
||
$self->Render($dc);
|
||
});
|
||
EVT_SIZE($self, sub { $self->_dirty(1) });
|
||
EVT_IDLE($self, sub {
|
||
return unless $self->_dirty;
|
||
return if !$self->IsShownOnScreen;
|
||
$self->Resize( $self->GetSizeWH );
|
||
$self->Refresh;
|
||
});
|
||
EVT_MOUSEWHEEL($self, \&mouse_wheel_event);
|
||
EVT_MOUSE_EVENTS($self, \&mouse_event);
|
||
|
||
$self->{layer_height_edit_timer_id} = &Wx::NewId();
|
||
$self->{layer_height_edit_timer} = Wx::Timer->new($self, $self->{layer_height_edit_timer_id});
|
||
EVT_TIMER($self, $self->{layer_height_edit_timer_id}, sub {
|
||
my ($self, $event) = @_;
|
||
return if $self->_layer_height_edited != 1;
|
||
return if $self->{layer_height_edit_last_object_id} == -1;
|
||
$self->_variable_layer_thickness_action(undef);
|
||
});
|
||
|
||
return $self;
|
||
}
|
||
|
||
sub Destroy {
|
||
my ($self) = @_;
|
||
$self->{layer_height_edit_timer}->Stop;
|
||
$self->DestroyGL;
|
||
return $self->SUPER::Destroy;
|
||
}
|
||
|
||
sub _first_selected_object_id {
|
||
my ($self) = @_;
|
||
for my $i (0..$#{$self->volumes}) {
|
||
if ($self->volumes->[$i]->selected) {
|
||
return int($self->volumes->[$i]->select_group_id / 1000000);
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
# Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen.
|
||
sub _variable_layer_thickness_bar_rect_screen {
|
||
my ($self) = @_;
|
||
my ($cw, $ch) = $self->GetSizeWH;
|
||
return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, 0, $cw, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT);
|
||
}
|
||
|
||
sub _variable_layer_thickness_bar_rect_viewport {
|
||
my ($self) = @_;
|
||
my ($cw, $ch) = $self->GetSizeWH;
|
||
return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom, $cw/(2*$self->_zoom), $ch/(2*$self->_zoom));
|
||
}
|
||
|
||
# Returns an array with (left, top, right, bottom) of the variable layer thickness bar on the screen.
|
||
sub _variable_layer_thickness_reset_rect_screen {
|
||
my ($self) = @_;
|
||
my ($cw, $ch) = $self->GetSizeWH;
|
||
return ($cw - VARIABLE_LAYER_THICKNESS_BAR_WIDTH, $ch - VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT, $cw, $ch);
|
||
}
|
||
|
||
sub _variable_layer_thickness_reset_rect_viewport {
|
||
my ($self) = @_;
|
||
my ($cw, $ch) = $self->GetSizeWH;
|
||
return ((0.5*$cw-VARIABLE_LAYER_THICKNESS_BAR_WIDTH)/$self->_zoom, -$ch/(2*$self->_zoom), $cw/(2*$self->_zoom), (-0.5*$ch+VARIABLE_LAYER_THICKNESS_RESET_BUTTON_HEIGHT)/$self->_zoom);
|
||
}
|
||
|
||
sub _variable_layer_thickness_bar_rect_mouse_inside {
|
||
my ($self, $mouse_evt) = @_;
|
||
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
|
||
return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom;
|
||
}
|
||
|
||
sub _variable_layer_thickness_reset_rect_mouse_inside {
|
||
my ($self, $mouse_evt) = @_;
|
||
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_reset_rect_screen;
|
||
return $mouse_evt->GetX >= $bar_left && $mouse_evt->GetX <= $bar_right && $mouse_evt->GetY >= $bar_top && $mouse_evt->GetY <= $bar_bottom;
|
||
}
|
||
|
||
sub _variable_layer_thickness_bar_mouse_cursor_z {
|
||
my ($self, $object_idx, $mouse_evt) = @_;
|
||
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
|
||
return unscale($self->{print}->get_object($object_idx)->size->z) * ($bar_bottom - $mouse_evt->GetY - 1.) / ($bar_bottom - $bar_top);
|
||
}
|
||
|
||
sub _variable_layer_thickness_bar_mouse_cursor_z_relative {
|
||
my ($self) = @_;
|
||
my $mouse_pos = $self->ScreenToClientPoint(Wx::GetMousePosition());
|
||
my ($bar_left, $bar_top, $bar_right, $bar_bottom) = $self->_variable_layer_thickness_bar_rect_screen;
|
||
return ($mouse_pos->x >= $bar_left && $mouse_pos->x <= $bar_right && $mouse_pos->y >= $bar_top && $mouse_pos->y <= $bar_bottom) ?
|
||
# Inside the bar.
|
||
($bar_bottom - $mouse_pos->y - 1.) / ($bar_bottom - $bar_top - 1) :
|
||
# Outside the bar.
|
||
-1000.;
|
||
}
|
||
|
||
sub _variable_layer_thickness_action {
|
||
my ($self, $mouse_event, $do_modification) = @_;
|
||
# A volume is selected. Test, whether hovering over a layer thickness bar.
|
||
if (defined($mouse_event)) {
|
||
$self->{layer_height_edit_last_z} = $self->_variable_layer_thickness_bar_mouse_cursor_z($self->{layer_height_edit_last_object_id}, $mouse_event);
|
||
$self->{layer_height_edit_last_action} = $mouse_event->ShiftDown ? ($mouse_event->RightIsDown ? 3 : 2) : ($mouse_event->RightIsDown ? 0 : 1);
|
||
}
|
||
if ($self->{layer_height_edit_last_object_id} != -1) {
|
||
# Mark the volume as modified, so Print will pick its layer height profile? Where to mark it?
|
||
# Start a timer to refresh the print? schedule_background_process() ?
|
||
$self->{print}->get_object($self->{layer_height_edit_last_object_id})->adjust_layer_height_profile(
|
||
$self->{layer_height_edit_last_z},
|
||
$self->{layer_height_edit_strength},
|
||
$self->{layer_height_edit_band_width},
|
||
$self->{layer_height_edit_last_action});
|
||
$self->{print}->get_object($self->{layer_height_edit_last_object_id})->generate_layer_height_texture(
|
||
$self->volumes->[$self->{layer_height_edit_last_object_id}]->layer_height_texture_data->ptr,
|
||
$self->{layer_preview_z_texture_height},
|
||
$self->{layer_preview_z_texture_width});
|
||
$self->Refresh;
|
||
# Automatic action on mouse down with the same coordinate.
|
||
$self->{layer_height_edit_timer}->Start(100, wxTIMER_CONTINUOUS);
|
||
}
|
||
}
|
||
|
||
sub mouse_event {
|
||
my ($self, $e) = @_;
|
||
|
||
my $pos = Slic3r::Pointf->new($e->GetPositionXY);
|
||
my $object_idx_selected = $self->{layer_height_edit_last_object_id} = ($self->layer_editing_enabled && $self->{print}) ? $self->_first_selected_object_id : -1;
|
||
|
||
if ($e->Entering && &Wx::wxMSW) {
|
||
# wxMSW needs focus in order to catch mouse wheel events
|
||
$self->SetFocus;
|
||
} elsif ($e->LeftDClick) {
|
||
if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
|
||
} elsif ($self->on_double_click) {
|
||
$self->on_double_click->();
|
||
}
|
||
} elsif ($e->LeftDown || $e->RightDown) {
|
||
# If user pressed left or right button we first check whether this happened
|
||
# on a volume or not.
|
||
my $volume_idx = $self->_hover_volume_idx // -1;
|
||
$self->_layer_height_edited(0);
|
||
if ($object_idx_selected != -1 && $self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
|
||
# A volume is selected and the mouse is hovering over a layer thickness bar.
|
||
# Start editing the layer height.
|
||
$self->_layer_height_edited(1);
|
||
$self->_variable_layer_thickness_action($e);
|
||
} elsif ($object_idx_selected != -1 && $self->_variable_layer_thickness_reset_rect_mouse_inside($e)) {
|
||
$self->{print}->get_object($self->{layer_height_edit_last_object_id})->reset_layer_height_profile;
|
||
# Index 2 means no editing, just wait for mouse up event.
|
||
$self->_layer_height_edited(2);
|
||
$self->Refresh;
|
||
} else {
|
||
# Select volume in this 3D canvas.
|
||
# Don't deselect a volume if layer editing is enabled. We want the object to stay selected
|
||
# during the scene manipulation.
|
||
if ($self->enable_picking && ($volume_idx != -1 || ! $self->layer_editing_enabled)) {
|
||
$self->deselect_volumes;
|
||
$self->select_volume($volume_idx);
|
||
|
||
if ($volume_idx != -1) {
|
||
my $group_id = $self->volumes->[$volume_idx]->select_group_id;
|
||
my @volumes;
|
||
if ($group_id != -1) {
|
||
$self->select_volume($_)
|
||
for grep $self->volumes->[$_]->select_group_id == $group_id,
|
||
0..$#{$self->volumes};
|
||
}
|
||
}
|
||
|
||
$self->Refresh;
|
||
}
|
||
|
||
# propagate event through callback
|
||
$self->on_select->($volume_idx)
|
||
if $self->on_select;
|
||
|
||
if ($volume_idx != -1) {
|
||
if ($e->LeftDown && $self->enable_moving) {
|
||
$self->_drag_volume_idx($volume_idx);
|
||
$self->_drag_start_pos($self->mouse_to_3d(@$pos));
|
||
} elsif ($e->RightDown) {
|
||
# if right clicking on volume, propagate event through callback
|
||
$self->on_right_click->($e->GetPosition)
|
||
if $self->on_right_click;
|
||
}
|
||
}
|
||
}
|
||
} elsif ($e->Dragging && $e->LeftIsDown && ! $self->_layer_height_edited && defined($self->_drag_volume_idx)) {
|
||
# get new position at the same Z of the initial click point
|
||
my $mouse_ray = $self->mouse_ray($e->GetX, $e->GetY);
|
||
my $cur_pos = $mouse_ray->intersect_plane($self->_drag_start_pos->z);
|
||
|
||
# calculate the translation vector
|
||
my $vector = $self->_drag_start_pos->vector_to($cur_pos);
|
||
|
||
# get volume being dragged
|
||
my $volume = $self->volumes->[$self->_drag_volume_idx];
|
||
|
||
# get all volumes belonging to the same group, if any
|
||
my @volumes;
|
||
if ($volume->drag_group_id == -1) {
|
||
@volumes = ($volume);
|
||
} else {
|
||
@volumes = grep $_->drag_group_id == $volume->drag_group_id, @{$self->volumes};
|
||
}
|
||
|
||
# apply new temporary volume origin and ignore Z
|
||
$_->origin->translate($vector->x, $vector->y, 0) for @volumes; #,,
|
||
$self->_drag_start_pos($cur_pos);
|
||
$self->_dragged(1);
|
||
$self->Refresh;
|
||
} elsif ($e->Dragging) {
|
||
if ($self->_layer_height_edited && $object_idx_selected != -1) {
|
||
$self->_variable_layer_thickness_action($e) if ($self->_layer_height_edited == 1);
|
||
} elsif ($e->LeftIsDown) {
|
||
# if dragging over blank area with left button, rotate
|
||
if (defined $self->_drag_start_pos) {
|
||
my $orig = $self->_drag_start_pos;
|
||
if (TURNTABLE_MODE) {
|
||
$self->_sphi($self->_sphi + ($pos->x - $orig->x) * TRACKBALLSIZE);
|
||
$self->_stheta($self->_stheta - ($pos->y - $orig->y) * TRACKBALLSIZE); #-
|
||
$self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX;
|
||
$self->_stheta(0) if $self->_stheta < 0;
|
||
} else {
|
||
my $size = $self->GetClientSize;
|
||
my @quat = trackball(
|
||
$orig->x / ($size->width / 2) - 1,
|
||
1 - $orig->y / ($size->height / 2), #/
|
||
$pos->x / ($size->width / 2) - 1,
|
||
1 - $pos->y / ($size->height / 2), #/
|
||
);
|
||
$self->_quat(mulquats($self->_quat, \@quat));
|
||
}
|
||
$self->on_viewport_changed->() if $self->on_viewport_changed;
|
||
$self->Refresh;
|
||
}
|
||
$self->_drag_start_pos($pos);
|
||
} elsif ($e->MiddleIsDown || $e->RightIsDown) {
|
||
# if dragging over blank area with right button, translate
|
||
|
||
if (defined $self->_drag_start_xy) {
|
||
# get point in model space at Z = 0
|
||
my $cur_pos = $self->mouse_ray($e->GetX, $e->GetY)->intersect_plane(0);
|
||
my $orig = $self->mouse_ray(@{$self->_drag_start_xy})->intersect_plane(0);
|
||
$self->_camera_target->translate(
|
||
@{$orig->vector_to($cur_pos)->negative},
|
||
);
|
||
$self->on_viewport_changed->() if $self->on_viewport_changed;
|
||
$self->Refresh;
|
||
}
|
||
$self->_drag_start_xy($pos);
|
||
}
|
||
} elsif ($e->LeftUp || $e->MiddleUp || $e->RightUp) {
|
||
if ($self->_layer_height_edited) {
|
||
$self->_layer_height_edited(undef);
|
||
$self->{layer_height_edit_timer}->Stop;
|
||
$self->on_model_update->()
|
||
if ($object_idx_selected != -1 && $self->on_model_update);
|
||
} elsif ($self->on_move && defined($self->_drag_volume_idx) && $self->_dragged) {
|
||
# get all volumes belonging to the same group, if any
|
||
my @volume_idxs;
|
||
my $group_id = $self->volumes->[$self->_drag_volume_idx]->drag_group_id;
|
||
if ($group_id == -1) {
|
||
@volume_idxs = ($self->_drag_volume_idx);
|
||
} else {
|
||
@volume_idxs = grep $self->volumes->[$_]->drag_group_id == $group_id,
|
||
0..$#{$self->volumes};
|
||
}
|
||
$self->on_move->(@volume_idxs);
|
||
}
|
||
$self->_drag_volume_idx(undef);
|
||
$self->_drag_start_pos(undef);
|
||
$self->_drag_start_xy(undef);
|
||
$self->_dragged(undef);
|
||
} elsif ($e->Moving) {
|
||
$self->_mouse_pos($pos);
|
||
# Only refresh if picking is enabled, in that case the objects may get highlighted if the mouse cursor
|
||
# hovers over.
|
||
$self->Refresh if ($self->enable_picking);
|
||
} else {
|
||
$e->Skip();
|
||
}
|
||
}
|
||
|
||
sub mouse_wheel_event {
|
||
my ($self, $e) = @_;
|
||
|
||
if ($self->layer_editing_enabled && $self->{print}) {
|
||
my $object_idx_selected = $self->_first_selected_object_id;
|
||
if ($object_idx_selected != -1) {
|
||
# A volume is selected. Test, whether hovering over a layer thickness bar.
|
||
if ($self->_variable_layer_thickness_bar_rect_mouse_inside($e)) {
|
||
# Adjust the width of the selection.
|
||
$self->{layer_height_edit_band_width} = max(min($self->{layer_height_edit_band_width} * (1 + 0.1 * $e->GetWheelRotation() / $e->GetWheelDelta()), 10.), 1.5);
|
||
$self->Refresh;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
# Calculate the zoom delta and apply it to the current zoom factor
|
||
my $zoom = $e->GetWheelRotation() / $e->GetWheelDelta();
|
||
$zoom = max(min($zoom, 4), -4);
|
||
$zoom /= 10;
|
||
$self->_zoom($self->_zoom / (1-$zoom));
|
||
|
||
# In order to zoom around the mouse point we need to translate
|
||
# the camera target
|
||
my $size = Slic3r::Pointf->new($self->GetSizeWH);
|
||
my $pos = Slic3r::Pointf->new($e->GetX, $size->y - $e->GetY); #-
|
||
$self->_camera_target->translate(
|
||
# ($pos - $size/2) represents the vector from the viewport center
|
||
# to the mouse point. By multiplying it by $zoom we get the new,
|
||
# transformed, length of such vector.
|
||
# Since we want that point to stay fixed, we move our camera target
|
||
# in the opposite direction by the delta of the length of such vector
|
||
# ($zoom - 1). We then scale everything by 1/$self->_zoom since
|
||
# $self->_camera_target is expressed in terms of model units.
|
||
-($pos->x - $size->x/2) * ($zoom) / $self->_zoom,
|
||
-($pos->y - $size->y/2) * ($zoom) / $self->_zoom,
|
||
0,
|
||
) if 0;
|
||
$self->on_viewport_changed->() if $self->on_viewport_changed;
|
||
$self->Resize($self->GetSizeWH) if $self->IsShownOnScreen;
|
||
$self->Refresh;
|
||
}
|
||
|
||
# Reset selection.
|
||
sub reset_objects {
|
||
my ($self) = @_;
|
||
|
||
$self->volumes([]);
|
||
$self->_dirty(1);
|
||
}
|
||
|
||
# Setup camera to view all objects.
|
||
sub set_viewport_from_scene {
|
||
my ($self, $scene) = @_;
|
||
|
||
$self->_sphi($scene->_sphi);
|
||
$self->_stheta($scene->_stheta);
|
||
$self->_camera_target($scene->_camera_target);
|
||
$self->_zoom($scene->_zoom);
|
||
$self->_quat($scene->_quat);
|
||
$self->_dirty(1);
|
||
}
|
||
|
||
# Set the camera to a default orientation,
|
||
# zoom to volumes.
|
||
sub select_view {
|
||
my ($self, $direction) = @_;
|
||
my $dirvec;
|
||
if (ref($direction)) {
|
||
$dirvec = $direction;
|
||
} else {
|
||
if ($direction eq 'iso') {
|
||
$dirvec = VIEW_DEFAULT;
|
||
} elsif ($direction eq 'left') {
|
||
$dirvec = VIEW_LEFT;
|
||
} elsif ($direction eq 'right') {
|
||
$dirvec = VIEW_RIGHT;
|
||
} elsif ($direction eq 'top') {
|
||
$dirvec = VIEW_TOP;
|
||
} elsif ($direction eq 'bottom') {
|
||
$dirvec = VIEW_BOTTOM;
|
||
} elsif ($direction eq 'front') {
|
||
$dirvec = VIEW_FRONT;
|
||
} elsif ($direction eq 'rear') {
|
||
$dirvec = VIEW_REAR;
|
||
}
|
||
}
|
||
my $bb = $self->volumes_bounding_box;
|
||
if (! $bb->empty) {
|
||
$self->_sphi($dirvec->[0]);
|
||
$self->_stheta($dirvec->[1]);
|
||
# Avoid gimball lock.
|
||
$self->_stheta(GIMBALL_LOCK_THETA_MAX) if $self->_stheta > GIMBALL_LOCK_THETA_MAX;
|
||
$self->_stheta(0) if $self->_stheta < 0;
|
||
# View everything.
|
||
$self->zoom_to_bounding_box($bb);
|
||
$self->on_viewport_changed->() if $self->on_viewport_changed;
|
||
$self->Refresh;
|
||
}
|
||
}
|
||
|
||
sub zoom_to_bounding_box {
|
||
my ($self, $bb) = @_;
|
||
return if ($bb->empty);
|
||
|
||
# calculate the zoom factor needed to adjust viewport to
|
||
# bounding box
|
||
my $max_size = max(@{$bb->size}) * 2;
|
||
my $min_viewport_size = min($self->GetSizeWH);
|
||
$self->_zoom($min_viewport_size / $max_size);
|
||
|
||
# center view around bounding box center
|
||
$self->_camera_target($bb->center);
|
||
|
||
$self->on_viewport_changed->() if $self->on_viewport_changed;
|
||
}
|
||
|
||
sub zoom_to_bed {
|
||
my ($self) = @_;
|
||
|
||
if ($self->bed_shape) {
|
||
$self->zoom_to_bounding_box($self->bed_bounding_box);
|
||
}
|
||
}
|
||
|
||
sub zoom_to_volume {
|
||
my ($self, $volume_idx) = @_;
|
||
|
||
my $volume = $self->volumes->[$volume_idx];
|
||
my $bb = $volume->transformed_bounding_box;
|
||
$self->zoom_to_bounding_box($bb);
|
||
}
|
||
|
||
sub zoom_to_volumes {
|
||
my ($self) = @_;
|
||
$self->zoom_to_bounding_box($self->volumes_bounding_box);
|
||
}
|
||
|
||
sub volumes_bounding_box {
|
||
my ($self) = @_;
|
||
|
||
my $bb = Slic3r::Geometry::BoundingBoxf3->new;
|
||
$bb->merge($_->transformed_bounding_box) for @{$self->volumes};
|
||
return $bb;
|
||
}
|
||
|
||
sub bed_bounding_box {
|
||
my ($self) = @_;
|
||
|
||
my $bb = Slic3r::Geometry::BoundingBoxf3->new;
|
||
if ($self->bed_shape) {
|
||
$bb->merge_point(Slic3r::Pointf3->new(@$_, 0)) for @{$self->bed_shape};
|
||
}
|
||
return $bb;
|
||
}
|
||
|
||
sub max_bounding_box {
|
||
my ($self) = @_;
|
||
|
||
my $bb = $self->bed_bounding_box;
|
||
$bb->merge($self->volumes_bounding_box);
|
||
return $bb;
|
||
}
|
||
|
||
sub set_auto_bed_shape {
|
||
my ($self, $bed_shape) = @_;
|
||
|
||
# draw a default square bed around object center
|
||
my $max_size = max(@{ $self->volumes_bounding_box->size });
|
||
my $center = $self->volumes_bounding_box->center;
|
||
$self->set_bed_shape([
|
||
[ $center->x - $max_size, $center->y - $max_size ], #--
|
||
[ $center->x + $max_size, $center->y - $max_size ], #--
|
||
[ $center->x + $max_size, $center->y + $max_size ], #++
|
||
[ $center->x - $max_size, $center->y + $max_size ], #++
|
||
]);
|
||
$self->origin(Slic3r::Pointf->new(@$center[X,Y]));
|
||
}
|
||
|
||
sub set_bed_shape {
|
||
my ($self, $bed_shape) = @_;
|
||
|
||
$self->bed_shape($bed_shape);
|
||
|
||
# triangulate bed
|
||
my $expolygon = Slic3r::ExPolygon->new([ map [map scale($_), @$_], @$bed_shape ]);
|
||
my $bed_bb = $expolygon->bounding_box;
|
||
|
||
{
|
||
my @points = ();
|
||
foreach my $triangle (@{ $expolygon->triangulate }) {
|
||
push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$triangle; #))
|
||
}
|
||
$self->bed_triangles(OpenGL::Array->new_list(GL_FLOAT, @points));
|
||
}
|
||
|
||
{
|
||
my @polylines = ();
|
||
for (my $x = $bed_bb->x_min; $x <= $bed_bb->x_max; $x += scale 10) {
|
||
push @polylines, Slic3r::Polyline->new([$x,$bed_bb->y_min], [$x,$bed_bb->y_max]);
|
||
}
|
||
for (my $y = $bed_bb->y_min; $y <= $bed_bb->y_max; $y += scale 10) {
|
||
push @polylines, Slic3r::Polyline->new([$bed_bb->x_min,$y], [$bed_bb->x_max,$y]);
|
||
}
|
||
# clip with a slightly grown expolygon because our lines lay on the contours and
|
||
# may get erroneously clipped
|
||
my @lines = map Slic3r::Line->new(@$_[0,-1]),
|
||
@{intersection_pl(\@polylines, [ @{$expolygon->offset(+scaled_epsilon)} ])};
|
||
|
||
# append bed contours
|
||
push @lines, map @{$_->lines}, @$expolygon;
|
||
|
||
my @points = ();
|
||
foreach my $line (@lines) {
|
||
push @points, map {+ unscale($_->x), unscale($_->y), GROUND_Z } @$line; #))
|
||
}
|
||
$self->bed_grid_lines(OpenGL::Array->new_list(GL_FLOAT, @points));
|
||
}
|
||
|
||
$self->origin(Slic3r::Pointf->new(0,0));
|
||
}
|
||
|
||
sub deselect_volumes {
|
||
my ($self) = @_;
|
||
$_->selected(0) for @{$self->volumes};
|
||
}
|
||
|
||
sub select_volume {
|
||
my ($self, $volume_idx) = @_;
|
||
|
||
$self->volumes->[$volume_idx]->selected(1)
|
||
if $volume_idx != -1;
|
||
}
|
||
|
||
sub SetCuttingPlane {
|
||
my ($self, $z, $expolygons) = @_;
|
||
|
||
$self->cutting_plane_z($z);
|
||
|
||
# grow slices in order to display them better
|
||
$expolygons = offset_ex([ map @$_, @$expolygons ], scale 0.1);
|
||
|
||
my @verts = ();
|
||
foreach my $line (map @{$_->lines}, map @$_, @$expolygons) {
|
||
push @verts, (
|
||
unscale($line->a->x), unscale($line->a->y), $z, #))
|
||
unscale($line->b->x), unscale($line->b->y), $z, #))
|
||
);
|
||
}
|
||
$self->cut_lines_vertices(OpenGL::Array->new_list(GL_FLOAT, @verts));
|
||
}
|
||
|
||
# Given an axis and angle, compute quaternion.
|
||
sub axis_to_quat {
|
||
my ($ax, $phi) = @_;
|
||
|
||
my $lena = sqrt(reduce { $a + $b } (map { $_ * $_ } @$ax));
|
||
my @q = map { $_ * (1 / $lena) } @$ax;
|
||
@q = map { $_ * sin($phi / 2.0) } @q;
|
||
$q[$#q + 1] = cos($phi / 2.0);
|
||
return @q;
|
||
}
|
||
|
||
# Project a point on the virtual trackball.
|
||
# If it is inside the sphere, map it to the sphere, if it outside map it
|
||
# to a hyperbola.
|
||
sub project_to_sphere {
|
||
my ($r, $x, $y) = @_;
|
||
|
||
my $d = sqrt($x * $x + $y * $y);
|
||
if ($d < $r * 0.70710678118654752440) { # Inside sphere
|
||
return sqrt($r * $r - $d * $d);
|
||
} else { # On hyperbola
|
||
my $t = $r / 1.41421356237309504880;
|
||
return $t * $t / $d;
|
||
}
|
||
}
|
||
|
||
sub cross {
|
||
my ($v1, $v2) = @_;
|
||
|
||
return (@$v1[1] * @$v2[2] - @$v1[2] * @$v2[1],
|
||
@$v1[2] * @$v2[0] - @$v1[0] * @$v2[2],
|
||
@$v1[0] * @$v2[1] - @$v1[1] * @$v2[0]);
|
||
}
|
||
|
||
# Simulate a track-ball. Project the points onto the virtual trackball,
|
||
# then figure out the axis of rotation, which is the cross product of
|
||
# P1 P2 and O P1 (O is the center of the ball, 0,0,0) Note: This is a
|
||
# deformed trackball-- is a trackball in the center, but is deformed
|
||
# into a hyperbolic sheet of rotation away from the center.
|
||
# It is assumed that the arguments to this routine are in the range
|
||
# (-1.0 ... 1.0).
|
||
sub trackball {
|
||
my ($p1x, $p1y, $p2x, $p2y) = @_;
|
||
|
||
if ($p1x == $p2x && $p1y == $p2y) {
|
||
# zero rotation
|
||
return (0.0, 0.0, 0.0, 1.0);
|
||
}
|
||
|
||
# First, figure out z-coordinates for projection of P1 and P2 to
|
||
# deformed sphere
|
||
my @p1 = ($p1x, $p1y, project_to_sphere(TRACKBALLSIZE, $p1x, $p1y));
|
||
my @p2 = ($p2x, $p2y, project_to_sphere(TRACKBALLSIZE, $p2x, $p2y));
|
||
|
||
# axis of rotation (cross product of P1 and P2)
|
||
my @a = cross(\@p2, \@p1);
|
||
|
||
# Figure out how much to rotate around that axis.
|
||
my @d = map { $_ * $_ } (map { $p1[$_] - $p2[$_] } 0 .. $#p1);
|
||
my $t = sqrt(reduce { $a + $b } @d) / (2.0 * TRACKBALLSIZE);
|
||
|
||
# Avoid problems with out-of-control values...
|
||
$t = 1.0 if ($t > 1.0);
|
||
$t = -1.0 if ($t < -1.0);
|
||
my $phi = 2.0 * asin($t);
|
||
|
||
return axis_to_quat(\@a, $phi);
|
||
}
|
||
|
||
# Build a rotation matrix, given a quaternion rotation.
|
||
sub quat_to_rotmatrix {
|
||
my ($q) = @_;
|
||
|
||
my @m = ();
|
||
|
||
$m[0] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[2] * @$q[2]);
|
||
$m[1] = 2.0 * (@$q[0] * @$q[1] - @$q[2] * @$q[3]);
|
||
$m[2] = 2.0 * (@$q[2] * @$q[0] + @$q[1] * @$q[3]);
|
||
$m[3] = 0.0;
|
||
|
||
$m[4] = 2.0 * (@$q[0] * @$q[1] + @$q[2] * @$q[3]);
|
||
$m[5] = 1.0 - 2.0 * (@$q[2] * @$q[2] + @$q[0] * @$q[0]);
|
||
$m[6] = 2.0 * (@$q[1] * @$q[2] - @$q[0] * @$q[3]);
|
||
$m[7] = 0.0;
|
||
|
||
$m[8] = 2.0 * (@$q[2] * @$q[0] - @$q[1] * @$q[3]);
|
||
$m[9] = 2.0 * (@$q[1] * @$q[2] + @$q[0] * @$q[3]);
|
||
$m[10] = 1.0 - 2.0 * (@$q[1] * @$q[1] + @$q[0] * @$q[0]);
|
||
$m[11] = 0.0;
|
||
|
||
$m[12] = 0.0;
|
||
$m[13] = 0.0;
|
||
$m[14] = 0.0;
|
||
$m[15] = 1.0;
|
||
|
||
return @m;
|
||
}
|
||
|
||
sub mulquats {
|
||
my ($q1, $rq) = @_;
|
||
|
||
return (@$q1[3] * @$rq[0] + @$q1[0] * @$rq[3] + @$q1[1] * @$rq[2] - @$q1[2] * @$rq[1],
|
||
@$q1[3] * @$rq[1] + @$q1[1] * @$rq[3] + @$q1[2] * @$rq[0] - @$q1[0] * @$rq[2],
|
||
@$q1[3] * @$rq[2] + @$q1[2] * @$rq[3] + @$q1[0] * @$rq[1] - @$q1[1] * @$rq[0],
|
||
@$q1[3] * @$rq[3] - @$q1[0] * @$rq[0] - @$q1[1] * @$rq[1] - @$q1[2] * @$rq[2])
|
||
}
|
||
|
||
sub mouse_to_3d {
|
||
my ($self, $x, $y, $z) = @_;
|
||
|
||
my @viewport = glGetIntegerv_p(GL_VIEWPORT); # 4 items
|
||
my @mview = glGetDoublev_p(GL_MODELVIEW_MATRIX); # 16 items
|
||
my @proj = glGetDoublev_p(GL_PROJECTION_MATRIX); # 16 items
|
||
|
||
$y = $viewport[3] - $y;
|
||
$z //= glReadPixels_p($x, $y, 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT);
|
||
my @projected = gluUnProject_p($x, $y, $z, @mview, @proj, @viewport);
|
||
return Slic3r::Pointf3->new(@projected);
|
||
}
|
||
|
||
sub mouse_ray {
|
||
my ($self, $x, $y) = @_;
|
||
|
||
return Slic3r::Linef3->new(
|
||
$self->mouse_to_3d($x, $y, 0),
|
||
$self->mouse_to_3d($x, $y, 1),
|
||
);
|
||
}
|
||
|
||
sub GetContext {
|
||
my ($self) = @_;
|
||
|
||
if (Wx::wxVERSION >= 2.009) {
|
||
return $self->{context} ||= Wx::GLContext->new($self);
|
||
} else {
|
||
return $self->SUPER::GetContext;
|
||
}
|
||
}
|
||
|
||
sub SetCurrent {
|
||
my ($self, $context) = @_;
|
||
|
||
if (Wx::wxVERSION >= 2.009) {
|
||
return $self->SUPER::SetCurrent($context);
|
||
} else {
|
||
return $self->SUPER::SetCurrent;
|
||
}
|
||
}
|
||
|
||
sub Resize {
|
||
my ($self, $x, $y) = @_;
|
||
|
||
return unless $self->GetContext;
|
||
$self->_dirty(0);
|
||
|
||
$self->SetCurrent($self->GetContext);
|
||
glViewport(0, 0, $x, $y);
|
||
|
||
$x /= $self->_zoom;
|
||
$y /= $self->_zoom;
|
||
|
||
glMatrixMode(GL_PROJECTION);
|
||
glLoadIdentity();
|
||
if ($self->_camera_type eq 'ortho') {
|
||
#FIXME setting the size of the box 10x larger than necessary
|
||
# is only a workaround for an incorrectly set camera.
|
||
# This workaround harms Z-buffer accuracy!
|
||
# my $depth = 1.05 * $self->max_bounding_box->radius();
|
||
my $depth = 10.0 * $self->max_bounding_box->radius();
|
||
glOrtho(
|
||
-$x/2, $x/2, -$y/2, $y/2,
|
||
-$depth, $depth,
|
||
);
|
||
} else {
|
||
die "Invalid camera type: ", $self->_camera_type, "\n" if ($self->_camera_type ne 'perspective');
|
||
my $bbox_r = $self->max_bounding_box->radius();
|
||
my $fov = PI * 45. / 180.;
|
||
my $fov_tan = tan(0.5 * $fov);
|
||
my $cam_distance = 0.5 * $bbox_r / $fov_tan;
|
||
$self->_camera_distance($cam_distance);
|
||
my $nr = $cam_distance - $bbox_r * 1.1;
|
||
my $fr = $cam_distance + $bbox_r * 1.1;
|
||
$nr = 1 if ($nr < 1);
|
||
$fr = $nr + 1 if ($fr < $nr + 1);
|
||
my $h2 = $fov_tan * $nr;
|
||
my $w2 = $h2 * $x / $y;
|
||
glFrustum(-$w2, $w2, -$h2, $h2, $nr, $fr);
|
||
}
|
||
|
||
glMatrixMode(GL_MODELVIEW);
|
||
}
|
||
|
||
sub InitGL {
|
||
my $self = shift;
|
||
|
||
return if $self->init;
|
||
return unless $self->GetContext;
|
||
$self->init(1);
|
||
|
||
my $shader = $self->{shader} = new Slic3r::GUI::GLShader;
|
||
my $info = $shader->Load($self->_fragment_shader, $self->_vertex_shader);
|
||
# print $info if $info;
|
||
($self->{layer_preview_z_texture_id}) = glGenTextures_p(1);
|
||
glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
|
||
glBindTexture(GL_TEXTURE_2D, 0);
|
||
|
||
glClearColor(0, 0, 0, 1);
|
||
glColor3f(1, 0, 0);
|
||
glEnable(GL_DEPTH_TEST);
|
||
glClearDepth(1.0);
|
||
glDepthFunc(GL_LEQUAL);
|
||
glEnable(GL_CULL_FACE);
|
||
glEnable(GL_BLEND);
|
||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||
|
||
# Set antialiasing/multisampling
|
||
glDisable(GL_LINE_SMOOTH);
|
||
glDisable(GL_POLYGON_SMOOTH);
|
||
glEnable(GL_MULTISAMPLE);
|
||
# glHint(GL_MULTISAMPLE_FILTER_HINT_NV, GL_NICEST);
|
||
|
||
# ambient lighting
|
||
glLightModelfv_p(GL_LIGHT_MODEL_AMBIENT, 0.3, 0.3, 0.3, 1);
|
||
|
||
glEnable(GL_LIGHTING);
|
||
glEnable(GL_LIGHT0);
|
||
glEnable(GL_LIGHT1);
|
||
|
||
# light from camera
|
||
glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0);
|
||
glLightfv_p(GL_LIGHT1, GL_SPECULAR, 0.3, 0.3, 0.3, 1);
|
||
glLightfv_p(GL_LIGHT1, GL_DIFFUSE, 0.2, 0.2, 0.2, 1);
|
||
|
||
# Enables Smooth Color Shading; try GL_FLAT for (lack of) fun.
|
||
glShadeModel(GL_SMOOTH);
|
||
|
||
glMaterialfv_p(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, 0.5, 0.3, 0.3, 1);
|
||
glMaterialfv_p(GL_FRONT_AND_BACK, GL_SPECULAR, 1, 1, 1, 1);
|
||
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 50);
|
||
glMaterialfv_p(GL_FRONT_AND_BACK, GL_EMISSION, 0.1, 0, 0, 0.9);
|
||
|
||
# A handy trick -- have surface material mirror the color.
|
||
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
|
||
glEnable(GL_COLOR_MATERIAL);
|
||
glEnable(GL_MULTISAMPLE);
|
||
}
|
||
|
||
sub DestroyGL {
|
||
my $self = shift;
|
||
if ($self->init && $self->GetContext) {
|
||
delete $self->{shader};
|
||
}
|
||
}
|
||
|
||
sub Render {
|
||
my ($self, $dc) = @_;
|
||
|
||
# prevent calling SetCurrent() when window is not shown yet
|
||
return unless $self->IsShownOnScreen;
|
||
return unless my $context = $self->GetContext;
|
||
$self->SetCurrent($context);
|
||
$self->InitGL;
|
||
|
||
glClearColor(1, 1, 1, 1);
|
||
glClearDepth(1);
|
||
glDepthFunc(GL_LESS);
|
||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||
|
||
glMatrixMode(GL_MODELVIEW);
|
||
glLoadIdentity();
|
||
|
||
{
|
||
# Shift the perspective camera.
|
||
my $camera_pos = Slic3r::Pointf3->new(0,0,-$self->_camera_distance);
|
||
glTranslatef(@$camera_pos);
|
||
}
|
||
|
||
if (TURNTABLE_MODE) {
|
||
glRotatef(-$self->_stheta, 1, 0, 0); # pitch
|
||
glRotatef($self->_sphi, 0, 0, 1); # yaw
|
||
} else {
|
||
my @rotmat = quat_to_rotmatrix($self->quat);
|
||
glMultMatrixd_p(@rotmat[0..15]);
|
||
}
|
||
glTranslatef(@{ $self->_camera_target->negative });
|
||
|
||
# light from above
|
||
glLightfv_p(GL_LIGHT0, GL_POSITION, -0.5, -0.5, 1, 0);
|
||
glLightfv_p(GL_LIGHT0, GL_SPECULAR, 0.2, 0.2, 0.2, 1);
|
||
glLightfv_p(GL_LIGHT0, GL_DIFFUSE, 0.5, 0.5, 0.5, 1);
|
||
|
||
# Head light
|
||
glLightfv_p(GL_LIGHT1, GL_POSITION, 1, 0, 1, 0);
|
||
|
||
if ($self->enable_picking) {
|
||
# Render the object for picking.
|
||
# FIXME This cannot possibly work in a multi-sampled context as the color gets mangled by the anti-aliasing.
|
||
# Better to use software ray-casting on a bounding-box hierarchy.
|
||
glDisable(GL_MULTISAMPLE);
|
||
glDisable(GL_LIGHTING);
|
||
$self->draw_volumes(1);
|
||
glFlush();
|
||
glFinish();
|
||
|
||
if (my $pos = $self->_mouse_pos) {
|
||
my $col = [ glReadPixels_p($pos->x, $self->GetSize->GetHeight - $pos->y, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE) ];
|
||
my $volume_idx = $col->[0] + $col->[1]*256 + $col->[2]*256*256;
|
||
$self->_hover_volume_idx(undef);
|
||
$_->hover(0) for @{$self->volumes};
|
||
if ($volume_idx <= $#{$self->volumes}) {
|
||
$self->_hover_volume_idx($volume_idx);
|
||
|
||
$self->volumes->[$volume_idx]->hover(1);
|
||
my $group_id = $self->volumes->[$volume_idx]->select_group_id;
|
||
if ($group_id != -1) {
|
||
$_->hover(1) for grep { $_->select_group_id == $group_id } @{$self->volumes};
|
||
}
|
||
|
||
$self->on_hover->($volume_idx) if $self->on_hover;
|
||
}
|
||
}
|
||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||
glFlush();
|
||
glFinish();
|
||
glEnable(GL_LIGHTING);
|
||
glEnable(GL_MULTISAMPLE);
|
||
}
|
||
|
||
# draw fixed background
|
||
if ($self->background) {
|
||
glDisable(GL_LIGHTING);
|
||
glPushMatrix();
|
||
glLoadIdentity();
|
||
|
||
glMatrixMode(GL_PROJECTION);
|
||
glPushMatrix();
|
||
glLoadIdentity();
|
||
|
||
# Draws a bluish bottom to top gradient over the complete screen.
|
||
glDisable(GL_DEPTH_TEST);
|
||
glBegin(GL_QUADS);
|
||
glColor3f(0.0,0.0,0.0);
|
||
glVertex3f(-1.0,-1.0, 1.0);
|
||
glVertex3f( 1.0,-1.0, 1.0);
|
||
glColor3f(10/255,98/255,144/255);
|
||
glVertex3f( 1.0, 1.0, 1.0);
|
||
glVertex3f(-1.0, 1.0, 1.0);
|
||
glEnd();
|
||
glPopMatrix();
|
||
glEnable(GL_DEPTH_TEST);
|
||
|
||
glMatrixMode(GL_MODELVIEW);
|
||
glPopMatrix();
|
||
glEnable(GL_LIGHTING);
|
||
}
|
||
|
||
# draw ground and axes
|
||
glDisable(GL_LIGHTING);
|
||
|
||
# draw ground
|
||
my $ground_z = GROUND_Z;
|
||
if ($self->bed_triangles) {
|
||
glDisable(GL_DEPTH_TEST);
|
||
|
||
glEnable(GL_BLEND);
|
||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||
|
||
glEnableClientState(GL_VERTEX_ARRAY);
|
||
glColor4f(0.8, 0.6, 0.5, 0.4);
|
||
glNormal3d(0,0,1);
|
||
glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_triangles->ptr());
|
||
glDrawArrays(GL_TRIANGLES, 0, $self->bed_triangles->elements / 3);
|
||
glDisableClientState(GL_VERTEX_ARRAY);
|
||
|
||
# we need depth test for grid, otherwise it would disappear when looking
|
||
# the object from below
|
||
glEnable(GL_DEPTH_TEST);
|
||
|
||
# draw grid
|
||
glLineWidth(3);
|
||
glColor4f(0.2, 0.2, 0.2, 0.4);
|
||
glEnableClientState(GL_VERTEX_ARRAY);
|
||
glVertexPointer_c(3, GL_FLOAT, 0, $self->bed_grid_lines->ptr());
|
||
glDrawArrays(GL_LINES, 0, $self->bed_grid_lines->elements / 3);
|
||
glDisableClientState(GL_VERTEX_ARRAY);
|
||
|
||
glDisable(GL_BLEND);
|
||
}
|
||
|
||
my $volumes_bb = $self->volumes_bounding_box;
|
||
|
||
{
|
||
# draw axes
|
||
# disable depth testing so that axes are not covered by ground
|
||
glDisable(GL_DEPTH_TEST);
|
||
my $origin = $self->origin;
|
||
my $axis_len = max(
|
||
0.3 * max(@{ $self->bed_bounding_box->size }),
|
||
2 * max(@{ $volumes_bb->size }),
|
||
);
|
||
glLineWidth(2);
|
||
glBegin(GL_LINES);
|
||
# draw line for x axis
|
||
glColor3f(1, 0, 0);
|
||
glVertex3f(@$origin, $ground_z);
|
||
glVertex3f($origin->x + $axis_len, $origin->y, $ground_z); #,,
|
||
# draw line for y axis
|
||
glColor3f(0, 1, 0);
|
||
glVertex3f(@$origin, $ground_z);
|
||
glVertex3f($origin->x, $origin->y + $axis_len, $ground_z); #++
|
||
glEnd();
|
||
# draw line for Z axis
|
||
# (re-enable depth test so that axis is correctly shown when objects are behind it)
|
||
glEnable(GL_DEPTH_TEST);
|
||
glBegin(GL_LINES);
|
||
glColor3f(0, 0, 1);
|
||
glVertex3f(@$origin, $ground_z);
|
||
glVertex3f(@$origin, $ground_z+$axis_len);
|
||
glEnd();
|
||
}
|
||
|
||
glEnable(GL_LIGHTING);
|
||
|
||
# draw objects
|
||
$self->draw_volumes;
|
||
|
||
# draw cutting plane
|
||
if (defined $self->cutting_plane_z) {
|
||
my $plane_z = $self->cutting_plane_z;
|
||
my $bb = $volumes_bb;
|
||
glDisable(GL_CULL_FACE);
|
||
glDisable(GL_LIGHTING);
|
||
glEnable(GL_BLEND);
|
||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||
glBegin(GL_QUADS);
|
||
glColor4f(0.8, 0.8, 0.8, 0.5);
|
||
glVertex3f($bb->x_min-20, $bb->y_min-20, $plane_z);
|
||
glVertex3f($bb->x_max+20, $bb->y_min-20, $plane_z);
|
||
glVertex3f($bb->x_max+20, $bb->y_max+20, $plane_z);
|
||
glVertex3f($bb->x_min-20, $bb->y_max+20, $plane_z);
|
||
glEnd();
|
||
glEnable(GL_CULL_FACE);
|
||
glDisable(GL_BLEND);
|
||
}
|
||
|
||
$self->draw_active_object_annotations;
|
||
|
||
$self->SwapBuffers();
|
||
|
||
# Calling glFinish has a performance penalty, but it seems to fix some OpenGL driver hang-up with extremely large scenes.
|
||
glFinish();
|
||
}
|
||
|
||
sub draw_volumes {
|
||
# $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking.
|
||
my ($self, $fakecolor) = @_;
|
||
|
||
glEnable(GL_BLEND);
|
||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||
|
||
glEnableClientState(GL_VERTEX_ARRAY);
|
||
glEnableClientState(GL_NORMAL_ARRAY);
|
||
|
||
my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative;
|
||
foreach my $volume_idx (0..$#{$self->volumes}) {
|
||
my $volume = $self->volumes->[$volume_idx];
|
||
|
||
my $shader_active = 0;
|
||
if ($self->layer_editing_enabled && ! $fakecolor && $volume->selected && $self->{shader} && $volume->{layer_height_texture_data}) {
|
||
my $print_object = $self->{print}->get_object(int($volume->select_group_id / 1000000));
|
||
{
|
||
# Update the height texture if the ModelObject::layer_height_texture is invalid.
|
||
my $ncells = $print_object->generate_layer_height_texture(
|
||
$volume->{layer_height_texture_data}->ptr,
|
||
$self->{layer_preview_z_texture_height},
|
||
$self->{layer_preview_z_texture_width},
|
||
!defined($volume->{layer_height_texture_cells}));
|
||
$volume->{layer_height_texture_cells} = $ncells if $ncells > 0;
|
||
}
|
||
$self->{shader}->Enable;
|
||
my $z_to_texture_row_id = $self->{shader}->Map('z_to_texture_row');
|
||
my $z_texture_row_to_normalized_id = $self->{shader}->Map('z_texture_row_to_normalized');
|
||
my $z_cursor_id = $self->{shader}->Map('z_cursor');
|
||
my $z_cursor_band_width_id = $self->{shader}->Map('z_cursor_band_width');
|
||
die if ! defined($z_to_texture_row_id);
|
||
die if ! defined($z_texture_row_to_normalized_id);
|
||
die if ! defined($z_cursor_id);
|
||
die if ! defined($z_cursor_band_width_id);
|
||
my $ncells = $volume->{layer_height_texture_cells};
|
||
my $z_max = $volume->{bounding_box}->z_max;
|
||
glUniform1fARB($z_to_texture_row_id, ($ncells - 1) / ($self->{layer_preview_z_texture_width} * $z_max));
|
||
glUniform1fARB($z_texture_row_to_normalized_id, 1. / $self->{layer_preview_z_texture_height});
|
||
glUniform1fARB($z_cursor_id, $z_max * $z_cursor_relative);
|
||
glUniform1fARB($z_cursor_band_width_id, $self->{layer_height_edit_band_width});
|
||
glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
|
||
# glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_LEVEL, 0);
|
||
# glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
|
||
if (1) {
|
||
glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height},
|
||
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
|
||
glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2,
|
||
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
|
||
# glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
|
||
# glPixelStorei(GL_UNPACK_ROW_LENGTH, $self->{layer_preview_z_texture_width});
|
||
glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height},
|
||
GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr);
|
||
glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2,
|
||
GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->offset($self->{layer_preview_z_texture_width} * $self->{layer_preview_z_texture_height} * 4));
|
||
} else {
|
||
glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height},
|
||
0, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr);
|
||
glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $self->{layer_preview_z_texture_width}/2, $self->{layer_preview_z_texture_height}/2,
|
||
0, GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr + $self->{layer_preview_z_texture_width} * $self->{layer_preview_z_texture_height} * 4);
|
||
}
|
||
|
||
# my $nlines = ceil($ncells / ($self->{layer_preview_z_texture_width} - 1));
|
||
|
||
$shader_active = 1;
|
||
} elsif ($fakecolor) {
|
||
# Object picking mode. Render the object with a color encoding the object index.
|
||
my $r = ($volume_idx & 0x000000FF) >> 0;
|
||
my $g = ($volume_idx & 0x0000FF00) >> 8;
|
||
my $b = ($volume_idx & 0x00FF0000) >> 16;
|
||
glColor4f($r/255.0, $g/255.0, $b/255.0, 1);
|
||
} elsif ($volume->selected) {
|
||
glColor4f(@{ &SELECTED_COLOR });
|
||
} elsif ($volume->hover) {
|
||
glColor4f(@{ &HOVER_COLOR });
|
||
} else {
|
||
glColor4f(@{ $volume->color });
|
||
}
|
||
|
||
my $qverts_begin = 0;
|
||
my $qverts_end = defined($volume->qverts) ? $volume->qverts->size() : 0;
|
||
my $tverts_begin = 0;
|
||
my $tverts_end = defined($volume->tverts) ? $volume->tverts->size() : 0;
|
||
my $n_offsets = ($volume->range && $volume->offsets) ? scalar(@{$volume->offsets}) : 0;
|
||
if ($n_offsets) {
|
||
# The Z layer range is specified.
|
||
# First test whether the Z span of this object is not out of ($min_z, $max_z) completely.
|
||
my ($min_z, $max_z) = @{$volume->range};
|
||
next if ($volume->offsets->[0] > $max_z || $volume->offsets->[-3] < $min_z);
|
||
# Then find the lowest layer to be displayed.
|
||
my $i = 0;
|
||
while ($i < $n_offsets && $volume->offsets->[$i] < $min_z) {
|
||
$i += 3;
|
||
}
|
||
# This shall not happen.
|
||
next if ($i == $n_offsets);
|
||
# Remember start of the layer.
|
||
$qverts_begin = $volume->offsets->[$i+1];
|
||
$tverts_begin = $volume->offsets->[$i+2];
|
||
# Some layers are above $min_z. Which?
|
||
while ($i < $n_offsets && $volume->offsets->[$i] <= $max_z) {
|
||
$i += 3;
|
||
}
|
||
if ($i < $n_offsets) {
|
||
$qverts_end = $volume->offsets->[$i+1];
|
||
$tverts_end = $volume->offsets->[$i+2];
|
||
}
|
||
}
|
||
|
||
glPushMatrix();
|
||
glTranslatef(@{$volume->origin});
|
||
|
||
glCullFace(GL_BACK);
|
||
if ($qverts_begin < $qverts_end) {
|
||
glVertexPointer_c(3, GL_FLOAT, 0, $volume->qverts->verts_ptr);
|
||
glNormalPointer_c(GL_FLOAT, 0, $volume->qverts->norms_ptr);
|
||
$qverts_begin /= 3;
|
||
$qverts_end /= 3;
|
||
my $nvertices = $qverts_end-$qverts_begin;
|
||
while ($nvertices > 0) {
|
||
my $nvertices_this = ($nvertices > 4096) ? 4096 : $nvertices;
|
||
glDrawArrays(GL_QUADS, $qverts_begin, $nvertices_this);
|
||
$qverts_begin += $nvertices_this;
|
||
$nvertices -= $nvertices_this;
|
||
}
|
||
}
|
||
|
||
if ($tverts_begin < $tverts_end) {
|
||
glVertexPointer_c(3, GL_FLOAT, 0, $volume->tverts->verts_ptr);
|
||
glNormalPointer_c(GL_FLOAT, 0, $volume->tverts->norms_ptr);
|
||
$tverts_begin /= 3;
|
||
$tverts_end /= 3;
|
||
my $nvertices = $tverts_end-$tverts_begin;
|
||
while ($nvertices > 0) {
|
||
my $nvertices_this = ($nvertices > 4095) ? 4095 : $nvertices;
|
||
glDrawArrays(GL_TRIANGLES, $tverts_begin, $nvertices_this);
|
||
$tverts_begin += $nvertices_this;
|
||
$nvertices -= $nvertices_this;
|
||
}
|
||
}
|
||
|
||
glVertexPointer_c(3, GL_FLOAT, 0, 0);
|
||
glNormalPointer_c(GL_FLOAT, 0, 0);
|
||
glPopMatrix();
|
||
|
||
if ($shader_active) {
|
||
glBindTexture(GL_TEXTURE_2D, 0);
|
||
$self->{shader}->Disable;
|
||
}
|
||
}
|
||
glDisableClientState(GL_NORMAL_ARRAY);
|
||
glDisable(GL_BLEND);
|
||
|
||
if (defined $self->cutting_plane_z) {
|
||
glLineWidth(2);
|
||
glColor3f(0, 0, 0);
|
||
glVertexPointer_c(3, GL_FLOAT, 0, $self->cut_lines_vertices->ptr());
|
||
glDrawArrays(GL_LINES, 0, $self->cut_lines_vertices->elements / 3);
|
||
glVertexPointer_c(3, GL_FLOAT, 0, 0);
|
||
}
|
||
glDisableClientState(GL_VERTEX_ARRAY);
|
||
}
|
||
|
||
sub _load_image_set_texture {
|
||
my ($self, $file_name) = @_;
|
||
# Load a PNG with an alpha channel.
|
||
my $img = Wx::Image->new;
|
||
$img->LoadFile($Slic3r::var->($file_name), wxBITMAP_TYPE_PNG);
|
||
# Get RGB & alpha raw data from wxImage, interleave them into a Perl array.
|
||
my @rgb = unpack 'C*', $img->GetData();
|
||
my @alpha = $img->HasAlpha ? unpack 'C*', $img->GetAlpha() : (255) x (int(@rgb) / 3);
|
||
# my @alpha = unpack 'C*', $img->GetAlpha();
|
||
my $n_pixels = int(@alpha);
|
||
my @data = (0)x($n_pixels * 4);
|
||
for (my $i = 0; $i < $n_pixels; $i += 1) {
|
||
$data[$i*4 ] = $rgb[$i*3];
|
||
$data[$i*4+1] = $rgb[$i*3+1];
|
||
$data[$i*4+2] = $rgb[$i*3+2];
|
||
$data[$i*4+3] = $alpha[$i];
|
||
}
|
||
# Initialize a raw bitmap data.
|
||
my $params = {
|
||
loaded => 1,
|
||
valid => $n_pixels > 0,
|
||
width => $img->GetWidth,
|
||
height => $img->GetHeight,
|
||
data => OpenGL::Array->new_list(GL_UNSIGNED_BYTE, @data),
|
||
texture_id => glGenTextures_p(1)
|
||
};
|
||
# Create and initialize a texture with the raw data.
|
||
glBindTexture(GL_TEXTURE_2D, $params->{texture_id});
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
|
||
glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $params->{width}, $params->{height}, 0, GL_RGBA, GL_UNSIGNED_BYTE, $params->{data}->ptr);
|
||
glBindTexture(GL_TEXTURE_2D, 0);
|
||
return $params;
|
||
}
|
||
|
||
sub _variable_layer_thickness_load_overlay_image {
|
||
my ($self) = @_;
|
||
$self->{layer_preview_annotation} = $self->_load_image_set_texture('variable_layer_height_tooltip.png')
|
||
if (! $self->{layer_preview_annotation}->{loaded});
|
||
return $self->{layer_preview_annotation}->{valid};
|
||
}
|
||
|
||
sub _variable_layer_thickness_load_reset_image {
|
||
my ($self) = @_;
|
||
$self->{layer_preview_reset_image} = $self->_load_image_set_texture('variable_layer_height_reset.png')
|
||
if (! $self->{layer_preview_reset_image}->{loaded});
|
||
return $self->{layer_preview_reset_image}->{valid};
|
||
}
|
||
|
||
# Paint the tooltip.
|
||
sub _render_image {
|
||
my ($self, $image, $l, $r, $b, $t) = @_;
|
||
glColor4f(1.,1.,1.,1.);
|
||
glDisable(GL_LIGHTING);
|
||
glEnable(GL_BLEND);
|
||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||
glEnable(GL_TEXTURE_2D);
|
||
glBindTexture(GL_TEXTURE_2D, $image->{texture_id});
|
||
glBegin(GL_QUADS);
|
||
glTexCoord2d(0.,1.); glVertex3f($l, $b, 0);
|
||
glTexCoord2d(1.,1.); glVertex3f($r, $b, 0);
|
||
glTexCoord2d(1.,0.); glVertex3f($r, $t, 0);
|
||
glTexCoord2d(0.,0.); glVertex3f($l, $t, 0);
|
||
glEnd();
|
||
glBindTexture(GL_TEXTURE_2D, 0);
|
||
glDisable(GL_TEXTURE_2D);
|
||
glDisable(GL_BLEND);
|
||
glEnable(GL_LIGHTING);
|
||
}
|
||
|
||
sub draw_active_object_annotations {
|
||
# $fakecolor is a boolean indicating, that the objects shall be rendered in a color coding the object index for picking.
|
||
my ($self) = @_;
|
||
|
||
return if (! $self->{shader} || ! $self->layer_editing_enabled);
|
||
|
||
my $volume;
|
||
foreach my $volume_idx (0..$#{$self->volumes}) {
|
||
my $v = $self->volumes->[$volume_idx];
|
||
if ($v->selected && $v->{layer_height_texture_data} && $v->{layer_height_texture_cells}) {
|
||
$volume = $v;
|
||
last;
|
||
}
|
||
}
|
||
return if (! $volume);
|
||
|
||
# The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth),
|
||
# where x, y is the window size divided by $self->_zoom.
|
||
my ($bar_left, $bar_bottom, $bar_right, $bar_top) = $self->_variable_layer_thickness_bar_rect_viewport;
|
||
my ($reset_left, $reset_bottom, $reset_right, $reset_top) = $self->_variable_layer_thickness_reset_rect_viewport;
|
||
my $z_cursor_relative = $self->_variable_layer_thickness_bar_mouse_cursor_z_relative;
|
||
|
||
$self->{shader}->Enable;
|
||
my $z_to_texture_row_id = $self->{shader}->Map('z_to_texture_row');
|
||
my $z_texture_row_to_normalized_id = $self->{shader}->Map('z_texture_row_to_normalized');
|
||
my $z_cursor_id = $self->{shader}->Map('z_cursor');
|
||
my $ncells = $volume->{layer_height_texture_cells};
|
||
my $z_max = $volume->{bounding_box}->z_max;
|
||
glUniform1fARB($z_to_texture_row_id, ($ncells - 1) / ($self->{layer_preview_z_texture_width} * $z_max));
|
||
glUniform1fARB($z_texture_row_to_normalized_id, 1. / $self->{layer_preview_z_texture_height});
|
||
glUniform1fARB($z_cursor_id, $z_max * $z_cursor_relative);
|
||
glBindTexture(GL_TEXTURE_2D, $self->{layer_preview_z_texture_id});
|
||
glTexImage2D_c(GL_TEXTURE_2D, 0, GL_RGBA8, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height},
|
||
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
|
||
glTexImage2D_c(GL_TEXTURE_2D, 1, GL_RGBA8, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2,
|
||
0, GL_RGBA, GL_UNSIGNED_BYTE, 0);
|
||
glTexSubImage2D_c(GL_TEXTURE_2D, 0, 0, 0, $self->{layer_preview_z_texture_width}, $self->{layer_preview_z_texture_height},
|
||
GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->ptr);
|
||
glTexSubImage2D_c(GL_TEXTURE_2D, 1, 0, 0, $self->{layer_preview_z_texture_width} / 2, $self->{layer_preview_z_texture_height} / 2,
|
||
GL_RGBA, GL_UNSIGNED_BYTE, $volume->{layer_height_texture_data}->offset($self->{layer_preview_z_texture_width} * $self->{layer_preview_z_texture_height} * 4));
|
||
|
||
# Render the color bar.
|
||
glDisable(GL_DEPTH_TEST);
|
||
# The viewport and camera are set to complete view and glOrtho(-$x/2, $x/2, -$y/2, $y/2, -$depth, $depth),
|
||
# where x, y is the window size divided by $self->_zoom.
|
||
glPushMatrix();
|
||
glLoadIdentity();
|
||
# Paint the overlay.
|
||
glBegin(GL_QUADS);
|
||
glVertex3f($bar_left, $bar_bottom, 0);
|
||
glVertex3f($bar_right, $bar_bottom, 0);
|
||
glVertex3f($bar_right, $bar_top, $volume->{bounding_box}->z_max);
|
||
glVertex3f($bar_left, $bar_top, $volume->{bounding_box}->z_max);
|
||
glEnd();
|
||
glBindTexture(GL_TEXTURE_2D, 0);
|
||
$self->{shader}->Disable;
|
||
|
||
# Paint the tooltip.
|
||
if ($self->_variable_layer_thickness_load_overlay_image) {
|
||
my $gap = 10/$self->_zoom;
|
||
my ($l, $r, $b, $t) = ($bar_left - $self->{layer_preview_annotation}->{width}/$self->_zoom - $gap, $bar_left - $gap, $reset_bottom + $self->{layer_preview_annotation}->{height}/$self->_zoom + $gap, $reset_bottom + $gap);
|
||
$self->_render_image($self->{layer_preview_annotation}, $l, $r, $t, $b);
|
||
}
|
||
|
||
# Paint the reset button.
|
||
if ($self->_variable_layer_thickness_load_reset_image) {
|
||
$self->_render_image($self->{layer_preview_reset_image}, $reset_left, $reset_right, $reset_bottom, $reset_top);
|
||
}
|
||
|
||
# Paint the graph.
|
||
#FIXME use the min / maximum layer height
|
||
#FIXME show some kind of legend.
|
||
my $object_idx = int($volume->select_group_id / 1000000);
|
||
my $print_object = $self->{print}->get_object($object_idx);
|
||
my $max_z = unscale($print_object->size->z);
|
||
my $profile = $print_object->model_object->layer_height_profile;
|
||
my $layer_height = $print_object->config->get('layer_height');
|
||
# Baseline
|
||
glColor3f(0., 0., 0.);
|
||
glBegin(GL_LINE_STRIP);
|
||
glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / 0.45, $bar_bottom);
|
||
glVertex2f($bar_left + $layer_height * ($bar_right - $bar_left) / 0.45, $bar_top);
|
||
glEnd();
|
||
# Curve
|
||
glColor3f(0., 0., 1.);
|
||
glBegin(GL_LINE_STRIP);
|
||
for (my $i = 0; $i < int(@{$profile}); $i += 2) {
|
||
my $z = $profile->[$i];
|
||
my $h = $profile->[$i+1];
|
||
glVertex3f($bar_left + $h * ($bar_right - $bar_left) / 0.45, $bar_bottom + $z * ($bar_top - $bar_bottom) / $max_z, $z);
|
||
}
|
||
glEnd();
|
||
# Revert the matrices.
|
||
glPopMatrix();
|
||
glEnable(GL_DEPTH_TEST);
|
||
}
|
||
|
||
sub _report_opengl_state
|
||
{
|
||
my ($self, $comment) = @_;
|
||
my $err = glGetError();
|
||
return 0 if ($err == 0);
|
||
|
||
# gluErrorString() hangs. Don't use it.
|
||
# my $errorstr = gluErrorString();
|
||
my $errorstr = '';
|
||
if ($err == 0x0500) {
|
||
$errorstr = 'GL_INVALID_ENUM';
|
||
} elsif ($err == GL_INVALID_VALUE) {
|
||
$errorstr = 'GL_INVALID_VALUE';
|
||
} elsif ($err == GL_INVALID_OPERATION) {
|
||
$errorstr = 'GL_INVALID_OPERATION';
|
||
} elsif ($err == GL_STACK_OVERFLOW) {
|
||
$errorstr = 'GL_STACK_OVERFLOW';
|
||
} elsif ($err == GL_OUT_OF_MEMORY) {
|
||
$errorstr = 'GL_OUT_OF_MEMORY';
|
||
} else {
|
||
$errorstr = 'unknown';
|
||
}
|
||
if (defined($comment)) {
|
||
printf("OpenGL error at %s, nr %d (0x%x): %s\n", $comment, $err, $err, $errorstr);
|
||
} else {
|
||
printf("OpenGL error nr %d (0x%x): %s\n", $err, $err, $errorstr);
|
||
}
|
||
}
|
||
|
||
sub _vertex_shader {
|
||
return <<'VERTEX';
|
||
#version 110
|
||
|
||
#define LIGHT_TOP_DIR 0., 1., 0.
|
||
#define LIGHT_TOP_DIFFUSE 0.2
|
||
#define LIGHT_TOP_SPECULAR 0.3
|
||
|
||
#define LIGHT_FRONT_DIR 0., 0., 1.
|
||
#define LIGHT_FRONT_DIFFUSE 0.5
|
||
#define LIGHT_FRONT_SPECULAR 0.3
|
||
|
||
#define INTENSITY_AMBIENT 0.1
|
||
|
||
uniform float z_to_texture_row;
|
||
varying float intensity_specular;
|
||
varying float intensity_tainted;
|
||
varying float object_z;
|
||
|
||
void main()
|
||
{
|
||
vec3 eye, normal, lightDir, viewVector, halfVector;
|
||
float NdotL, NdotHV;
|
||
|
||
// eye = gl_ModelViewMatrixInverse[3].xyz;
|
||
eye = vec3(0., 0., 1.);
|
||
|
||
// First transform the normal into eye space and normalize the result.
|
||
normal = normalize(gl_NormalMatrix * gl_Normal);
|
||
|
||
// Now normalize the light's direction. Note that according to the OpenGL specification, the light is stored in eye space.
|
||
// Also since we're talking about a directional light, the position field is actually direction.
|
||
lightDir = vec3(LIGHT_TOP_DIR);
|
||
halfVector = normalize(lightDir + eye);
|
||
|
||
// Compute the cos of the angle between the normal and lights direction. The light is directional so the direction is constant for every vertex.
|
||
// Since these two are normalized the cosine is the dot product. We also need to clamp the result to the [0,1] range.
|
||
NdotL = max(dot(normal, lightDir), 0.0);
|
||
|
||
intensity_tainted = INTENSITY_AMBIENT + NdotL * LIGHT_TOP_DIFFUSE;
|
||
intensity_specular = 0.;
|
||
|
||
// if (NdotL > 0.0)
|
||
// intensity_specular = LIGHT_TOP_SPECULAR * pow(max(dot(normal, halfVector), 0.0), gl_FrontMaterial.shininess);
|
||
|
||
// Perform the same lighting calculation for the 2nd light source.
|
||
lightDir = vec3(LIGHT_FRONT_DIR);
|
||
halfVector = normalize(lightDir + eye);
|
||
NdotL = max(dot(normal, lightDir), 0.0);
|
||
intensity_tainted += NdotL * LIGHT_FRONT_DIFFUSE;
|
||
|
||
// compute the specular term if NdotL is larger than zero
|
||
if (NdotL > 0.0)
|
||
intensity_specular += LIGHT_FRONT_SPECULAR * pow(max(dot(normal, halfVector), 0.0), gl_FrontMaterial.shininess);
|
||
|
||
// Scaled to widths of the Z texture.
|
||
object_z = gl_Vertex.z / gl_Vertex.w;
|
||
|
||
gl_Position = ftransform();
|
||
}
|
||
|
||
VERTEX
|
||
}
|
||
|
||
sub _fragment_shader {
|
||
return <<'FRAGMENT';
|
||
#version 110
|
||
|
||
#define M_PI 3.1415926535897932384626433832795
|
||
|
||
// 2D texture (1D texture split by the rows) of color along the object Z axis.
|
||
uniform sampler2D z_texture;
|
||
// Scaling from the Z texture rows coordinate to the normalized texture row coordinate.
|
||
uniform float z_to_texture_row;
|
||
uniform float z_texture_row_to_normalized;
|
||
|
||
varying float intensity_specular;
|
||
varying float intensity_tainted;
|
||
varying float object_z;
|
||
uniform float z_cursor;
|
||
uniform float z_cursor_band_width;
|
||
|
||
void main()
|
||
{
|
||
float object_z_row = z_to_texture_row * object_z;
|
||
// Index of the row in the texture.
|
||
float z_texture_row = floor(object_z_row);
|
||
// Normalized coordinate from 0. to 1.
|
||
float z_texture_col = object_z_row - z_texture_row;
|
||
// float z_blend = 0.5 + 0.5 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) / 3.)));
|
||
// float z_blend = 0.5 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor)))) + 0.5;
|
||
float z_blend = 0.25 * cos(min(M_PI, abs(M_PI * (object_z - z_cursor) * 1.8 / z_cursor_band_width))) + 0.25;
|
||
// Scale z_texture_row to normalized coordinates.
|
||
// Sample the Z texture.
|
||
gl_FragColor =
|
||
vec4(intensity_specular, intensity_specular, intensity_specular, 1.) +
|
||
// intensity_tainted * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5)), -2.5);
|
||
(1. - z_blend) * intensity_tainted * texture2D(z_texture, vec2(z_texture_col, z_texture_row_to_normalized * (z_texture_row + 0.5)), -200.) +
|
||
z_blend * vec4(1., 1., 0., 0.);
|
||
// and reset the transparency.
|
||
gl_FragColor.a = 1.;
|
||
}
|
||
|
||
FRAGMENT
|
||
}
|
||
|
||
# Container for object geometry and selection status.
|
||
package Slic3r::GUI::3DScene::Volume;
|
||
use Moo;
|
||
|
||
has 'bounding_box' => (is => 'ro', required => 1);
|
||
has 'origin' => (is => 'rw', default => sub { Slic3r::Pointf3->new(0,0,0) });
|
||
has 'color' => (is => 'ro', required => 1);
|
||
# An ID containing the object ID, volume ID and instance ID.
|
||
has 'composite_id' => (is => 'rw', default => sub { -1 });
|
||
# An ID for group selection. It may be the same for all meshes of all object instances, or for just a single object instance.
|
||
has 'select_group_id' => (is => 'rw', default => sub { -1 });
|
||
# An ID for group dragging. It may be the same for all meshes of all object instances, or for just a single object instance.
|
||
has 'drag_group_id' => (is => 'rw', default => sub { -1 });
|
||
# Boolean: Is this object selected?
|
||
has 'selected' => (is => 'rw', default => sub { 0 });
|
||
# Boolean: Is mouse over this object?
|
||
has 'hover' => (is => 'rw', default => sub { 0 });
|
||
# Vector of two values: a span in the Z axis. Meaningful for a display of layers.
|
||
has 'range' => (is => 'rw');
|
||
|
||
# Geometric data.
|
||
# Quads: GLVertexArray object: C++ class maintaining an std::vector<float> for coords and normals.
|
||
has 'qverts' => (is => 'rw');
|
||
# Triangles: GLVertexArray object
|
||
has 'tverts' => (is => 'rw');
|
||
# If the qverts or tverts contain thick extrusions, then offsets keeps pointers of the starts
|
||
# of the extrusions per layer.
|
||
# The offsets stores tripples of (z_top, qverts_idx, tverts_idx) in a linear array.
|
||
has 'offsets' => (is => 'rw');
|
||
|
||
# RGBA texture along the Z axis of an object, to visualize layers by stripes colored by their height.
|
||
has 'layer_height_texture_data' => (is => 'rw');
|
||
# Number of texture cells.
|
||
has 'layer_height_texture_cells' => (is => 'rw');
|
||
|
||
sub object_idx {
|
||
my ($self) = @_;
|
||
return int($self->composite_id / 1000000);
|
||
}
|
||
|
||
sub volume_idx {
|
||
my ($self) = @_;
|
||
return ($self->composite_id / 1000) % 1000;
|
||
}
|
||
|
||
sub instance_idx {
|
||
my ($self) = @_;
|
||
return $self->composite_id % 1000;
|
||
}
|
||
|
||
sub transformed_bounding_box {
|
||
my ($self) = @_;
|
||
|
||
my $bb = $self->bounding_box;
|
||
$bb->translate(@{$self->origin});
|
||
return $bb;
|
||
}
|
||
|
||
|
||
# The 3D canvas to display objects and tool paths.
|
||
package Slic3r::GUI::3DScene;
|
||
use base qw(Slic3r::GUI::3DScene::Base);
|
||
|
||
use OpenGL qw(:glconstants :gluconstants :glufunctions);
|
||
use List::Util qw(first min max);
|
||
use Slic3r::Geometry qw(scale unscale epsilon);
|
||
use Slic3r::Print::State ':steps';
|
||
|
||
# Perimeter: yellow, Infill: redish, Suport: greenish, last: blueish,
|
||
use constant COLORS => [ [1,1,0,1], [1,0.5,0.5,1], [0.5,1,0.5,1], [0.5,0.5,1,1] ];
|
||
|
||
__PACKAGE__->mk_accessors(qw(
|
||
color_by
|
||
select_by
|
||
drag_by
|
||
));
|
||
|
||
sub new {
|
||
my $class = shift;
|
||
|
||
my $self = $class->SUPER::new(@_);
|
||
$self->color_by('volume'); # object | volume
|
||
$self->select_by('object'); # object | volume | instance
|
||
$self->drag_by('instance'); # object | instance
|
||
|
||
return $self;
|
||
}
|
||
|
||
sub load_object {
|
||
my ($self, $model, $print, $obj_idx, $instance_idxs) = @_;
|
||
|
||
my $model_object;
|
||
if ($model->isa('Slic3r::Model::Object')) {
|
||
$model_object = $model;
|
||
$model = $model_object->model;
|
||
$obj_idx = 0;
|
||
} else {
|
||
$model_object = $model->get_object($obj_idx);
|
||
}
|
||
|
||
$instance_idxs ||= [0..$#{$model_object->instances}];
|
||
|
||
# Object will have a single common layer height texture for all volumes.
|
||
my $layer_height_texture_data;
|
||
my $layer_height_texture_cells;
|
||
if ($print && $obj_idx < $print->object_count) {
|
||
# Generate the layer height texture. Allocate data for the 0th and 1st mipmap levels.
|
||
$layer_height_texture_data = OpenGL::Array->new($self->{layer_preview_z_texture_width}*$self->{layer_preview_z_texture_height}*5, GL_UNSIGNED_BYTE);
|
||
}
|
||
|
||
my @volumes_idx = ();
|
||
foreach my $volume_idx (0..$#{$model_object->volumes}) {
|
||
my $volume = $model_object->volumes->[$volume_idx];
|
||
foreach my $instance_idx (@$instance_idxs) {
|
||
my $instance = $model_object->instances->[$instance_idx];
|
||
my $mesh = $volume->mesh->clone;
|
||
$instance->transform_mesh($mesh);
|
||
|
||
my $color_idx;
|
||
if ($self->color_by eq 'volume') {
|
||
$color_idx = $volume_idx;
|
||
} elsif ($self->color_by eq 'object') {
|
||
$color_idx = $obj_idx;
|
||
}
|
||
|
||
# Using the colors 'yellowish', 'greenish', 'blueish' for both the extrusion paths
|
||
# and the volumes of a single multi-color object.
|
||
#FIXME so for 4 or more color print, there will be only 3 colors displayed, which will
|
||
# not correspond to the color of the filament.
|
||
my $color = [ @{COLORS->[ $color_idx % scalar(@{&COLORS}) ]} ];
|
||
$color->[3] = $volume->modifier ? 0.5 : 1;
|
||
push @{$self->volumes}, my $v = Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $mesh->bounding_box,
|
||
color => $color,
|
||
);
|
||
$v->composite_id($obj_idx*1000000 + $volume_idx*1000 + $instance_idx);
|
||
if ($self->select_by eq 'object') {
|
||
$v->select_group_id($obj_idx*1000000);
|
||
} elsif ($self->select_by eq 'volume') {
|
||
$v->select_group_id($obj_idx*1000000 + $volume_idx*1000);
|
||
} elsif ($self->select_by eq 'instance') {
|
||
$v->select_group_id($v->composite_id);
|
||
}
|
||
if ($self->drag_by eq 'object') {
|
||
$v->drag_group_id($obj_idx*1000);
|
||
} elsif ($self->drag_by eq 'instance') {
|
||
$v->drag_group_id($obj_idx*1000 + $instance_idx);
|
||
}
|
||
push @volumes_idx, my $scene_volume_idx = $#{$self->volumes};
|
||
|
||
my $verts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
$verts->load_mesh($mesh);
|
||
$v->tverts($verts);
|
||
|
||
if (! $volume->modifier) {
|
||
$v->layer_height_texture_data($layer_height_texture_data);
|
||
$v->layer_height_texture_cells($layer_height_texture_cells);
|
||
}
|
||
}
|
||
}
|
||
|
||
return @volumes_idx;
|
||
}
|
||
|
||
# Called possibly by utils/view-toolpaths.pl, likely broken.
|
||
sub load_print_object_slices {
|
||
my ($self, $object) = @_;
|
||
|
||
my @verts = ();
|
||
my @norms = ();
|
||
my @quad_verts = ();
|
||
my @quad_norms = ();
|
||
foreach my $layer (@{$object->layers}) {
|
||
my $gap = 0;
|
||
my $top_z = $layer->print_z;
|
||
my $bottom_z = $layer->print_z - $layer->height + $gap;
|
||
|
||
foreach my $copy (@{ $object->_shifted_copies }) {
|
||
{
|
||
my @expolygons = map $_->clone, @{$layer->slices};
|
||
$_->translate(@$copy) for @expolygons;
|
||
$self->_expolygons_to_verts(\@expolygons, $layer->print_z, \@verts, \@norms);
|
||
}
|
||
foreach my $slice (@{$layer->slices}) {
|
||
foreach my $polygon (@$slice) {
|
||
foreach my $line (@{$polygon->lines}) {
|
||
$line->translate(@$copy);
|
||
|
||
push @quad_norms, (0,0,-1), (0,0,-1);
|
||
push @quad_verts, (map unscale($_), @{$line->a}), $bottom_z;
|
||
push @quad_verts, (map unscale($_), @{$line->b}), $bottom_z;
|
||
push @quad_norms, (0,0,1), (0,0,1);
|
||
push @quad_verts, (map unscale($_), @{$line->b}), $top_z;
|
||
push @quad_verts, (map unscale($_), @{$line->a}), $top_z;
|
||
|
||
# We'll use this for the middle normal when using 4 quads:
|
||
#my $xy_normal = $line->normal;
|
||
#$_xynormal->scale(1/$line->length);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
my $obb = $object->bounding_box;
|
||
my $bb = Slic3r::Geometry::BoundingBoxf3->new;
|
||
$bb->merge_point(Slic3r::Pointf3->new_unscale(@{$obb->min_point}, 0));
|
||
$bb->merge_point(Slic3r::Pointf3->new_unscale(@{$obb->max_point}, $object->size->z));
|
||
|
||
push @{$self->volumes}, my $v = Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[0],
|
||
verts => OpenGL::Array->new_list(GL_FLOAT, @verts),
|
||
norms => OpenGL::Array->new_list(GL_FLOAT, @norms),
|
||
quad_verts => OpenGL::Array->new_list(GL_FLOAT, @quad_verts),
|
||
quad_norms => OpenGL::Array->new_list(GL_FLOAT, @quad_norms),
|
||
);
|
||
}
|
||
|
||
# Create 3D thick extrusion lines for a skirt and brim.
|
||
# Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes.
|
||
sub load_print_toolpaths {
|
||
my ($self, $print) = @_;
|
||
|
||
return if !$print->step_done(STEP_SKIRT);
|
||
return if !$print->step_done(STEP_BRIM);
|
||
return if !$print->has_skirt && $print->config->brim_width == 0;
|
||
|
||
my $qverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
my $tverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
my $offsets = []; # triples stored in a linear array, sorted by print_z: print_z, qverts, tverts
|
||
|
||
my $skirt_height = 0; # number of layers
|
||
if ($print->has_infinite_skirt) {
|
||
$skirt_height = $print->total_layer_count;
|
||
} else {
|
||
$skirt_height = min($print->config->skirt_height, $print->total_layer_count);
|
||
}
|
||
$skirt_height ||= 1 if $print->config->brim_width > 0;
|
||
|
||
# get first $skirt_height layers (maybe this should be moved to a PrintObject method?)
|
||
my $object0 = $print->get_object(0);
|
||
my @layers = ();
|
||
push @layers, map $object0->get_layer($_-1), 1..min($skirt_height, $object0->layer_count);
|
||
push @layers, map $object0->get_support_layer($_-1), 1..min($skirt_height, $object0->support_layer_count);
|
||
@layers = sort { $a->print_z <=> $b->print_z } @layers;
|
||
@layers = @layers[0..($skirt_height-1)];
|
||
|
||
foreach my $i (0..($skirt_height-1)) {
|
||
my $top_z = $layers[$i]->print_z;
|
||
push @$offsets, ($top_z, $qverts->size, $tverts->size);
|
||
|
||
if ($i == 0) {
|
||
$self->_extrusionentity_to_verts($print->brim, $top_z, Slic3r::Point->new(0,0), $qverts, $tverts);
|
||
}
|
||
|
||
$self->_extrusionentity_to_verts($print->skirt, $top_z, Slic3r::Point->new(0,0), $qverts, $tverts);
|
||
}
|
||
|
||
my $bb = Slic3r::Geometry::BoundingBoxf3->new;
|
||
{
|
||
my $pbb = $print->bounding_box;
|
||
$bb->merge_point(Slic3r::Pointf3->new_unscale(@{$pbb->min_point}));
|
||
$bb->merge_point(Slic3r::Pointf3->new_unscale(@{$pbb->max_point}));
|
||
}
|
||
push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[2],
|
||
qverts => $qverts,
|
||
tverts => $tverts,
|
||
offsets => $offsets,
|
||
);
|
||
}
|
||
|
||
# Create 3D thick extrusion lines for object forming extrusions.
|
||
# Adds a new Slic3r::GUI::3DScene::Volume to $self->volumes,
|
||
# one for perimeters, one for infill and one for supports.
|
||
sub load_print_object_toolpaths {
|
||
my ($self, $object) = @_;
|
||
|
||
my $perim_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
my $perim_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
my $infill_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
my $infill_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
my $support_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
my $support_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
|
||
my $perim_offsets = []; # triples of (print_z, qverts, tverts), stored linearly, sorted by print_z
|
||
my $infill_offsets = [];
|
||
my $support_offsets = [];
|
||
|
||
# order layers by print_z
|
||
my @layers = sort { $a->print_z <=> $b->print_z }
|
||
@{$object->layers}, @{$object->support_layers};
|
||
|
||
# Bounding box of the object and its copies.
|
||
my $bb = Slic3r::Geometry::BoundingBoxf3->new;
|
||
{
|
||
my $obb = $object->bounding_box;
|
||
foreach my $copy (@{ $object->_shifted_copies }) {
|
||
my $cbb = $obb->clone;
|
||
$cbb->translate(@$copy);
|
||
$bb->merge_point(Slic3r::Pointf3->new_unscale(@{$cbb->min_point}, 0));
|
||
$bb->merge_point(Slic3r::Pointf3->new_unscale(@{$cbb->max_point}, $object->size->z));
|
||
}
|
||
}
|
||
|
||
# Maximum size of an allocation block: 32MB / sizeof(float)
|
||
my $alloc_size_max = 32 * 1048576 / 4;
|
||
|
||
foreach my $layer (@layers) {
|
||
my $top_z = $layer->print_z;
|
||
|
||
push @$perim_offsets, ($top_z, $perim_qverts->size, $perim_tverts->size)
|
||
if (!@$perim_offsets || $perim_offsets->[-3] != $top_z);
|
||
push @$infill_offsets, ($top_z, $infill_qverts->size, $infill_tverts->size)
|
||
if (!@$infill_offsets || $infill_offsets->[-3] != $top_z);
|
||
push @$support_offsets, ($top_z, $support_qverts->size, $support_tverts->size)
|
||
if (!@$support_offsets || $support_offsets->[-3] != $top_z);
|
||
|
||
foreach my $copy (@{ $object->_shifted_copies }) {
|
||
foreach my $layerm (@{$layer->regions}) {
|
||
if ($object->step_done(STEP_PERIMETERS)) {
|
||
$self->_extrusionentity_to_verts($layerm->perimeters, $top_z, $copy,
|
||
$perim_qverts, $perim_tverts);
|
||
}
|
||
|
||
if ($object->step_done(STEP_INFILL)) {
|
||
$self->_extrusionentity_to_verts($layerm->fills, $top_z, $copy,
|
||
$infill_qverts, $infill_tverts);
|
||
}
|
||
}
|
||
|
||
if ($layer->isa('Slic3r::Layer::Support') && $object->step_done(STEP_SUPPORTMATERIAL)) {
|
||
$self->_extrusionentity_to_verts($layer->support_fills, $top_z, $copy,
|
||
$support_qverts, $support_tverts);
|
||
|
||
$self->_extrusionentity_to_verts($layer->support_interface_fills, $top_z, $copy,
|
||
$support_qverts, $support_tverts);
|
||
}
|
||
}
|
||
|
||
if ($perim_qverts->size() > $alloc_size_max || $perim_tverts->size() > $alloc_size_max) {
|
||
# Store the vertex arrays and restart their containers.
|
||
push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[0],
|
||
qverts => $perim_qverts,
|
||
tverts => $perim_tverts,
|
||
offsets => $perim_offsets,
|
||
);
|
||
$perim_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
$perim_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
$perim_offsets = [];
|
||
}
|
||
|
||
if ($infill_qverts->size() > $alloc_size_max || $infill_tverts->size() > $alloc_size_max) {
|
||
# Store the vertex arrays and restart their containers.
|
||
push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[1],
|
||
qverts => $infill_qverts,
|
||
tverts => $infill_tverts,
|
||
offsets => $infill_offsets,
|
||
);
|
||
$infill_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
$infill_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
$infill_offsets = [];
|
||
}
|
||
|
||
if ($support_qverts->size() > $alloc_size_max || $support_tverts->size() > $alloc_size_max) {
|
||
# Store the vertex arrays and restart their containers.
|
||
push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[2],
|
||
qverts => $support_qverts,
|
||
tverts => $support_tverts,
|
||
offsets => $support_offsets,
|
||
);
|
||
$support_qverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
$support_tverts = Slic3r::GUI::_3DScene::GLVertexArray->new;
|
||
$support_offsets = [];
|
||
}
|
||
}
|
||
|
||
if ($perim_qverts->size() > 0 || $perim_tverts->size() > 0) {
|
||
push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[0],
|
||
qverts => $perim_qverts,
|
||
tverts => $perim_tverts,
|
||
offsets => $perim_offsets,
|
||
);
|
||
}
|
||
|
||
if ($infill_qverts->size() > 0 || $infill_tverts->size() > 0) {
|
||
push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[1],
|
||
qverts => $infill_qverts,
|
||
tverts => $infill_tverts,
|
||
offsets => $infill_offsets,
|
||
);
|
||
}
|
||
|
||
if ($support_qverts->size() > 0 || $support_tverts->size() > 0) {
|
||
push @{$self->volumes}, Slic3r::GUI::3DScene::Volume->new(
|
||
bounding_box => $bb,
|
||
color => COLORS->[2],
|
||
qverts => $support_qverts,
|
||
tverts => $support_tverts,
|
||
offsets => $support_offsets,
|
||
);
|
||
}
|
||
}
|
||
|
||
sub set_toolpaths_range {
|
||
my ($self, $min_z, $max_z) = @_;
|
||
|
||
foreach my $volume (@{$self->volumes}) {
|
||
$volume->range([ $min_z, $max_z ]);
|
||
}
|
||
}
|
||
|
||
# called by load_print_object_slices, probably not used.
|
||
sub _expolygons_to_verts {
|
||
my ($self, $expolygons, $z, $verts, $norms) = @_;
|
||
|
||
my $tess = gluNewTess();
|
||
gluTessCallback($tess, GLU_TESS_BEGIN, 'DEFAULT');
|
||
gluTessCallback($tess, GLU_TESS_END, 'DEFAULT');
|
||
gluTessCallback($tess, GLU_TESS_VERTEX, sub {
|
||
my ($x, $y, $z) = @_;
|
||
push @$verts, $x, $y, $z;
|
||
push @$norms, (0,0,1), (0,0,1), (0,0,1);
|
||
});
|
||
gluTessCallback($tess, GLU_TESS_COMBINE, 'DEFAULT');
|
||
gluTessCallback($tess, GLU_TESS_ERROR, 'DEFAULT');
|
||
gluTessCallback($tess, GLU_TESS_EDGE_FLAG, 'DEFAULT');
|
||
|
||
foreach my $expolygon (@$expolygons) {
|
||
gluTessBeginPolygon($tess);
|
||
foreach my $polygon (@$expolygon) {
|
||
gluTessBeginContour($tess);
|
||
gluTessVertex_p($tess, (map unscale($_), @$_), $z) for @$polygon;
|
||
gluTessEndContour($tess);
|
||
}
|
||
gluTessEndPolygon($tess);
|
||
}
|
||
|
||
gluDeleteTess($tess);
|
||
}
|
||
|
||
# Fill in the $qverts and $tverts with quads and triangles
|
||
# for the extrusion $entity.
|
||
sub _extrusionentity_to_verts {
|
||
my ($self, $entity, $top_z, $copy, $qverts, $tverts) = @_;
|
||
|
||
my ($lines, $widths, $heights, $closed);
|
||
if ($entity->isa('Slic3r::ExtrusionPath::Collection')) {
|
||
$self->_extrusionentity_to_verts($_, $top_z, $copy, $qverts, $tverts)
|
||
for @$entity;
|
||
return;
|
||
} elsif ($entity->isa('Slic3r::ExtrusionPath')) {
|
||
my $polyline = $entity->polyline->clone;
|
||
$polyline->remove_duplicate_points;
|
||
$polyline->translate(@$copy);
|
||
$lines = $polyline->lines;
|
||
$widths = [ map $entity->width, 0..$#$lines ];
|
||
$heights = [ map $entity->height, 0..$#$lines ];
|
||
$closed = 0;
|
||
} else {
|
||
$lines = [];
|
||
$widths = [];
|
||
$heights = [];
|
||
# $entity is either of type Slic3r::ExtrusionLoop or Slic3r::ExtrusionMultiPath.
|
||
$closed = $entity->isa('Slic3r::ExtrusionLoop') ? 1 : 0;
|
||
foreach my $path (@$entity) {
|
||
my $polyline = $path->polyline->clone;
|
||
$polyline->remove_duplicate_points;
|
||
$polyline->translate(@$copy);
|
||
my $path_lines = $polyline->lines;
|
||
push @$lines, @$path_lines;
|
||
push @$widths, map $path->width, 0..$#$path_lines;
|
||
push @$heights, map $path->height, 0..$#$path_lines;
|
||
}
|
||
}
|
||
# Calling the C++ implementation Slic3r::_3DScene::_extrusionentity_to_verts_do()
|
||
# This adds new vertices to the $qverts and $tverts.
|
||
Slic3r::GUI::_3DScene::_extrusionentity_to_verts_do($lines, $widths, $heights,
|
||
$closed,
|
||
# Top height of the extrusion.
|
||
$top_z,
|
||
# $copy is not used here.
|
||
$copy,
|
||
# GLVertexArray object: C++ class maintaining an std::vector<float> for coords and normals.
|
||
$qverts,
|
||
$tverts);
|
||
}
|
||
|
||
1;
|