7a799be426
optimization of Print::apply()
2251 lines
112 KiB
C++
2251 lines
112 KiB
C++
#include "clipper/clipper_z.hpp"
|
|
|
|
#include "Exception.hpp"
|
|
#include "Print.hpp"
|
|
#include "BoundingBox.hpp"
|
|
#include "ClipperUtils.hpp"
|
|
#include "Extruder.hpp"
|
|
#include "Flow.hpp"
|
|
#include "Geometry.hpp"
|
|
#include "I18N.hpp"
|
|
#include "ShortestPath.hpp"
|
|
#include "SupportMaterial.hpp"
|
|
#include "GCode.hpp"
|
|
#include "GCode/WipeTower.hpp"
|
|
#include "Utils.hpp"
|
|
|
|
//#include "PrintExport.hpp"
|
|
|
|
#include <float.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <unordered_set>
|
|
#include <boost/filesystem/path.hpp>
|
|
#include <boost/format.hpp>
|
|
#include <boost/log/trivial.hpp>
|
|
|
|
// Mark string for localization and translate.
|
|
#define L(s) Slic3r::I18N::translate(s)
|
|
|
|
namespace Slic3r {
|
|
|
|
template class PrintState<PrintStep, psCount>;
|
|
template class PrintState<PrintObjectStep, posCount>;
|
|
|
|
void Print::clear()
|
|
{
|
|
tbb::mutex::scoped_lock lock(this->state_mutex());
|
|
// The following call should stop background processing if it is running.
|
|
this->invalidate_all_steps();
|
|
for (PrintObject *object : m_objects)
|
|
delete object;
|
|
m_objects.clear();
|
|
for (PrintRegion *region : m_regions)
|
|
delete region;
|
|
m_regions.clear();
|
|
m_model.clear_objects();
|
|
}
|
|
|
|
PrintRegion* Print::add_region()
|
|
{
|
|
m_regions.emplace_back(new PrintRegion(this));
|
|
return m_regions.back();
|
|
}
|
|
|
|
PrintRegion* Print::add_region(const PrintRegionConfig &config)
|
|
{
|
|
m_regions.emplace_back(new PrintRegion(this, config));
|
|
return m_regions.back();
|
|
}
|
|
|
|
// Called by Print::apply().
|
|
// This method only accepts PrintConfig option keys.
|
|
bool Print::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
|
|
{
|
|
if (opt_keys.empty())
|
|
return false;
|
|
|
|
// Cache the plenty of parameters, which influence the G-code generator only,
|
|
// or they are only notes not influencing the generated G-code.
|
|
static std::unordered_set<std::string> steps_gcode = {
|
|
"avoid_crossing_perimeters",
|
|
"bed_shape",
|
|
"bed_temperature",
|
|
"before_layer_gcode",
|
|
"between_objects_gcode",
|
|
"bridge_acceleration",
|
|
"bridge_fan_speed",
|
|
"colorprint_heights",
|
|
"cooling",
|
|
"default_acceleration",
|
|
"deretract_speed",
|
|
"disable_fan_first_layers",
|
|
"duplicate_distance",
|
|
"end_gcode",
|
|
"end_filament_gcode",
|
|
"extrusion_axis",
|
|
"extruder_clearance_height",
|
|
"extruder_clearance_radius",
|
|
"extruder_colour",
|
|
"extruder_offset",
|
|
"extrusion_multiplier",
|
|
"fan_always_on",
|
|
"fan_below_layer_time",
|
|
"filament_colour",
|
|
"filament_diameter",
|
|
"filament_density",
|
|
"filament_notes",
|
|
"filament_cost",
|
|
"first_layer_acceleration",
|
|
"first_layer_bed_temperature",
|
|
"first_layer_speed",
|
|
"gcode_comments",
|
|
"gcode_label_objects",
|
|
"infill_acceleration",
|
|
"layer_gcode",
|
|
"min_fan_speed",
|
|
"max_fan_speed",
|
|
"max_print_height",
|
|
"min_print_speed",
|
|
"max_print_speed",
|
|
"max_volumetric_speed",
|
|
#ifdef HAS_PRESSURE_EQUALIZER
|
|
"max_volumetric_extrusion_rate_slope_positive",
|
|
"max_volumetric_extrusion_rate_slope_negative",
|
|
#endif /* HAS_PRESSURE_EQUALIZER */
|
|
"notes",
|
|
"only_retract_when_crossing_perimeters",
|
|
"output_filename_format",
|
|
"perimeter_acceleration",
|
|
"post_process",
|
|
"printer_notes",
|
|
"retract_before_travel",
|
|
"retract_before_wipe",
|
|
"retract_layer_change",
|
|
"retract_length",
|
|
"retract_length_toolchange",
|
|
"retract_lift",
|
|
"retract_lift_above",
|
|
"retract_lift_below",
|
|
"retract_restart_extra",
|
|
"retract_restart_extra_toolchange",
|
|
"retract_speed",
|
|
"single_extruder_multi_material_priming",
|
|
"slowdown_below_layer_time",
|
|
"standby_temperature_delta",
|
|
"start_gcode",
|
|
"start_filament_gcode",
|
|
"toolchange_gcode",
|
|
"threads",
|
|
"travel_speed",
|
|
"use_firmware_retraction",
|
|
"use_relative_e_distances",
|
|
"use_volumetric_e",
|
|
"variable_layer_height",
|
|
"wipe"
|
|
};
|
|
|
|
static std::unordered_set<std::string> steps_ignore;
|
|
|
|
std::vector<PrintStep> steps;
|
|
std::vector<PrintObjectStep> osteps;
|
|
bool invalidated = false;
|
|
|
|
for (const t_config_option_key &opt_key : opt_keys) {
|
|
if (steps_gcode.find(opt_key) != steps_gcode.end()) {
|
|
// These options only affect G-code export or they are just notes without influence on the generated G-code,
|
|
// so there is nothing to invalidate.
|
|
steps.emplace_back(psGCodeExport);
|
|
} else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
|
|
// These steps have no influence on the G-code whatsoever. Just ignore them.
|
|
} else if (
|
|
opt_key == "skirts"
|
|
|| opt_key == "skirt_height"
|
|
|| opt_key == "draft_shield"
|
|
|| opt_key == "skirt_distance"
|
|
|| opt_key == "min_skirt_length"
|
|
|| opt_key == "ooze_prevention"
|
|
|| opt_key == "wipe_tower_x"
|
|
|| opt_key == "wipe_tower_y"
|
|
|| opt_key == "wipe_tower_rotation_angle") {
|
|
steps.emplace_back(psSkirt);
|
|
} else if (opt_key == "brim_width") {
|
|
steps.emplace_back(psBrim);
|
|
steps.emplace_back(psSkirt);
|
|
} else if (
|
|
opt_key == "nozzle_diameter"
|
|
|| opt_key == "resolution"
|
|
// Spiral Vase forces different kind of slicing than the normal model:
|
|
// In Spiral Vase mode, holes are closed and only the largest area contour is kept at each layer.
|
|
// Therefore toggling the Spiral Vase on / off requires complete reslicing.
|
|
|| opt_key == "spiral_vase") {
|
|
osteps.emplace_back(posSlice);
|
|
} else if (
|
|
opt_key == "complete_objects"
|
|
|| opt_key == "filament_type"
|
|
|| opt_key == "filament_soluble"
|
|
|| opt_key == "first_layer_temperature"
|
|
|| opt_key == "filament_loading_speed"
|
|
|| opt_key == "filament_loading_speed_start"
|
|
|| opt_key == "filament_unloading_speed"
|
|
|| opt_key == "filament_unloading_speed_start"
|
|
|| opt_key == "filament_toolchange_delay"
|
|
|| opt_key == "filament_cooling_moves"
|
|
|| opt_key == "filament_minimal_purge_on_wipe_tower"
|
|
|| opt_key == "filament_cooling_initial_speed"
|
|
|| opt_key == "filament_cooling_final_speed"
|
|
|| opt_key == "filament_ramming_parameters"
|
|
|| opt_key == "filament_max_volumetric_speed"
|
|
|| opt_key == "gcode_flavor"
|
|
|| opt_key == "high_current_on_filament_swap"
|
|
|| opt_key == "infill_first"
|
|
|| opt_key == "single_extruder_multi_material"
|
|
|| opt_key == "temperature"
|
|
|| opt_key == "wipe_tower"
|
|
|| opt_key == "wipe_tower_width"
|
|
|| opt_key == "wipe_tower_bridging"
|
|
|| opt_key == "wipe_tower_no_sparse_layers"
|
|
|| opt_key == "wiping_volumes_matrix"
|
|
|| opt_key == "parking_pos_retraction"
|
|
|| opt_key == "cooling_tube_retraction"
|
|
|| opt_key == "cooling_tube_length"
|
|
|| opt_key == "extra_loading_move"
|
|
|| opt_key == "z_offset") {
|
|
steps.emplace_back(psWipeTower);
|
|
steps.emplace_back(psSkirt);
|
|
} else if (
|
|
opt_key == "first_layer_extrusion_width"
|
|
|| opt_key == "min_layer_height"
|
|
|| opt_key == "max_layer_height") {
|
|
osteps.emplace_back(posPerimeters);
|
|
osteps.emplace_back(posInfill);
|
|
osteps.emplace_back(posSupportMaterial);
|
|
steps.emplace_back(psSkirt);
|
|
steps.emplace_back(psBrim);
|
|
} else {
|
|
// for legacy, if we can't handle this option let's invalidate all steps
|
|
//FIXME invalidate all steps of all objects as well?
|
|
invalidated |= this->invalidate_all_steps();
|
|
// Continue with the other opt_keys to possibly invalidate any object specific steps.
|
|
}
|
|
}
|
|
|
|
sort_remove_duplicates(steps);
|
|
for (PrintStep step : steps)
|
|
invalidated |= this->invalidate_step(step);
|
|
sort_remove_duplicates(osteps);
|
|
for (PrintObjectStep ostep : osteps)
|
|
for (PrintObject *object : m_objects)
|
|
invalidated |= object->invalidate_step(ostep);
|
|
return invalidated;
|
|
}
|
|
|
|
bool Print::invalidate_step(PrintStep step)
|
|
{
|
|
bool invalidated = Inherited::invalidate_step(step);
|
|
// Propagate to dependent steps.
|
|
if (step == psSkirt)
|
|
invalidated |= Inherited::invalidate_step(psBrim);
|
|
if (step != psGCodeExport)
|
|
invalidated |= Inherited::invalidate_step(psGCodeExport);
|
|
return invalidated;
|
|
}
|
|
|
|
// returns true if an object step is done on all objects
|
|
// and there's at least one object
|
|
bool Print::is_step_done(PrintObjectStep step) const
|
|
{
|
|
if (m_objects.empty())
|
|
return false;
|
|
tbb::mutex::scoped_lock lock(this->state_mutex());
|
|
for (const PrintObject *object : m_objects)
|
|
if (! object->is_step_done_unguarded(step))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// returns 0-based indices of used extruders
|
|
std::vector<unsigned int> Print::object_extruders() const
|
|
{
|
|
std::vector<unsigned int> extruders;
|
|
extruders.reserve(m_regions.size() * 3);
|
|
std::vector<unsigned char> region_used(m_regions.size(), false);
|
|
for (const PrintObject *object : m_objects)
|
|
for (const std::vector<std::pair<t_layer_height_range, int>> &volumes_per_region : object->region_volumes)
|
|
if (! volumes_per_region.empty())
|
|
region_used[&volumes_per_region - &object->region_volumes.front()] = true;
|
|
for (size_t idx_region = 0; idx_region < m_regions.size(); ++ idx_region)
|
|
if (region_used[idx_region])
|
|
m_regions[idx_region]->collect_object_printing_extruders(extruders);
|
|
sort_remove_duplicates(extruders);
|
|
return extruders;
|
|
}
|
|
|
|
// returns 0-based indices of used extruders
|
|
std::vector<unsigned int> Print::support_material_extruders() const
|
|
{
|
|
std::vector<unsigned int> extruders;
|
|
bool support_uses_current_extruder = false;
|
|
auto num_extruders = (unsigned int)m_config.nozzle_diameter.size();
|
|
|
|
for (PrintObject *object : m_objects) {
|
|
if (object->has_support_material()) {
|
|
assert(object->config().support_material_extruder >= 0);
|
|
if (object->config().support_material_extruder == 0)
|
|
support_uses_current_extruder = true;
|
|
else {
|
|
unsigned int i = (unsigned int)object->config().support_material_extruder - 1;
|
|
extruders.emplace_back((i >= num_extruders) ? 0 : i);
|
|
}
|
|
assert(object->config().support_material_interface_extruder >= 0);
|
|
if (object->config().support_material_interface_extruder == 0)
|
|
support_uses_current_extruder = true;
|
|
else {
|
|
unsigned int i = (unsigned int)object->config().support_material_interface_extruder - 1;
|
|
extruders.emplace_back((i >= num_extruders) ? 0 : i);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (support_uses_current_extruder)
|
|
// Add all object extruders to the support extruders as it is not know which one will be used to print supports.
|
|
append(extruders, this->object_extruders());
|
|
|
|
sort_remove_duplicates(extruders);
|
|
return extruders;
|
|
}
|
|
|
|
// returns 0-based indices of used extruders
|
|
std::vector<unsigned int> Print::extruders() const
|
|
{
|
|
std::vector<unsigned int> extruders = this->object_extruders();
|
|
append(extruders, this->support_material_extruders());
|
|
sort_remove_duplicates(extruders);
|
|
return extruders;
|
|
}
|
|
|
|
unsigned int Print::num_object_instances() const
|
|
{
|
|
unsigned int instances = 0;
|
|
for (const PrintObject *print_object : m_objects)
|
|
instances += (unsigned int)print_object->instances().size();
|
|
return instances;
|
|
}
|
|
|
|
double Print::max_allowed_layer_height() const
|
|
{
|
|
double nozzle_diameter_max = 0.;
|
|
for (unsigned int extruder_id : this->extruders())
|
|
nozzle_diameter_max = std::max(nozzle_diameter_max, m_config.nozzle_diameter.get_at(extruder_id));
|
|
return nozzle_diameter_max;
|
|
}
|
|
|
|
// Add or remove support modifier ModelVolumes from model_object_dst to match the ModelVolumes of model_object_new
|
|
// in the exact order and with the same IDs.
|
|
// It is expected, that the model_object_dst already contains the non-support volumes of model_object_new in the correct order.
|
|
void Print::model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_new)
|
|
{
|
|
typedef std::pair<const ModelVolume*, bool> ModelVolumeWithStatus;
|
|
std::vector<ModelVolumeWithStatus> old_volumes;
|
|
old_volumes.reserve(model_object_dst.volumes.size());
|
|
for (const ModelVolume *model_volume : model_object_dst.volumes)
|
|
old_volumes.emplace_back(ModelVolumeWithStatus(model_volume, false));
|
|
auto model_volume_lower = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() < mv2.first->id(); };
|
|
auto model_volume_equal = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() == mv2.first->id(); };
|
|
std::sort(old_volumes.begin(), old_volumes.end(), model_volume_lower);
|
|
model_object_dst.volumes.clear();
|
|
model_object_dst.volumes.reserve(model_object_new.volumes.size());
|
|
for (const ModelVolume *model_volume_src : model_object_new.volumes) {
|
|
ModelVolumeWithStatus key(model_volume_src, false);
|
|
auto it = std::lower_bound(old_volumes.begin(), old_volumes.end(), key, model_volume_lower);
|
|
if (it != old_volumes.end() && model_volume_equal(*it, key)) {
|
|
// The volume was found in the old list. Just copy it.
|
|
assert(! it->second); // not consumed yet
|
|
it->second = true;
|
|
ModelVolume *model_volume_dst = const_cast<ModelVolume*>(it->first);
|
|
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
|
|
assert((model_volume_dst->is_support_modifier() && model_volume_src->is_support_modifier()) || model_volume_dst->type() == model_volume_src->type());
|
|
model_object_dst.volumes.emplace_back(model_volume_dst);
|
|
if (model_volume_dst->is_support_modifier()) {
|
|
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
|
|
model_volume_dst->set_type(model_volume_src->type());
|
|
model_volume_dst->set_transformation(model_volume_src->get_transformation());
|
|
}
|
|
assert(model_volume_dst->get_matrix().isApprox(model_volume_src->get_matrix()));
|
|
} else {
|
|
// The volume was not found in the old list. Create a new copy.
|
|
assert(model_volume_src->is_support_modifier());
|
|
model_object_dst.volumes.emplace_back(new ModelVolume(*model_volume_src));
|
|
model_object_dst.volumes.back()->set_model_object(&model_object_dst);
|
|
}
|
|
}
|
|
// Release the non-consumed old volumes (those were deleted from the new list).
|
|
for (ModelVolumeWithStatus &mv_with_status : old_volumes)
|
|
if (! mv_with_status.second)
|
|
delete mv_with_status.first;
|
|
}
|
|
|
|
static inline void model_volume_list_copy_configs(ModelObject &model_object_dst, const ModelObject &model_object_src, const ModelVolumeType type)
|
|
{
|
|
size_t i_src, i_dst;
|
|
for (i_src = 0, i_dst = 0; i_src < model_object_src.volumes.size() && i_dst < model_object_dst.volumes.size();) {
|
|
const ModelVolume &mv_src = *model_object_src.volumes[i_src];
|
|
ModelVolume &mv_dst = *model_object_dst.volumes[i_dst];
|
|
if (mv_src.type() != type) {
|
|
++ i_src;
|
|
continue;
|
|
}
|
|
if (mv_dst.type() != type) {
|
|
++ i_dst;
|
|
continue;
|
|
}
|
|
assert(mv_src.id() == mv_dst.id());
|
|
// Copy the ModelVolume data.
|
|
mv_dst.name = mv_src.name;
|
|
mv_dst.config.assign_config(mv_src.config);
|
|
if (! mv_dst.m_supported_facets.timestamp_matches(mv_src.m_supported_facets))
|
|
mv_dst.m_supported_facets = mv_src.m_supported_facets;
|
|
if (! mv_dst.m_seam_facets.timestamp_matches(mv_src.m_seam_facets))
|
|
mv_dst.m_seam_facets = mv_src.m_seam_facets;
|
|
//FIXME what to do with the materials?
|
|
// mv_dst.m_material_id = mv_src.m_material_id;
|
|
++ i_src;
|
|
++ i_dst;
|
|
}
|
|
}
|
|
|
|
static inline void layer_height_ranges_copy_configs(t_layer_config_ranges &lr_dst, const t_layer_config_ranges &lr_src)
|
|
{
|
|
assert(lr_dst.size() == lr_src.size());
|
|
auto it_src = lr_src.cbegin();
|
|
for (auto &kvp_dst : lr_dst) {
|
|
const auto &kvp_src = *it_src ++;
|
|
assert(std::abs(kvp_dst.first.first - kvp_src.first.first ) <= EPSILON);
|
|
assert(std::abs(kvp_dst.first.second - kvp_src.first.second) <= EPSILON);
|
|
// Layer heights are allowed do differ in case the layer height table is being overriden by the smooth profile.
|
|
// assert(std::abs(kvp_dst.second.option("layer_height")->getFloat() - kvp_src.second.option("layer_height")->getFloat()) <= EPSILON);
|
|
kvp_dst.second = kvp_src.second;
|
|
}
|
|
}
|
|
|
|
static inline bool transform3d_lower(const Transform3d &lhs, const Transform3d &rhs)
|
|
{
|
|
typedef Transform3d::Scalar T;
|
|
const T *lv = lhs.data();
|
|
const T *rv = rhs.data();
|
|
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) {
|
|
if (*lv < *rv)
|
|
return true;
|
|
else if (*lv > *rv)
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool transform3d_equal(const Transform3d &lhs, const Transform3d &rhs)
|
|
{
|
|
typedef Transform3d::Scalar T;
|
|
const T *lv = lhs.data();
|
|
const T *rv = rhs.data();
|
|
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv)
|
|
if (*lv != *rv)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
struct PrintObjectTrafoAndInstances
|
|
{
|
|
Transform3d trafo;
|
|
PrintInstances instances;
|
|
bool operator<(const PrintObjectTrafoAndInstances &rhs) const { return transform3d_lower(this->trafo, rhs.trafo); }
|
|
};
|
|
|
|
// Generate a list of trafos and XY offsets for instances of a ModelObject
|
|
static std::vector<PrintObjectTrafoAndInstances> print_objects_from_model_object(const ModelObject &model_object)
|
|
{
|
|
std::set<PrintObjectTrafoAndInstances> trafos;
|
|
PrintObjectTrafoAndInstances trafo;
|
|
for (ModelInstance *model_instance : model_object.instances)
|
|
if (model_instance->is_printable()) {
|
|
trafo.trafo = model_instance->get_matrix();
|
|
auto shift = Point::new_scale(trafo.trafo.data()[12], trafo.trafo.data()[13]);
|
|
// Reset the XY axes of the transformation.
|
|
trafo.trafo.data()[12] = 0;
|
|
trafo.trafo.data()[13] = 0;
|
|
// Search or insert a trafo.
|
|
auto it = trafos.emplace(trafo).first;
|
|
const_cast<PrintObjectTrafoAndInstances&>(*it).instances.emplace_back(PrintInstance{ nullptr, model_instance, shift });
|
|
}
|
|
return std::vector<PrintObjectTrafoAndInstances>(trafos.begin(), trafos.end());
|
|
}
|
|
|
|
// Compare just the layer ranges and their layer heights, not the associated configs.
|
|
// Ignore the layer heights if check_layer_heights is false.
|
|
static bool layer_height_ranges_equal(const t_layer_config_ranges &lr1, const t_layer_config_ranges &lr2, bool check_layer_height)
|
|
{
|
|
if (lr1.size() != lr2.size())
|
|
return false;
|
|
auto it2 = lr2.begin();
|
|
for (const auto &kvp1 : lr1) {
|
|
const auto &kvp2 = *it2 ++;
|
|
if (std::abs(kvp1.first.first - kvp2.first.first ) > EPSILON ||
|
|
std::abs(kvp1.first.second - kvp2.first.second) > EPSILON ||
|
|
(check_layer_height && std::abs(kvp1.second.option("layer_height")->getFloat() - kvp2.second.option("layer_height")->getFloat()) > EPSILON))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns true if va == vb when all CustomGCode items that are not ToolChangeCode are ignored.
|
|
static bool custom_per_printz_gcodes_tool_changes_differ(const std::vector<CustomGCode::Item> &va, const std::vector<CustomGCode::Item> &vb)
|
|
{
|
|
auto it_a = va.begin();
|
|
auto it_b = vb.begin();
|
|
while (it_a != va.end() || it_b != vb.end()) {
|
|
if (it_a != va.end() && it_a->type != CustomGCode::ToolChange) {
|
|
// Skip any CustomGCode items, which are not tool changes.
|
|
++ it_a;
|
|
continue;
|
|
}
|
|
if (it_b != vb.end() && it_b->type != CustomGCode::ToolChange) {
|
|
// Skip any CustomGCode items, which are not tool changes.
|
|
++ it_b;
|
|
continue;
|
|
}
|
|
if (it_a == va.end() || it_b == vb.end())
|
|
// va or vb contains more Tool Changes than the other.
|
|
return true;
|
|
assert(it_a->type == CustomGCode::ToolChange);
|
|
assert(it_b->type == CustomGCode::ToolChange);
|
|
if (*it_a != *it_b)
|
|
// The two Tool Changes differ.
|
|
return true;
|
|
++ it_a;
|
|
++ it_b;
|
|
}
|
|
// There is no change in custom Tool Changes.
|
|
return false;
|
|
}
|
|
|
|
// Collect diffs of configuration values at various containers,
|
|
// resolve the filament rectract overrides of extruder retract values.
|
|
void Print::config_diffs(
|
|
const DynamicPrintConfig &new_full_config,
|
|
t_config_option_keys &print_diff, t_config_option_keys &object_diff, t_config_option_keys ®ion_diff,
|
|
t_config_option_keys &full_config_diff,
|
|
DynamicPrintConfig &filament_overrides) const
|
|
{
|
|
// Collect changes to print config, account for overrides of extruder retract values by filament presets.
|
|
{
|
|
const std::vector<std::string> &extruder_retract_keys = print_config_def.extruder_retract_keys();
|
|
const std::string filament_prefix = "filament_";
|
|
for (const t_config_option_key &opt_key : m_config.keys()) {
|
|
const ConfigOption *opt_old = m_config.option(opt_key);
|
|
assert(opt_old != nullptr);
|
|
const ConfigOption *opt_new = new_full_config.option(opt_key);
|
|
// assert(opt_new != nullptr);
|
|
if (opt_new == nullptr)
|
|
//FIXME This may happen when executing some test cases.
|
|
continue;
|
|
const ConfigOption *opt_new_filament = std::binary_search(extruder_retract_keys.begin(), extruder_retract_keys.end(), opt_key) ? new_full_config.option(filament_prefix + opt_key) : nullptr;
|
|
if (opt_new_filament != nullptr && ! opt_new_filament->is_nil()) {
|
|
// An extruder retract override is available at some of the filament presets.
|
|
if (*opt_old != *opt_new || opt_new->overriden_by(opt_new_filament)) {
|
|
auto opt_copy = opt_new->clone();
|
|
opt_copy->apply_override(opt_new_filament);
|
|
if (*opt_old == *opt_copy)
|
|
delete opt_copy;
|
|
else {
|
|
filament_overrides.set_key_value(opt_key, opt_copy);
|
|
print_diff.emplace_back(opt_key);
|
|
}
|
|
}
|
|
} else if (*opt_new != *opt_old)
|
|
print_diff.emplace_back(opt_key);
|
|
}
|
|
}
|
|
// Collect changes to object and region configs.
|
|
object_diff = m_default_object_config.diff(new_full_config);
|
|
region_diff = m_default_region_config.diff(new_full_config);
|
|
// Prepare for storing of the full print config into new_full_config to be exported into the G-code and to be used by the PlaceholderParser.
|
|
for (const t_config_option_key &opt_key : new_full_config.keys()) {
|
|
const ConfigOption *opt_old = m_full_print_config.option(opt_key);
|
|
const ConfigOption *opt_new = new_full_config.option(opt_key);
|
|
if (opt_old == nullptr || *opt_new != *opt_old)
|
|
full_config_diff.emplace_back(opt_key);
|
|
}
|
|
}
|
|
|
|
Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_config)
|
|
{
|
|
#ifdef _DEBUG
|
|
check_model_ids_validity(model);
|
|
#endif /* _DEBUG */
|
|
|
|
// Normalize the config.
|
|
new_full_config.option("print_settings_id", true);
|
|
new_full_config.option("filament_settings_id", true);
|
|
new_full_config.option("printer_settings_id", true);
|
|
new_full_config.normalize_fdm();
|
|
|
|
// Find modified keys of the various configs. Resolve overrides extruder retract values by filament profiles.
|
|
t_config_option_keys print_diff, object_diff, region_diff, full_config_diff;
|
|
DynamicPrintConfig filament_overrides;
|
|
this->config_diffs(new_full_config, print_diff, object_diff, region_diff, full_config_diff, filament_overrides);
|
|
|
|
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
|
|
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
|
|
auto update_apply_status = [&apply_status](bool invalidated)
|
|
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
|
|
if (! (print_diff.empty() && object_diff.empty() && region_diff.empty()))
|
|
update_apply_status(false);
|
|
|
|
// Grab the lock for the Print / PrintObject milestones.
|
|
tbb::mutex::scoped_lock lock(this->state_mutex());
|
|
|
|
// The following call may stop the background processing.
|
|
if (! print_diff.empty())
|
|
update_apply_status(this->invalidate_state_by_config_options(print_diff));
|
|
|
|
// Apply variables to placeholder parser. The placeholder parser is used by G-code export,
|
|
// which should be stopped if print_diff is not empty.
|
|
size_t num_extruders = m_config.nozzle_diameter.size();
|
|
bool num_extruders_changed = false;
|
|
if (! full_config_diff.empty()) {
|
|
update_apply_status(this->invalidate_step(psGCodeExport));
|
|
// Set the profile aliases for the PrintBase::output_filename()
|
|
m_placeholder_parser.set("print_preset", new_full_config.option("print_settings_id")->clone());
|
|
m_placeholder_parser.set("filament_preset", new_full_config.option("filament_settings_id")->clone());
|
|
m_placeholder_parser.set("printer_preset", new_full_config.option("printer_settings_id")->clone());
|
|
// We want the filament overrides to be applied over their respective extruder parameters by the PlaceholderParser.
|
|
// see "Placeholders do not respect filament overrides." GH issue #3649
|
|
m_placeholder_parser.apply_config(filament_overrides);
|
|
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
|
|
m_config.apply_only(new_full_config, print_diff, true);
|
|
//FIXME use move semantics once ConfigBase supports it.
|
|
m_config.apply(filament_overrides);
|
|
// Handle changes to object config defaults
|
|
m_default_object_config.apply_only(new_full_config, object_diff, true);
|
|
// Handle changes to regions config defaults
|
|
m_default_region_config.apply_only(new_full_config, region_diff, true);
|
|
m_full_print_config = std::move(new_full_config);
|
|
if (num_extruders != m_config.nozzle_diameter.size()) {
|
|
num_extruders = m_config.nozzle_diameter.size();
|
|
num_extruders_changed = true;
|
|
}
|
|
}
|
|
|
|
class LayerRanges
|
|
{
|
|
public:
|
|
LayerRanges() {}
|
|
// Convert input config ranges into continuous non-overlapping sorted vector of intervals and their configs.
|
|
void assign(const t_layer_config_ranges &in) {
|
|
m_ranges.clear();
|
|
m_ranges.reserve(in.size());
|
|
// Input ranges are sorted lexicographically. First range trims the other ranges.
|
|
coordf_t last_z = 0;
|
|
for (const std::pair<const t_layer_height_range, ModelConfig> &range : in)
|
|
if (range.first.second > last_z) {
|
|
coordf_t min_z = std::max(range.first.first, 0.);
|
|
if (min_z > last_z + EPSILON) {
|
|
m_ranges.emplace_back(t_layer_height_range(last_z, min_z), nullptr);
|
|
last_z = min_z;
|
|
}
|
|
if (range.first.second > last_z + EPSILON) {
|
|
const DynamicPrintConfig *cfg = &range.second.get();
|
|
m_ranges.emplace_back(t_layer_height_range(last_z, range.first.second), cfg);
|
|
last_z = range.first.second;
|
|
}
|
|
}
|
|
if (m_ranges.empty())
|
|
m_ranges.emplace_back(t_layer_height_range(0, DBL_MAX), nullptr);
|
|
else if (m_ranges.back().second == nullptr)
|
|
m_ranges.back().first.second = DBL_MAX;
|
|
else
|
|
m_ranges.emplace_back(t_layer_height_range(m_ranges.back().first.second, DBL_MAX), nullptr);
|
|
}
|
|
|
|
const DynamicPrintConfig* config(const t_layer_height_range &range) const {
|
|
auto it = std::lower_bound(m_ranges.begin(), m_ranges.end(), std::make_pair< t_layer_height_range, const DynamicPrintConfig*>(t_layer_height_range(range.first - EPSILON, range.second - EPSILON), nullptr));
|
|
// #ys_FIXME_COLOR
|
|
// assert(it != m_ranges.end());
|
|
// assert(it == m_ranges.end() || std::abs(it->first.first - range.first ) < EPSILON);
|
|
// assert(it == m_ranges.end() || std::abs(it->first.second - range.second) < EPSILON);
|
|
if (it == m_ranges.end() ||
|
|
std::abs(it->first.first - range.first) > EPSILON ||
|
|
std::abs(it->first.second - range.second) > EPSILON )
|
|
return nullptr; // desired range doesn't found
|
|
return (it == m_ranges.end()) ? nullptr : it->second;
|
|
}
|
|
std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>>::const_iterator begin() const { return m_ranges.cbegin(); }
|
|
std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>>::const_iterator end() const { return m_ranges.cend(); }
|
|
private:
|
|
std::vector<std::pair<t_layer_height_range, const DynamicPrintConfig*>> m_ranges;
|
|
};
|
|
struct ModelObjectStatus {
|
|
enum Status {
|
|
Unknown,
|
|
Old,
|
|
New,
|
|
Moved,
|
|
Deleted,
|
|
};
|
|
ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {}
|
|
ObjectID id;
|
|
Status status;
|
|
LayerRanges layer_ranges;
|
|
// Search by id.
|
|
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
|
|
};
|
|
std::set<ModelObjectStatus> model_object_status;
|
|
|
|
// 1) Synchronize model objects.
|
|
if (model.id() != m_model.id()) {
|
|
// Kill everything, initialize from scratch.
|
|
// Stop background processing.
|
|
this->call_cancel_callback();
|
|
update_apply_status(this->invalidate_all_steps());
|
|
for (PrintObject *object : m_objects) {
|
|
model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
|
|
update_apply_status(object->invalidate_all_steps());
|
|
delete object;
|
|
}
|
|
m_objects.clear();
|
|
for (PrintRegion *region : m_regions)
|
|
delete region;
|
|
m_regions.clear();
|
|
m_model.assign_copy(model);
|
|
for (const ModelObject *model_object : m_model.objects)
|
|
model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
|
|
} else {
|
|
if (m_model.custom_gcode_per_print_z != model.custom_gcode_per_print_z) {
|
|
update_apply_status(num_extruders_changed ||
|
|
// Tool change G-codes are applied as color changes for a single extruder printer, no need to invalidate tool ordering.
|
|
//FIXME The tool ordering may be invalidated unnecessarily if the custom_gcode_per_print_z.mode is not applicable
|
|
// to the active print / model state, and then it is reset, so it is being applicable, but empty, thus the effect is the same.
|
|
(num_extruders > 1 && custom_per_printz_gcodes_tool_changes_differ(m_model.custom_gcode_per_print_z.gcodes, model.custom_gcode_per_print_z.gcodes)) ?
|
|
// The Tool Ordering and the Wipe Tower are no more valid.
|
|
this->invalidate_steps({ psWipeTower, psGCodeExport }) :
|
|
// There is no change in Tool Changes stored in custom_gcode_per_print_z, therefore there is no need to update Tool Ordering.
|
|
this->invalidate_step(psGCodeExport));
|
|
m_model.custom_gcode_per_print_z = model.custom_gcode_per_print_z;
|
|
}
|
|
if (model_object_list_equal(m_model, model)) {
|
|
// The object list did not change.
|
|
for (const ModelObject *model_object : m_model.objects)
|
|
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
|
|
} else if (model_object_list_extended(m_model, model)) {
|
|
// Add new objects. Their volumes and configs will be synchronized later.
|
|
update_apply_status(this->invalidate_step(psGCodeExport));
|
|
for (const ModelObject *model_object : m_model.objects)
|
|
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
|
|
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
|
|
model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
|
|
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
|
|
m_model.objects.back()->set_model(&m_model);
|
|
}
|
|
} else {
|
|
// Reorder the objects, add new objects.
|
|
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
|
|
this->call_cancel_callback();
|
|
update_apply_status(this->invalidate_step(psGCodeExport));
|
|
// Second create a new list of objects.
|
|
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
|
|
m_model.objects.clear();
|
|
m_model.objects.reserve(model.objects.size());
|
|
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
|
|
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
|
|
for (const ModelObject *mobj : model.objects) {
|
|
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
|
|
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
|
|
// New ModelObject added.
|
|
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
|
|
m_model.objects.back()->set_model(&m_model);
|
|
model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
|
|
} else {
|
|
// Existing ModelObject re-added (possibly moved in the list).
|
|
m_model.objects.emplace_back(*it);
|
|
model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
|
|
}
|
|
}
|
|
bool deleted_any = false;
|
|
for (ModelObject *&model_object : model_objects_old) {
|
|
if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
|
|
model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
|
|
deleted_any = true;
|
|
} else
|
|
// Do not delete this ModelObject instance.
|
|
model_object = nullptr;
|
|
}
|
|
if (deleted_any) {
|
|
// Delete PrintObjects of the deleted ModelObjects.
|
|
std::vector<PrintObject*> print_objects_old = std::move(m_objects);
|
|
m_objects.clear();
|
|
m_objects.reserve(print_objects_old.size());
|
|
for (PrintObject *print_object : print_objects_old) {
|
|
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
|
|
assert(it_status != model_object_status.end());
|
|
if (it_status->status == ModelObjectStatus::Deleted) {
|
|
update_apply_status(print_object->invalidate_all_steps());
|
|
delete print_object;
|
|
} else
|
|
m_objects.emplace_back(print_object);
|
|
}
|
|
for (ModelObject *model_object : model_objects_old)
|
|
delete model_object;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2) Map print objects including their transformation matrices.
|
|
struct PrintObjectStatus {
|
|
enum Status {
|
|
Unknown,
|
|
Deleted,
|
|
Reused,
|
|
New
|
|
};
|
|
PrintObjectStatus(PrintObject *print_object, Status status = Unknown) :
|
|
id(print_object->model_object()->id()),
|
|
print_object(print_object),
|
|
trafo(print_object->trafo()),
|
|
status(status) {}
|
|
PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
|
|
// ID of the ModelObject & PrintObject
|
|
ObjectID id;
|
|
// Pointer to the old PrintObject
|
|
PrintObject *print_object;
|
|
// Trafo generated with model_object->world_matrix(true)
|
|
Transform3d trafo;
|
|
Status status;
|
|
// Search by id.
|
|
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
|
|
};
|
|
std::multiset<PrintObjectStatus> print_object_status;
|
|
for (PrintObject *print_object : m_objects)
|
|
print_object_status.emplace(PrintObjectStatus(print_object));
|
|
|
|
// 3) Synchronize ModelObjects & PrintObjects.
|
|
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
|
|
ModelObject &model_object = *m_model.objects[idx_model_object];
|
|
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
|
|
assert(it_status != model_object_status.end());
|
|
assert(it_status->status != ModelObjectStatus::Deleted);
|
|
const ModelObject& model_object_new = *model.objects[idx_model_object];
|
|
const_cast<ModelObjectStatus&>(*it_status).layer_ranges.assign(model_object_new.layer_config_ranges);
|
|
if (it_status->status == ModelObjectStatus::New)
|
|
// PrintObject instances will be added in the next loop.
|
|
continue;
|
|
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
|
|
assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
|
|
// Check whether a model part volume was added or removed, their transformations or order changed.
|
|
// Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked.
|
|
bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::MODEL_PART);
|
|
bool modifiers_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::PARAMETER_MODIFIER);
|
|
bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) ||
|
|
model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER);
|
|
if (model_parts_differ || modifiers_differ ||
|
|
model_object.origin_translation != model_object_new.origin_translation ||
|
|
! model_object.layer_height_profile.timestamp_matches(model_object_new.layer_height_profile) ||
|
|
! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty())) {
|
|
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
|
|
auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id()));
|
|
for (auto it = range.first; it != range.second; ++ it) {
|
|
update_apply_status(it->print_object->invalidate_all_steps());
|
|
const_cast<PrintObjectStatus&>(*it).status = PrintObjectStatus::Deleted;
|
|
}
|
|
// Copy content of the ModelObject including its ID, do not change the parent.
|
|
model_object.assign_copy(model_object_new);
|
|
} else if (supports_differ || model_custom_supports_data_changed(model_object, model_object_new)) {
|
|
// First stop background processing before shuffling or deleting the ModelVolumes in the ModelObject's list.
|
|
if (supports_differ) {
|
|
this->call_cancel_callback();
|
|
update_apply_status(false);
|
|
}
|
|
// Invalidate just the supports step.
|
|
auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id()));
|
|
for (auto it = range.first; it != range.second; ++ it)
|
|
update_apply_status(it->print_object->invalidate_step(posSupportMaterial));
|
|
if (supports_differ) {
|
|
// Copy just the support volumes.
|
|
model_volume_list_update_supports(model_object, model_object_new);
|
|
}
|
|
} else if (model_custom_seam_data_changed(model_object, model_object_new)) {
|
|
update_apply_status(this->invalidate_step(psGCodeExport));
|
|
}
|
|
if (! model_parts_differ && ! modifiers_differ) {
|
|
// Synchronize Object's config.
|
|
bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config);
|
|
if (object_config_changed)
|
|
model_object.config.assign_config(model_object_new.config);
|
|
if (! object_diff.empty() || object_config_changed || num_extruders_changed) {
|
|
PrintObjectConfig new_config = PrintObject::object_config_from_model_object(m_default_object_config, model_object, num_extruders);
|
|
auto range = print_object_status.equal_range(PrintObjectStatus(model_object.id()));
|
|
for (auto it = range.first; it != range.second; ++ it) {
|
|
t_config_option_keys diff = it->print_object->config().diff(new_config);
|
|
if (! diff.empty()) {
|
|
update_apply_status(it->print_object->invalidate_state_by_config_options(diff));
|
|
it->print_object->config_apply_only(new_config, diff, true);
|
|
}
|
|
}
|
|
}
|
|
// Synchronize (just copy) the remaining data of ModelVolumes (name, config, custom supports data).
|
|
//FIXME What to do with m_material_id?
|
|
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::MODEL_PART);
|
|
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::PARAMETER_MODIFIER);
|
|
layer_height_ranges_copy_configs(model_object.layer_config_ranges /* dst */, model_object_new.layer_config_ranges /* src */);
|
|
// Copy the ModelObject name, input_file and instances. The instances will be compared against PrintObject instances in the next step.
|
|
model_object.name = model_object_new.name;
|
|
model_object.input_file = model_object_new.input_file;
|
|
// Only refresh ModelInstances if there is any change.
|
|
if (model_object.instances.size() != model_object_new.instances.size() ||
|
|
! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->id() == r->id(); })) {
|
|
// G-code generator accesses model_object.instances to generate sequential print ordering matching the Plater object list.
|
|
update_apply_status(this->invalidate_step(psGCodeExport));
|
|
model_object.clear_instances();
|
|
model_object.instances.reserve(model_object_new.instances.size());
|
|
for (const ModelInstance *model_instance : model_object_new.instances) {
|
|
model_object.instances.emplace_back(new ModelInstance(*model_instance));
|
|
model_object.instances.back()->set_model_object(&model_object);
|
|
}
|
|
} else if (! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(),
|
|
[](auto l, auto r){ return l->print_volume_state == r->print_volume_state && l->printable == r->printable &&
|
|
l->get_transformation().get_matrix().isApprox(r->get_transformation().get_matrix()); })) {
|
|
// If some of the instances changed, the bounding box of the updated ModelObject is likely no more valid.
|
|
// This is safe as the ModelObject's bounding box is only accessed from this function, which is called from the main thread only.
|
|
model_object.invalidate_bounding_box();
|
|
// Synchronize the content of instances.
|
|
auto new_instance = model_object_new.instances.begin();
|
|
for (auto old_instance = model_object.instances.begin(); old_instance != model_object.instances.end(); ++ old_instance, ++ new_instance) {
|
|
(*old_instance)->set_transformation((*new_instance)->get_transformation());
|
|
(*old_instance)->print_volume_state = (*new_instance)->print_volume_state;
|
|
(*old_instance)->printable = (*new_instance)->printable;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 4) Generate PrintObjects from ModelObjects and their instances.
|
|
{
|
|
std::vector<PrintObject*> print_objects_new;
|
|
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
|
|
bool new_objects = false;
|
|
// Walk over all new model objects and check, whether there are matching PrintObjects.
|
|
for (ModelObject *model_object : m_model.objects) {
|
|
auto range = print_object_status.equal_range(PrintObjectStatus(model_object->id()));
|
|
std::vector<const PrintObjectStatus*> old;
|
|
if (range.first != range.second) {
|
|
old.reserve(print_object_status.count(PrintObjectStatus(model_object->id())));
|
|
for (auto it = range.first; it != range.second; ++ it)
|
|
if (it->status != PrintObjectStatus::Deleted)
|
|
old.emplace_back(&(*it));
|
|
}
|
|
// Generate a list of trafos and XY offsets for instances of a ModelObject
|
|
// Producing the config for PrintObject on demand, caching it at print_object_last.
|
|
const PrintObject *print_object_last = nullptr;
|
|
auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject* print_object) {
|
|
print_object->config_apply(print_object_last ?
|
|
print_object_last->config() :
|
|
PrintObject::object_config_from_model_object(m_default_object_config, *model_object, num_extruders));
|
|
print_object_last = print_object;
|
|
};
|
|
std::vector<PrintObjectTrafoAndInstances> new_print_instances = print_objects_from_model_object(*model_object);
|
|
if (old.empty()) {
|
|
// Simple case, just generate new instances.
|
|
for (PrintObjectTrafoAndInstances &print_instances : new_print_instances) {
|
|
PrintObject *print_object = new PrintObject(this, model_object, print_instances.trafo, std::move(print_instances.instances));
|
|
print_object_apply_config(print_object);
|
|
print_objects_new.emplace_back(print_object);
|
|
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
|
|
new_objects = true;
|
|
}
|
|
continue;
|
|
}
|
|
// Complex case, try to merge the two lists.
|
|
// Sort the old lexicographically by their trafos.
|
|
std::sort(old.begin(), old.end(), [](const PrintObjectStatus *lhs, const PrintObjectStatus *rhs){ return transform3d_lower(lhs->trafo, rhs->trafo); });
|
|
// Merge the old / new lists.
|
|
auto it_old = old.begin();
|
|
for (PrintObjectTrafoAndInstances &new_instances : new_print_instances) {
|
|
for (; it_old != old.end() && transform3d_lower((*it_old)->trafo, new_instances.trafo); ++ it_old);
|
|
if (it_old == old.end() || ! transform3d_equal((*it_old)->trafo, new_instances.trafo)) {
|
|
// This is a new instance (or a set of instances with the same trafo). Just add it.
|
|
PrintObject *print_object = new PrintObject(this, model_object, new_instances.trafo, std::move(new_instances.instances));
|
|
print_object_apply_config(print_object);
|
|
print_objects_new.emplace_back(print_object);
|
|
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
|
|
new_objects = true;
|
|
if (it_old != old.end())
|
|
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Deleted;
|
|
} else {
|
|
// The PrintObject already exists and the copies differ.
|
|
PrintBase::ApplyStatus status = (*it_old)->print_object->set_instances(std::move(new_instances.instances));
|
|
if (status != PrintBase::APPLY_STATUS_UNCHANGED)
|
|
update_apply_status(status == PrintBase::APPLY_STATUS_INVALIDATED);
|
|
print_objects_new.emplace_back((*it_old)->print_object);
|
|
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Reused;
|
|
}
|
|
}
|
|
}
|
|
if (m_objects != print_objects_new) {
|
|
this->call_cancel_callback();
|
|
update_apply_status(this->invalidate_all_steps());
|
|
m_objects = print_objects_new;
|
|
// Delete the PrintObjects marked as Unknown or Deleted.
|
|
bool deleted_objects = false;
|
|
for (auto &pos : print_object_status)
|
|
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
|
|
update_apply_status(pos.print_object->invalidate_all_steps());
|
|
delete pos.print_object;
|
|
deleted_objects = true;
|
|
}
|
|
if (new_objects || deleted_objects)
|
|
update_apply_status(this->invalidate_steps({ psSkirt, psBrim, psWipeTower, psGCodeExport }));
|
|
if (new_objects)
|
|
update_apply_status(false);
|
|
}
|
|
print_object_status.clear();
|
|
}
|
|
|
|
// 5) Synchronize configs of ModelVolumes, synchronize AMF / 3MF materials (and their configs), refresh PrintRegions.
|
|
// Update reference counts of regions from the remaining PrintObjects and their volumes.
|
|
// Regions with zero references could and should be reused.
|
|
for (PrintRegion *region : m_regions)
|
|
region->m_refcnt = 0;
|
|
for (PrintObject *print_object : m_objects) {
|
|
int idx_region = 0;
|
|
for (const auto &volumes : print_object->region_volumes) {
|
|
if (! volumes.empty())
|
|
++ m_regions[idx_region]->m_refcnt;
|
|
++ idx_region;
|
|
}
|
|
}
|
|
|
|
// All regions now have distinct settings.
|
|
// Check whether applying the new region config defaults we'd get different regions.
|
|
for (size_t region_id = 0; region_id < m_regions.size(); ++ region_id) {
|
|
PrintRegion ®ion = *m_regions[region_id];
|
|
PrintRegionConfig this_region_config;
|
|
bool this_region_config_set = false;
|
|
for (PrintObject *print_object : m_objects) {
|
|
const LayerRanges *layer_ranges;
|
|
{
|
|
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
|
|
assert(it_status != model_object_status.end());
|
|
assert(it_status->status != ModelObjectStatus::Deleted);
|
|
layer_ranges = &it_status->layer_ranges;
|
|
}
|
|
if (region_id < print_object->region_volumes.size()) {
|
|
for (const std::pair<t_layer_height_range, int> &volume_and_range : print_object->region_volumes[region_id]) {
|
|
const ModelVolume &volume = *print_object->model_object()->volumes[volume_and_range.second];
|
|
const DynamicPrintConfig *layer_range_config = layer_ranges->config(volume_and_range.first);
|
|
if (this_region_config_set) {
|
|
// If the new config for this volume differs from the other
|
|
// volume configs currently associated to this region, it means
|
|
// the region subdivision does not make sense anymore.
|
|
if (! this_region_config.equals(PrintObject::region_config_from_model_volume(m_default_region_config, layer_range_config, volume, num_extruders)))
|
|
// Regions were split. Reset this print_object.
|
|
goto print_object_end;
|
|
} else {
|
|
this_region_config = PrintObject::region_config_from_model_volume(m_default_region_config, layer_range_config, volume, num_extruders);
|
|
for (size_t i = 0; i < region_id; ++ i) {
|
|
const PrintRegion ®ion_other = *m_regions[i];
|
|
if (region_other.m_refcnt != 0 && region_other.config().equals(this_region_config))
|
|
// Regions were merged. Reset this print_object.
|
|
goto print_object_end;
|
|
}
|
|
this_region_config_set = true;
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
print_object_end:
|
|
update_apply_status(print_object->invalidate_all_steps());
|
|
// Decrease the references to regions from this volume.
|
|
int ireg = 0;
|
|
for (const std::vector<std::pair<t_layer_height_range, int>> &volumes : print_object->region_volumes) {
|
|
if (! volumes.empty())
|
|
-- m_regions[ireg]->m_refcnt;
|
|
++ ireg;
|
|
}
|
|
print_object->region_volumes.clear();
|
|
}
|
|
if (this_region_config_set) {
|
|
t_config_option_keys diff = region.config().diff(this_region_config);
|
|
if (! diff.empty()) {
|
|
region.config_apply_only(this_region_config, diff, false);
|
|
for (PrintObject *print_object : m_objects)
|
|
if (region_id < print_object->region_volumes.size() && ! print_object->region_volumes[region_id].empty())
|
|
update_apply_status(print_object->invalidate_state_by_config_options(diff));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Possibly add new regions for the newly added or resetted PrintObjects.
|
|
for (size_t idx_print_object = 0; idx_print_object < m_objects.size(); ++ idx_print_object) {
|
|
PrintObject &print_object0 = *m_objects[idx_print_object];
|
|
const ModelObject &model_object = *print_object0.model_object();
|
|
const LayerRanges *layer_ranges;
|
|
{
|
|
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
|
|
assert(it_status != model_object_status.end());
|
|
assert(it_status->status != ModelObjectStatus::Deleted);
|
|
layer_ranges = &it_status->layer_ranges;
|
|
}
|
|
std::vector<int> regions_in_object;
|
|
regions_in_object.reserve(64);
|
|
for (size_t i = idx_print_object; i < m_objects.size() && m_objects[i]->model_object() == &model_object; ++ i) {
|
|
PrintObject &print_object = *m_objects[i];
|
|
bool fresh = print_object.region_volumes.empty();
|
|
unsigned int volume_id = 0;
|
|
unsigned int idx_region_in_object = 0;
|
|
for (const ModelVolume *volume : model_object.volumes) {
|
|
if (! volume->is_model_part() && ! volume->is_modifier()) {
|
|
++ volume_id;
|
|
continue;
|
|
}
|
|
// Filter the layer ranges, so they do not overlap and they contain at least a single layer.
|
|
// Now insert a volume with a layer range to its own region.
|
|
for (auto it_range = layer_ranges->begin(); it_range != layer_ranges->end(); ++ it_range) {
|
|
int region_id = -1;
|
|
if (&print_object == &print_object0) {
|
|
// Get the config applied to this volume.
|
|
PrintRegionConfig config = PrintObject::region_config_from_model_volume(m_default_region_config, it_range->second, *volume, num_extruders);
|
|
// Find an existing print region with the same config.
|
|
int idx_empty_slot = -1;
|
|
for (int i = 0; i < (int)m_regions.size(); ++ i) {
|
|
if (m_regions[i]->m_refcnt == 0) {
|
|
if (idx_empty_slot == -1)
|
|
idx_empty_slot = i;
|
|
} else if (config.equals(m_regions[i]->config())) {
|
|
region_id = i;
|
|
break;
|
|
}
|
|
}
|
|
// If no region exists with the same config, create a new one.
|
|
if (region_id == -1) {
|
|
if (idx_empty_slot == -1) {
|
|
region_id = (int)m_regions.size();
|
|
this->add_region(config);
|
|
} else {
|
|
region_id = idx_empty_slot;
|
|
m_regions[region_id]->set_config(std::move(config));
|
|
}
|
|
}
|
|
regions_in_object.emplace_back(region_id);
|
|
} else
|
|
region_id = regions_in_object[idx_region_in_object ++];
|
|
// Assign volume to a region.
|
|
if (fresh) {
|
|
if ((size_t)region_id >= print_object.region_volumes.size() || print_object.region_volumes[region_id].empty())
|
|
++ m_regions[region_id]->m_refcnt;
|
|
print_object.add_region_volume(region_id, volume_id, it_range->first);
|
|
}
|
|
}
|
|
++ volume_id;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update SlicingParameters for each object where the SlicingParameters is not valid.
|
|
// If it is not valid, then it is ensured that PrintObject.m_slicing_params is not in use
|
|
// (posSlicing and posSupportMaterial was invalidated).
|
|
for (PrintObject *object : m_objects)
|
|
object->update_slicing_parameters();
|
|
|
|
#ifdef _DEBUG
|
|
check_model_ids_equal(m_model, model);
|
|
#endif /* _DEBUG */
|
|
|
|
return static_cast<ApplyStatus>(apply_status);
|
|
}
|
|
|
|
bool Print::has_infinite_skirt() const
|
|
{
|
|
return (m_config.draft_shield && m_config.skirts > 0) || (m_config.ooze_prevention && this->extruders().size() > 1);
|
|
}
|
|
|
|
bool Print::has_skirt() const
|
|
{
|
|
return (m_config.skirt_height > 0 && m_config.skirts > 0) || this->has_infinite_skirt();
|
|
}
|
|
|
|
static inline bool sequential_print_horizontal_clearance_valid(const Print &print)
|
|
{
|
|
Polygons convex_hulls_other;
|
|
std::map<ObjectID, Polygon> map_model_object_to_convex_hull;
|
|
for (const PrintObject *print_object : print.objects()) {
|
|
assert(! print_object->model_object()->instances.empty());
|
|
assert(! print_object->instances().empty());
|
|
ObjectID model_object_id = print_object->model_object()->id();
|
|
auto it_convex_hull = map_model_object_to_convex_hull.find(model_object_id);
|
|
// Get convex hull of all printable volumes assigned to this print object.
|
|
ModelInstance *model_instance0 = print_object->model_object()->instances.front();
|
|
if (it_convex_hull == map_model_object_to_convex_hull.end()) {
|
|
// Calculate the convex hull of a printable object.
|
|
// Grow convex hull with the clearance margin.
|
|
// FIXME: Arrangement has different parameters for offsetting (jtMiter, limit 2)
|
|
// which causes that the warning will be showed after arrangement with the
|
|
// appropriate object distance. Even if I set this to jtMiter the warning still shows up.
|
|
it_convex_hull = map_model_object_to_convex_hull.emplace_hint(it_convex_hull, model_object_id,
|
|
offset(print_object->model_object()->convex_hull_2d(
|
|
Geometry::assemble_transform(Vec3d::Zero(), model_instance0->get_rotation(), model_instance0->get_scaling_factor(), model_instance0->get_mirror())),
|
|
// Shrink the extruder_clearance_radius a tiny bit, so that if the object arrangement algorithm placed the objects
|
|
// exactly by satisfying the extruder_clearance_radius, this test will not trigger collision.
|
|
float(scale_(0.5 * print.config().extruder_clearance_radius.value - EPSILON)),
|
|
jtRound, float(scale_(0.1))).front());
|
|
}
|
|
// Make a copy, so it may be rotated for instances.
|
|
Polygon convex_hull0 = it_convex_hull->second;
|
|
double z_diff = Geometry::rotation_diff_z(model_instance0->get_rotation(), print_object->instances().front().model_instance->get_rotation());
|
|
if (std::abs(z_diff) > EPSILON)
|
|
convex_hull0.rotate(z_diff);
|
|
// Now we check that no instance of convex_hull intersects any of the previously checked object instances.
|
|
for (const PrintInstance &instance : print_object->instances()) {
|
|
Polygon convex_hull = convex_hull0;
|
|
// instance.shift is a position of a centered object, while model object may not be centered.
|
|
// Conver the shift from the PrintObject's coordinates into ModelObject's coordinates by removing the centering offset.
|
|
convex_hull.translate(instance.shift - print_object->center_offset());
|
|
if (! intersection(convex_hulls_other, convex_hull).empty())
|
|
return false;
|
|
polygons_append(convex_hulls_other, convex_hull);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool sequential_print_vertical_clearance_valid(const Print &print)
|
|
{
|
|
std::vector<const PrintInstance*> print_instances_ordered = sort_object_instances_by_model_order(print);
|
|
// Ignore the last instance printed.
|
|
print_instances_ordered.pop_back();
|
|
// Find the other highest instance.
|
|
auto it = std::max_element(print_instances_ordered.begin(), print_instances_ordered.end(), [](auto l, auto r) {
|
|
return l->print_object->height() < r->print_object->height();
|
|
});
|
|
return it == print_instances_ordered.end() || (*it)->print_object->height() <= scale_(print.config().extruder_clearance_height.value);
|
|
}
|
|
|
|
// Precondition: Print::validate() requires the Print::apply() to be called its invocation.
|
|
std::string Print::validate() const
|
|
{
|
|
if (m_objects.empty())
|
|
return L("All objects are outside of the print volume.");
|
|
|
|
if (extruders().empty())
|
|
return L("The supplied settings will cause an empty print.");
|
|
|
|
if (m_config.complete_objects) {
|
|
if (! sequential_print_horizontal_clearance_valid(*this))
|
|
return L("Some objects are too close; your extruder will collide with them.");
|
|
if (! sequential_print_vertical_clearance_valid(*this))
|
|
return L("Some objects are too tall and cannot be printed without extruder collisions.");
|
|
}
|
|
|
|
if (m_config.spiral_vase) {
|
|
size_t total_copies_count = 0;
|
|
for (const PrintObject *object : m_objects)
|
|
total_copies_count += object->instances().size();
|
|
// #4043
|
|
if (total_copies_count > 1 && ! m_config.complete_objects.value)
|
|
return L("The Spiral Vase option can only be used when printing a single object.");
|
|
assert(m_objects.size() == 1);
|
|
size_t num_regions = 0;
|
|
for (const std::vector<std::pair<t_layer_height_range, int>> &volumes_per_region : m_objects.front()->region_volumes)
|
|
if (! volumes_per_region.empty())
|
|
++ num_regions;
|
|
if (num_regions > 1)
|
|
return L("The Spiral Vase option can only be used when printing single material objects.");
|
|
}
|
|
|
|
if (this->has_wipe_tower() && ! m_objects.empty()) {
|
|
// Make sure all extruders use same diameter filament and have the same nozzle diameter
|
|
// EPSILON comparison is used for nozzles and 10 % tolerance is used for filaments
|
|
double first_nozzle_diam = m_config.nozzle_diameter.get_at(extruders().front());
|
|
double first_filament_diam = m_config.filament_diameter.get_at(extruders().front());
|
|
for (const auto& extruder_idx : extruders()) {
|
|
double nozzle_diam = m_config.nozzle_diameter.get_at(extruder_idx);
|
|
double filament_diam = m_config.filament_diameter.get_at(extruder_idx);
|
|
if (nozzle_diam - EPSILON > first_nozzle_diam || nozzle_diam + EPSILON < first_nozzle_diam
|
|
|| std::abs((filament_diam-first_filament_diam)/first_filament_diam) > 0.1)
|
|
return L("The wipe tower is only supported if all extruders have the same nozzle diameter "
|
|
"and use filaments of the same diameter.");
|
|
}
|
|
|
|
if (m_config.gcode_flavor != gcfRepRap && m_config.gcode_flavor != gcfRepetier && m_config.gcode_flavor != gcfMarlin)
|
|
return L("The Wipe Tower is currently only supported for the Marlin, RepRap/Sprinter and Repetier G-code flavors.");
|
|
if (! m_config.use_relative_e_distances)
|
|
return L("The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).");
|
|
if (m_config.ooze_prevention)
|
|
return L("Ooze prevention is currently not supported with the wipe tower enabled.");
|
|
if (m_config.use_volumetric_e)
|
|
return L("The Wipe Tower currently does not support volumetric E (use_volumetric_e=0).");
|
|
if (m_config.complete_objects && extruders().size() > 1)
|
|
return L("The Wipe Tower is currently not supported for multimaterial sequential prints.");
|
|
|
|
if (m_objects.size() > 1) {
|
|
bool has_custom_layering = false;
|
|
std::vector<std::vector<coordf_t>> layer_height_profiles;
|
|
for (const PrintObject *object : m_objects) {
|
|
has_custom_layering = ! object->model_object()->layer_config_ranges.empty() || ! object->model_object()->layer_height_profile.empty();
|
|
if (has_custom_layering) {
|
|
layer_height_profiles.assign(m_objects.size(), std::vector<coordf_t>());
|
|
break;
|
|
}
|
|
}
|
|
const SlicingParameters &slicing_params0 = m_objects.front()->slicing_parameters();
|
|
size_t tallest_object_idx = 0;
|
|
if (has_custom_layering)
|
|
PrintObject::update_layer_height_profile(*m_objects.front()->model_object(), slicing_params0, layer_height_profiles.front());
|
|
for (size_t i = 1; i < m_objects.size(); ++ i) {
|
|
const PrintObject *object = m_objects[i];
|
|
const SlicingParameters &slicing_params = object->slicing_parameters();
|
|
if (std::abs(slicing_params.first_print_layer_height - slicing_params0.first_print_layer_height) > EPSILON ||
|
|
std::abs(slicing_params.layer_height - slicing_params0.layer_height ) > EPSILON)
|
|
return L("The Wipe Tower is only supported for multiple objects if they have equal layer heights");
|
|
if (slicing_params.raft_layers() != slicing_params0.raft_layers())
|
|
return L("The Wipe Tower is only supported for multiple objects if they are printed over an equal number of raft layers");
|
|
if (object->config().support_material_contact_distance != m_objects.front()->config().support_material_contact_distance)
|
|
return L("The Wipe Tower is only supported for multiple objects if they are printed with the same support_material_contact_distance");
|
|
if (! equal_layering(slicing_params, slicing_params0))
|
|
return L("The Wipe Tower is only supported for multiple objects if they are sliced equally.");
|
|
if (has_custom_layering) {
|
|
PrintObject::update_layer_height_profile(*object->model_object(), slicing_params, layer_height_profiles[i]);
|
|
if (*(layer_height_profiles[i].end()-2) > *(layer_height_profiles[tallest_object_idx].end()-2))
|
|
tallest_object_idx = i;
|
|
}
|
|
}
|
|
|
|
if (has_custom_layering) {
|
|
const std::vector<coordf_t> &layer_height_profile_tallest = layer_height_profiles[tallest_object_idx];
|
|
for (size_t idx_object = 0; idx_object < m_objects.size(); ++ idx_object) {
|
|
if (idx_object == tallest_object_idx)
|
|
continue;
|
|
const std::vector<coordf_t> &layer_height_profile = layer_height_profiles[idx_object];
|
|
|
|
// The comparison of the profiles is not just about element-wise equality, some layers may not be
|
|
// explicitely included. Always remember z and height of last reference layer that in the vector
|
|
// and compare to that. In case some layers are in the vectors multiple times, only the last entry is
|
|
// taken into account and compared.
|
|
size_t i = 0; // index into tested profile
|
|
size_t j = 0; // index into reference profile
|
|
coordf_t ref_z = -1.;
|
|
coordf_t next_ref_z = layer_height_profile_tallest[0];
|
|
coordf_t ref_height = -1.;
|
|
while (i < layer_height_profile.size()) {
|
|
coordf_t this_z = layer_height_profile[i];
|
|
// find the last entry with this z
|
|
while (i+2 < layer_height_profile.size() && layer_height_profile[i+2] == this_z)
|
|
i += 2;
|
|
|
|
coordf_t this_height = layer_height_profile[i+1];
|
|
if (ref_height < -1. || next_ref_z < this_z + EPSILON) {
|
|
ref_z = next_ref_z;
|
|
do { // one layer can be in the vector several times
|
|
ref_height = layer_height_profile_tallest[j+1];
|
|
if (j+2 >= layer_height_profile_tallest.size())
|
|
break;
|
|
j += 2;
|
|
next_ref_z = layer_height_profile_tallest[j];
|
|
} while (ref_z == next_ref_z);
|
|
}
|
|
if (std::abs(this_height - ref_height) > EPSILON)
|
|
return L("The Wipe tower is only supported if all objects have the same variable layer height");
|
|
i += 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
std::vector<unsigned int> extruders = this->extruders();
|
|
|
|
// Find the smallest used nozzle diameter and the number of unique nozzle diameters.
|
|
double min_nozzle_diameter = std::numeric_limits<double>::max();
|
|
double max_nozzle_diameter = 0;
|
|
for (unsigned int extruder_id : extruders) {
|
|
double dmr = m_config.nozzle_diameter.get_at(extruder_id);
|
|
min_nozzle_diameter = std::min(min_nozzle_diameter, dmr);
|
|
max_nozzle_diameter = std::max(max_nozzle_diameter, dmr);
|
|
}
|
|
|
|
#if 0
|
|
// We currently allow one to assign extruders with a higher index than the number
|
|
// of physical extruders the machine is equipped with, as the Printer::apply() clamps them.
|
|
unsigned int total_extruders_count = m_config.nozzle_diameter.size();
|
|
for (const auto& extruder_idx : extruders)
|
|
if ( extruder_idx >= total_extruders_count )
|
|
return L("One or more object were assigned an extruder that the printer does not have.");
|
|
#endif
|
|
|
|
auto validate_extrusion_width = [min_nozzle_diameter, max_nozzle_diameter](const ConfigBase &config, const char *opt_key, double layer_height, std::string &err_msg) -> bool {
|
|
double extrusion_width_min = config.get_abs_value(opt_key, min_nozzle_diameter);
|
|
double extrusion_width_max = config.get_abs_value(opt_key, max_nozzle_diameter);
|
|
if (extrusion_width_min == 0) {
|
|
// Default "auto-generated" extrusion width is always valid.
|
|
} else if (extrusion_width_min <= layer_height) {
|
|
err_msg = (boost::format(L("%1%=%2% mm is too low to be printable at a layer height %3% mm")) % opt_key % extrusion_width_min % layer_height).str();
|
|
return false;
|
|
} else if (extrusion_width_max >= max_nozzle_diameter * 3.) {
|
|
err_msg = (boost::format(L("Excessive %1%=%2% mm to be printable with a nozzle diameter %3% mm")) % opt_key % extrusion_width_max % max_nozzle_diameter).str();
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
for (PrintObject *object : m_objects) {
|
|
if (object->config().raft_layers > 0 || object->config().support_material.value) {
|
|
if ((object->config().support_material_extruder == 0 || object->config().support_material_interface_extruder == 0) && max_nozzle_diameter - min_nozzle_diameter > EPSILON) {
|
|
// The object has some form of support and either support_material_extruder or support_material_interface_extruder
|
|
// will be printed with the current tool without a forced tool change. Play safe, assert that all object nozzles
|
|
// are of the same diameter.
|
|
return L("Printing with multiple extruders of differing nozzle diameters. "
|
|
"If support is to be printed with the current extruder (support_material_extruder == 0 or support_material_interface_extruder == 0), "
|
|
"all nozzles have to be of the same diameter.");
|
|
}
|
|
if (this->has_wipe_tower()) {
|
|
if (object->config().support_material_contact_distance == 0) {
|
|
// Soluble interface
|
|
if (object->config().support_material_contact_distance == 0 && ! object->config().support_material_synchronize_layers)
|
|
return L("For the Wipe Tower to work with the soluble supports, the support layers need to be synchronized with the object layers.");
|
|
} else {
|
|
// Non-soluble interface
|
|
if (object->config().support_material_extruder != 0 || object->config().support_material_interface_extruder != 0)
|
|
return L("The Wipe Tower currently supports the non-soluble supports only if they are printed with the current extruder without triggering a tool change. "
|
|
"(both support_material_extruder and support_material_interface_extruder need to be set to 0).");
|
|
}
|
|
}
|
|
}
|
|
|
|
// validate first_layer_height
|
|
double first_layer_height = object->config().get_abs_value("first_layer_height");
|
|
double first_layer_min_nozzle_diameter;
|
|
if (object->config().raft_layers > 0) {
|
|
// if we have raft layers, only support material extruder is used on first layer
|
|
size_t first_layer_extruder = object->config().raft_layers == 1
|
|
? object->config().support_material_interface_extruder-1
|
|
: object->config().support_material_extruder-1;
|
|
first_layer_min_nozzle_diameter = (first_layer_extruder == size_t(-1)) ?
|
|
min_nozzle_diameter :
|
|
m_config.nozzle_diameter.get_at(first_layer_extruder);
|
|
} else {
|
|
// if we don't have raft layers, any nozzle diameter is potentially used in first layer
|
|
first_layer_min_nozzle_diameter = min_nozzle_diameter;
|
|
}
|
|
if (first_layer_height > first_layer_min_nozzle_diameter)
|
|
return L("First layer height can't be greater than nozzle diameter");
|
|
|
|
// validate layer_height
|
|
double layer_height = object->config().layer_height.value;
|
|
if (layer_height > min_nozzle_diameter)
|
|
return L("Layer height can't be greater than nozzle diameter");
|
|
|
|
// Validate extrusion widths.
|
|
std::string err_msg;
|
|
if (! validate_extrusion_width(object->config(), "extrusion_width", layer_height, err_msg))
|
|
return err_msg;
|
|
if ((object->config().support_material || object->config().raft_layers > 0) && ! validate_extrusion_width(object->config(), "support_material_extrusion_width", layer_height, err_msg))
|
|
return err_msg;
|
|
for (const char *opt_key : { "perimeter_extrusion_width", "external_perimeter_extrusion_width", "infill_extrusion_width", "solid_infill_extrusion_width", "top_infill_extrusion_width" })
|
|
for (size_t i = 0; i < object->region_volumes.size(); ++ i)
|
|
if (! object->region_volumes[i].empty() && ! validate_extrusion_width(this->get_region(i)->config(), opt_key, layer_height, err_msg))
|
|
return err_msg;
|
|
}
|
|
}
|
|
|
|
return std::string();
|
|
}
|
|
|
|
#if 0
|
|
// the bounding box of objects placed in copies position
|
|
// (without taking skirt/brim/support material into account)
|
|
BoundingBox Print::bounding_box() const
|
|
{
|
|
BoundingBox bb;
|
|
for (const PrintObject *object : m_objects)
|
|
for (const PrintInstance &instance : object->instances()) {
|
|
BoundingBox bb2(object->bounding_box());
|
|
bb.merge(bb2.min + instance.shift);
|
|
bb.merge(bb2.max + instance.shift);
|
|
}
|
|
return bb;
|
|
}
|
|
|
|
// the total bounding box of extrusions, including skirt/brim/support material
|
|
// this methods needs to be called even when no steps were processed, so it should
|
|
// only use configuration values
|
|
BoundingBox Print::total_bounding_box() const
|
|
{
|
|
// get objects bounding box
|
|
BoundingBox bb = this->bounding_box();
|
|
|
|
// we need to offset the objects bounding box by at least half the perimeters extrusion width
|
|
Flow perimeter_flow = m_objects.front()->get_layer(0)->get_region(0)->flow(frPerimeter);
|
|
double extra = perimeter_flow.width/2;
|
|
|
|
// consider support material
|
|
if (this->has_support_material()) {
|
|
extra = std::max(extra, SUPPORT_MATERIAL_MARGIN);
|
|
}
|
|
|
|
// consider brim and skirt
|
|
if (m_config.brim_width.value > 0) {
|
|
Flow brim_flow = this->brim_flow();
|
|
extra = std::max(extra, m_config.brim_width.value + brim_flow.width/2);
|
|
}
|
|
if (this->has_skirt()) {
|
|
int skirts = m_config.skirts.value;
|
|
if (skirts == 0 && this->has_infinite_skirt()) skirts = 1;
|
|
Flow skirt_flow = this->skirt_flow();
|
|
extra = std::max(
|
|
extra,
|
|
m_config.brim_width.value
|
|
+ m_config.skirt_distance.value
|
|
+ skirts * skirt_flow.spacing()
|
|
+ skirt_flow.width/2
|
|
);
|
|
}
|
|
|
|
if (extra > 0)
|
|
bb.offset(scale_(extra));
|
|
|
|
return bb;
|
|
}
|
|
#endif
|
|
|
|
double Print::skirt_first_layer_height() const
|
|
{
|
|
if (m_objects.empty())
|
|
throw Slic3r::InvalidArgument("skirt_first_layer_height() can't be called without PrintObjects");
|
|
return m_objects.front()->config().get_abs_value("first_layer_height");
|
|
}
|
|
|
|
Flow Print::brim_flow() const
|
|
{
|
|
ConfigOptionFloatOrPercent width = m_config.first_layer_extrusion_width;
|
|
if (width.value == 0)
|
|
width = m_regions.front()->config().perimeter_extrusion_width;
|
|
if (width.value == 0)
|
|
width = m_objects.front()->config().extrusion_width;
|
|
|
|
/* We currently use a random region's perimeter extruder.
|
|
While this works for most cases, we should probably consider all of the perimeter
|
|
extruders and take the one with, say, the smallest index.
|
|
The same logic should be applied to the code that selects the extruder during G-code
|
|
generation as well. */
|
|
return Flow::new_from_config_width(
|
|
frPerimeter,
|
|
width,
|
|
(float)m_config.nozzle_diameter.get_at(m_regions.front()->config().perimeter_extruder-1),
|
|
(float)this->skirt_first_layer_height(),
|
|
0
|
|
);
|
|
}
|
|
|
|
Flow Print::skirt_flow() const
|
|
{
|
|
ConfigOptionFloatOrPercent width = m_config.first_layer_extrusion_width;
|
|
if (width.value == 0)
|
|
width = m_regions.front()->config().perimeter_extrusion_width;
|
|
if (width.value == 0)
|
|
width = m_objects.front()->config().extrusion_width;
|
|
|
|
/* We currently use a random object's support material extruder.
|
|
While this works for most cases, we should probably consider all of the support material
|
|
extruders and take the one with, say, the smallest index;
|
|
The same logic should be applied to the code that selects the extruder during G-code
|
|
generation as well. */
|
|
return Flow::new_from_config_width(
|
|
frPerimeter,
|
|
width,
|
|
(float)m_config.nozzle_diameter.get_at(m_objects.front()->config().support_material_extruder-1),
|
|
(float)this->skirt_first_layer_height(),
|
|
0
|
|
);
|
|
}
|
|
|
|
bool Print::has_support_material() const
|
|
{
|
|
for (const PrintObject *object : m_objects)
|
|
if (object->has_support_material())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* This method assigns extruders to the volumes having a material
|
|
but not having extruders set in the volume config. */
|
|
void Print::auto_assign_extruders(ModelObject* model_object) const
|
|
{
|
|
// only assign extruders if object has more than one volume
|
|
if (model_object->volumes.size() < 2)
|
|
return;
|
|
|
|
// size_t extruders = m_config.nozzle_diameter.values.size();
|
|
for (size_t volume_id = 0; volume_id < model_object->volumes.size(); ++ volume_id) {
|
|
ModelVolume *volume = model_object->volumes[volume_id];
|
|
//FIXME Vojtech: This assigns an extruder ID even to a modifier volume, if it has a material assigned.
|
|
if ((volume->is_model_part() || volume->is_modifier()) && ! volume->material_id().empty() && ! volume->config.has("extruder"))
|
|
volume->config.set("extruder", int(volume_id + 1));
|
|
}
|
|
}
|
|
|
|
// Slicing process, running at a background thread.
|
|
void Print::process()
|
|
{
|
|
BOOST_LOG_TRIVIAL(info) << "Starting the slicing process." << log_memory_info();
|
|
for (PrintObject *obj : m_objects)
|
|
obj->make_perimeters();
|
|
this->set_status(70, L("Infilling layers"));
|
|
for (PrintObject *obj : m_objects)
|
|
obj->infill();
|
|
for (PrintObject *obj : m_objects)
|
|
obj->ironing();
|
|
for (PrintObject *obj : m_objects)
|
|
obj->generate_support_material();
|
|
if (this->set_started(psWipeTower)) {
|
|
m_wipe_tower_data.clear();
|
|
m_tool_ordering.clear();
|
|
if (this->has_wipe_tower()) {
|
|
//this->set_status(95, L("Generating wipe tower"));
|
|
this->_make_wipe_tower();
|
|
} else if (! this->config().complete_objects.value) {
|
|
// Initialize the tool ordering, so it could be used by the G-code preview slider for planning tool changes and filament switches.
|
|
m_tool_ordering = ToolOrdering(*this, -1, false);
|
|
if (m_tool_ordering.empty() || m_tool_ordering.last_extruder() == unsigned(-1))
|
|
throw Slic3r::SlicingError("The print is empty. The model is not printable with current print settings.");
|
|
}
|
|
this->set_done(psWipeTower);
|
|
}
|
|
if (this->set_started(psSkirt)) {
|
|
m_skirt.clear();
|
|
m_skirt_convex_hull.clear();
|
|
m_first_layer_convex_hull.points.clear();
|
|
if (this->has_skirt()) {
|
|
this->set_status(88, L("Generating skirt"));
|
|
this->_make_skirt();
|
|
}
|
|
this->set_done(psSkirt);
|
|
}
|
|
if (this->set_started(psBrim)) {
|
|
m_brim.clear();
|
|
m_first_layer_convex_hull.points.clear();
|
|
if (m_config.brim_width > 0) {
|
|
this->set_status(88, L("Generating brim"));
|
|
this->_make_brim();
|
|
}
|
|
// Brim depends on skirt (brim lines are trimmed by the skirt lines), therefore if
|
|
// the skirt gets invalidated, brim gets invalidated as well and the following line is called.
|
|
this->finalize_first_layer_convex_hull();
|
|
this->set_done(psBrim);
|
|
}
|
|
BOOST_LOG_TRIVIAL(info) << "Slicing process finished." << log_memory_info();
|
|
}
|
|
|
|
// G-code export process, running at a background thread.
|
|
// The export_gcode may die for various reasons (fails to process output_filename_format,
|
|
// write error into the G-code, cannot execute post-processing scripts).
|
|
// It is up to the caller to show an error message.
|
|
#if ENABLE_GCODE_VIEWER
|
|
std::string Print::export_gcode(const std::string& path_template, GCodeProcessor::Result* result, ThumbnailsGeneratorCallback thumbnail_cb)
|
|
#else
|
|
std::string Print::export_gcode(const std::string& path_template, GCodePreviewData* preview_data, ThumbnailsGeneratorCallback thumbnail_cb)
|
|
#endif // ENABLE_GCODE_VIEWER
|
|
{
|
|
// output everything to a G-code file
|
|
// The following call may die if the output_filename_format template substitution fails.
|
|
std::string path = this->output_filepath(path_template);
|
|
std::string message;
|
|
#if ENABLE_GCODE_VIEWER
|
|
if (!path.empty() && result == nullptr) {
|
|
#else
|
|
if (! path.empty() && preview_data == nullptr) {
|
|
#endif // ENABLE_GCODE_VIEWER
|
|
// Only show the path if preview_data is not set -> running from command line.
|
|
message = L("Exporting G-code");
|
|
message += " to ";
|
|
message += path;
|
|
} else
|
|
message = L("Generating G-code");
|
|
this->set_status(90, message);
|
|
|
|
// The following line may die for multiple reasons.
|
|
GCode gcode;
|
|
#if ENABLE_GCODE_VIEWER
|
|
gcode.do_export(this, path.c_str(), result, thumbnail_cb);
|
|
#else
|
|
gcode.do_export(this, path.c_str(), preview_data, thumbnail_cb);
|
|
#endif // ENABLE_GCODE_VIEWER
|
|
return path.c_str();
|
|
}
|
|
|
|
void Print::_make_skirt()
|
|
{
|
|
// First off we need to decide how tall the skirt must be.
|
|
// The skirt_height option from config is expressed in layers, but our
|
|
// object might have different layer heights, so we need to find the print_z
|
|
// of the highest layer involved.
|
|
// Note that unless has_infinite_skirt() == true
|
|
// the actual skirt might not reach this $skirt_height_z value since the print
|
|
// order of objects on each layer is not guaranteed and will not generally
|
|
// include the thickest object first. It is just guaranteed that a skirt is
|
|
// prepended to the first 'n' layers (with 'n' = skirt_height).
|
|
// $skirt_height_z in this case is the highest possible skirt height for safety.
|
|
coordf_t skirt_height_z = 0.;
|
|
for (const PrintObject *object : m_objects) {
|
|
size_t skirt_layers = this->has_infinite_skirt() ?
|
|
object->layer_count() :
|
|
std::min(size_t(m_config.skirt_height.value), object->layer_count());
|
|
skirt_height_z = std::max(skirt_height_z, object->m_layers[skirt_layers-1]->print_z);
|
|
}
|
|
|
|
// Collect points from all layers contained in skirt height.
|
|
Points points;
|
|
for (const PrintObject *object : m_objects) {
|
|
Points object_points;
|
|
// Get object layers up to skirt_height_z.
|
|
for (const Layer *layer : object->m_layers) {
|
|
if (layer->print_z > skirt_height_z)
|
|
break;
|
|
for (const ExPolygon &expoly : layer->lslices)
|
|
// Collect the outer contour points only, ignore holes for the calculation of the convex hull.
|
|
append(object_points, expoly.contour.points);
|
|
}
|
|
// Get support layers up to skirt_height_z.
|
|
for (const SupportLayer *layer : object->support_layers()) {
|
|
if (layer->print_z > skirt_height_z)
|
|
break;
|
|
for (const ExtrusionEntity *extrusion_entity : layer->support_fills.entities)
|
|
append(object_points, extrusion_entity->as_polyline().points);
|
|
}
|
|
// Repeat points for each object copy.
|
|
for (const PrintInstance &instance : object->instances()) {
|
|
Points copy_points = object_points;
|
|
for (Point &pt : copy_points)
|
|
pt += instance.shift;
|
|
append(points, copy_points);
|
|
}
|
|
}
|
|
|
|
// Include the wipe tower.
|
|
append(points, this->first_layer_wipe_tower_corners());
|
|
|
|
if (points.size() < 3)
|
|
// At least three points required for a convex hull.
|
|
return;
|
|
|
|
this->throw_if_canceled();
|
|
Polygon convex_hull = Slic3r::Geometry::convex_hull(points);
|
|
|
|
// Skirt may be printed on several layers, having distinct layer heights,
|
|
// but loops must be aligned so can't vary width/spacing
|
|
// TODO: use each extruder's own flow
|
|
double first_layer_height = this->skirt_first_layer_height();
|
|
Flow flow = this->skirt_flow();
|
|
float spacing = flow.spacing();
|
|
double mm3_per_mm = flow.mm3_per_mm();
|
|
|
|
std::vector<size_t> extruders;
|
|
std::vector<double> extruders_e_per_mm;
|
|
{
|
|
auto set_extruders = this->extruders();
|
|
extruders.reserve(set_extruders.size());
|
|
extruders_e_per_mm.reserve(set_extruders.size());
|
|
for (auto &extruder_id : set_extruders) {
|
|
extruders.push_back(extruder_id);
|
|
extruders_e_per_mm.push_back(Extruder((unsigned int)extruder_id, &m_config).e_per_mm(mm3_per_mm));
|
|
}
|
|
}
|
|
|
|
// Number of skirt loops per skirt layer.
|
|
size_t n_skirts = m_config.skirts.value;
|
|
if (this->has_infinite_skirt() && n_skirts == 0)
|
|
n_skirts = 1;
|
|
|
|
// Initial offset of the brim inner edge from the object (possible with a support & raft).
|
|
// The skirt will touch the brim if the brim is extruded.
|
|
auto distance = float(scale_(m_config.skirt_distance.value) - spacing/2.);
|
|
// Draw outlines from outside to inside.
|
|
// Loop while we have less skirts than required or any extruder hasn't reached the min length if any.
|
|
std::vector<coordf_t> extruded_length(extruders.size(), 0.);
|
|
for (size_t i = n_skirts, extruder_idx = 0; i > 0; -- i) {
|
|
this->throw_if_canceled();
|
|
// Offset the skirt outside.
|
|
distance += float(scale_(spacing));
|
|
// Generate the skirt centerline.
|
|
Polygon loop;
|
|
{
|
|
Polygons loops = offset(convex_hull, distance, ClipperLib::jtRound, float(scale_(0.1)));
|
|
Geometry::simplify_polygons(loops, scale_(0.05), &loops);
|
|
if (loops.empty())
|
|
break;
|
|
loop = loops.front();
|
|
}
|
|
// Extrude the skirt loop.
|
|
ExtrusionLoop eloop(elrSkirt);
|
|
eloop.paths.emplace_back(ExtrusionPath(
|
|
ExtrusionPath(
|
|
erSkirt,
|
|
(float)mm3_per_mm, // this will be overridden at G-code export time
|
|
flow.width,
|
|
(float)first_layer_height // this will be overridden at G-code export time
|
|
)));
|
|
eloop.paths.back().polyline = loop.split_at_first_point();
|
|
m_skirt.append(eloop);
|
|
if (m_config.min_skirt_length.value > 0) {
|
|
// The skirt length is limited. Sum the total amount of filament length extruded, in mm.
|
|
extruded_length[extruder_idx] += unscale<double>(loop.length()) * extruders_e_per_mm[extruder_idx];
|
|
if (extruded_length[extruder_idx] < m_config.min_skirt_length.value) {
|
|
// Not extruded enough yet with the current extruder. Add another loop.
|
|
if (i == 1)
|
|
++ i;
|
|
} else {
|
|
assert(extruded_length[extruder_idx] >= m_config.min_skirt_length.value);
|
|
// Enough extruded with the current extruder. Extrude with the next one,
|
|
// until the prescribed number of skirt loops is extruded.
|
|
if (extruder_idx + 1 < extruders.size())
|
|
++ extruder_idx;
|
|
}
|
|
} else {
|
|
// The skirt lenght is not limited, extrude the skirt with the 1st extruder only.
|
|
}
|
|
}
|
|
// Brims were generated inside out, reverse to print the outmost contour first.
|
|
m_skirt.reverse();
|
|
|
|
// Remember the outer edge of the last skirt line extruded as m_skirt_convex_hull.
|
|
for (Polygon &poly : offset(convex_hull, distance + 0.5f * float(scale_(spacing)), ClipperLib::jtRound, float(scale_(0.1))))
|
|
append(m_skirt_convex_hull, std::move(poly.points));
|
|
}
|
|
|
|
void Print::_make_brim()
|
|
{
|
|
// Brim is only printed on first layer and uses perimeter extruder.
|
|
Polygons islands = this->first_layer_islands();
|
|
Polygons loops;
|
|
Flow flow = this->brim_flow();
|
|
size_t num_loops = size_t(floor(m_config.brim_width.value / flow.spacing()));
|
|
for (size_t i = 0; i < num_loops; ++ i) {
|
|
this->throw_if_canceled();
|
|
islands = offset(islands, float(flow.scaled_spacing()), jtSquare);
|
|
for (Polygon &poly : islands) {
|
|
// poly.simplify(SCALED_RESOLUTION);
|
|
poly.points.push_back(poly.points.front());
|
|
Points p = MultiPoint::_douglas_peucker(poly.points, SCALED_RESOLUTION);
|
|
p.pop_back();
|
|
poly.points = std::move(p);
|
|
}
|
|
if (i + 1 == num_loops) {
|
|
// Remember the outer edge of the last brim line extruded as m_first_layer_convex_hull.
|
|
for (Polygon &poly : islands)
|
|
append(m_first_layer_convex_hull.points, poly.points);
|
|
}
|
|
polygons_append(loops, offset(islands, -0.5f * float(flow.scaled_spacing())));
|
|
}
|
|
loops = union_pt_chained(loops, false);
|
|
// The function above produces ordering well suited for concentric infill (from outside to inside).
|
|
// For Brim, the ordering should be reversed (from inside to outside).
|
|
std::reverse(loops.begin(), loops.end());
|
|
|
|
// If there is a possibility that brim intersects skirt, go through loops and split those extrusions
|
|
// The result is either the original Polygon or a list of Polylines
|
|
if (! m_skirt.empty() && m_config.skirt_distance.value < m_config.brim_width)
|
|
{
|
|
// Find the bounding polygons of the skirt
|
|
const Polygons skirt_inners = offset(dynamic_cast<ExtrusionLoop*>(m_skirt.entities.back())->polygon(),
|
|
-float(scale_(this->skirt_flow().spacing()))/2.f,
|
|
ClipperLib::jtRound,
|
|
float(scale_(0.1)));
|
|
const Polygons skirt_outers = offset(dynamic_cast<ExtrusionLoop*>(m_skirt.entities.front())->polygon(),
|
|
float(scale_(this->skirt_flow().spacing()))/2.f,
|
|
ClipperLib::jtRound,
|
|
float(scale_(0.1)));
|
|
|
|
// First calculate the trimming region.
|
|
ClipperLib_Z::Paths trimming;
|
|
{
|
|
ClipperLib_Z::Paths input_subject;
|
|
ClipperLib_Z::Paths input_clip;
|
|
for (const Polygon &poly : skirt_outers) {
|
|
input_subject.emplace_back();
|
|
ClipperLib_Z::Path &out = input_subject.back();
|
|
out.reserve(poly.points.size());
|
|
for (const Point &pt : poly.points)
|
|
out.emplace_back(pt.x(), pt.y(), 0);
|
|
}
|
|
for (const Polygon &poly : skirt_inners) {
|
|
input_clip.emplace_back();
|
|
ClipperLib_Z::Path &out = input_clip.back();
|
|
out.reserve(poly.points.size());
|
|
for (const Point &pt : poly.points)
|
|
out.emplace_back(pt.x(), pt.y(), 0);
|
|
}
|
|
// init Clipper
|
|
ClipperLib_Z::Clipper clipper;
|
|
// add polygons
|
|
clipper.AddPaths(input_subject, ClipperLib_Z::ptSubject, true);
|
|
clipper.AddPaths(input_clip, ClipperLib_Z::ptClip, true);
|
|
// perform operation
|
|
clipper.Execute(ClipperLib_Z::ctDifference, trimming, ClipperLib_Z::pftEvenOdd, ClipperLib_Z::pftEvenOdd);
|
|
}
|
|
|
|
// Second, trim the extrusion loops with the trimming regions.
|
|
ClipperLib_Z::Paths loops_trimmed;
|
|
{
|
|
// Produce a closed polyline (repeat the first point at the end).
|
|
ClipperLib_Z::Paths input_clip;
|
|
for (const Polygon &loop : loops) {
|
|
input_clip.emplace_back();
|
|
ClipperLib_Z::Path& out = input_clip.back();
|
|
out.reserve(loop.points.size());
|
|
int64_t loop_idx = &loop - &loops.front();
|
|
for (const Point& pt : loop.points)
|
|
// The Z coordinate carries index of the source loop.
|
|
out.emplace_back(pt.x(), pt.y(), loop_idx + 1);
|
|
out.emplace_back(out.front());
|
|
}
|
|
// init Clipper
|
|
ClipperLib_Z::Clipper clipper;
|
|
clipper.ZFillFunction([](const ClipperLib_Z::IntPoint& e1bot, const ClipperLib_Z::IntPoint& e1top, const ClipperLib_Z::IntPoint& e2bot, const ClipperLib_Z::IntPoint& e2top, ClipperLib_Z::IntPoint& pt) {
|
|
// Assign a valid input loop identifier. Such an identifier is strictly positive, the next line is safe even in case one side of a segment
|
|
// hat the Z coordinate not set to the contour coordinate.
|
|
pt.Z = std::max(std::max(e1bot.Z, e1top.Z), std::max(e2bot.Z, e2top.Z));
|
|
});
|
|
// add polygons
|
|
clipper.AddPaths(input_clip, ClipperLib_Z::ptSubject, false);
|
|
clipper.AddPaths(trimming, ClipperLib_Z::ptClip, true);
|
|
// perform operation
|
|
ClipperLib_Z::PolyTree loops_trimmed_tree;
|
|
clipper.Execute(ClipperLib_Z::ctDifference, loops_trimmed_tree, ClipperLib_Z::pftEvenOdd, ClipperLib_Z::pftEvenOdd);
|
|
ClipperLib_Z::PolyTreeToPaths(loops_trimmed_tree, loops_trimmed);
|
|
}
|
|
|
|
// Third, produce the extrusions, sorted by the source loop indices.
|
|
{
|
|
std::vector<std::pair<const ClipperLib_Z::Path*, size_t>> loops_trimmed_order;
|
|
loops_trimmed_order.reserve(loops_trimmed.size());
|
|
for (const ClipperLib_Z::Path &path : loops_trimmed) {
|
|
size_t input_idx = 0;
|
|
for (const ClipperLib_Z::IntPoint &pt : path)
|
|
if (pt.Z > 0) {
|
|
input_idx = (size_t)pt.Z;
|
|
break;
|
|
}
|
|
assert(input_idx != 0);
|
|
loops_trimmed_order.emplace_back(&path, input_idx);
|
|
}
|
|
std::stable_sort(loops_trimmed_order.begin(), loops_trimmed_order.end(),
|
|
[](const std::pair<const ClipperLib_Z::Path*, size_t> &l, const std::pair<const ClipperLib_Z::Path*, size_t> &r) {
|
|
return l.second < r.second;
|
|
});
|
|
|
|
Point last_pt(0, 0);
|
|
for (size_t i = 0; i < loops_trimmed_order.size();) {
|
|
// Find all pieces that the initial loop was split into.
|
|
size_t j = i + 1;
|
|
for (; j < loops_trimmed_order.size() && loops_trimmed_order[i].second == loops_trimmed_order[j].second; ++ j) ;
|
|
const ClipperLib_Z::Path &first_path = *loops_trimmed_order[i].first;
|
|
if (i + 1 == j && first_path.size() > 3 && first_path.front().X == first_path.back().X && first_path.front().Y == first_path.back().Y) {
|
|
auto *loop = new ExtrusionLoop();
|
|
m_brim.entities.emplace_back(loop);
|
|
loop->paths.emplace_back(erSkirt, float(flow.mm3_per_mm()), float(flow.width), float(this->skirt_first_layer_height()));
|
|
Points &points = loop->paths.front().polyline.points;
|
|
points.reserve(first_path.size());
|
|
for (const ClipperLib_Z::IntPoint &pt : first_path)
|
|
points.emplace_back(coord_t(pt.X), coord_t(pt.Y));
|
|
i = j;
|
|
} else {
|
|
//FIXME The path chaining here may not be optimal.
|
|
ExtrusionEntityCollection this_loop_trimmed;
|
|
this_loop_trimmed.entities.reserve(j - i);
|
|
for (; i < j; ++ i) {
|
|
this_loop_trimmed.entities.emplace_back(new ExtrusionPath(erSkirt, float(flow.mm3_per_mm()), float(flow.width), float(this->skirt_first_layer_height())));
|
|
const ClipperLib_Z::Path &path = *loops_trimmed_order[i].first;
|
|
Points &points = static_cast<ExtrusionPath*>(this_loop_trimmed.entities.back())->polyline.points;
|
|
points.reserve(path.size());
|
|
for (const ClipperLib_Z::IntPoint &pt : path)
|
|
points.emplace_back(coord_t(pt.X), coord_t(pt.Y));
|
|
}
|
|
chain_and_reorder_extrusion_entities(this_loop_trimmed.entities, &last_pt);
|
|
m_brim.entities.reserve(m_brim.entities.size() + this_loop_trimmed.entities.size());
|
|
append(m_brim.entities, std::move(this_loop_trimmed.entities));
|
|
this_loop_trimmed.entities.clear();
|
|
}
|
|
last_pt = m_brim.last_point();
|
|
}
|
|
}
|
|
} else {
|
|
extrusion_entities_append_loops(m_brim.entities, std::move(loops), erSkirt, float(flow.mm3_per_mm()), float(flow.width), float(this->skirt_first_layer_height()));
|
|
}
|
|
}
|
|
|
|
Polygons Print::first_layer_islands() const
|
|
{
|
|
Polygons islands;
|
|
for (PrintObject *object : m_objects) {
|
|
Polygons object_islands;
|
|
for (ExPolygon &expoly : object->m_layers.front()->lslices)
|
|
object_islands.push_back(expoly.contour);
|
|
if (! object->support_layers().empty())
|
|
object->support_layers().front()->support_fills.polygons_covered_by_spacing(object_islands, float(SCALED_EPSILON));
|
|
islands.reserve(islands.size() + object_islands.size() * object->instances().size());
|
|
for (const PrintInstance &instance : object->instances())
|
|
for (Polygon &poly : object_islands) {
|
|
islands.push_back(poly);
|
|
islands.back().translate(instance.shift);
|
|
}
|
|
}
|
|
return islands;
|
|
}
|
|
|
|
std::vector<Point> Print::first_layer_wipe_tower_corners() const
|
|
{
|
|
std::vector<Point> corners;
|
|
if (has_wipe_tower() && ! m_wipe_tower_data.tool_changes.empty()) {
|
|
double width = m_config.wipe_tower_width + 2*m_wipe_tower_data.brim_width;
|
|
double depth = m_wipe_tower_data.depth + 2*m_wipe_tower_data.brim_width;
|
|
Vec2d pt0(-m_wipe_tower_data.brim_width, -m_wipe_tower_data.brim_width);
|
|
for (Vec2d pt : {
|
|
pt0,
|
|
Vec2d(pt0.x()+width, pt0.y() ),
|
|
Vec2d(pt0.x()+width, pt0.y()+depth),
|
|
Vec2d(pt0.x(), pt0.y()+depth)
|
|
}) {
|
|
pt = Eigen::Rotation2Dd(Geometry::deg2rad(m_config.wipe_tower_rotation_angle.value)) * pt;
|
|
pt += Vec2d(m_config.wipe_tower_x.value, m_config.wipe_tower_y.value);
|
|
corners.emplace_back(Point(scale_(pt.x()), scale_(pt.y())));
|
|
}
|
|
}
|
|
return corners;
|
|
}
|
|
|
|
void Print::finalize_first_layer_convex_hull()
|
|
{
|
|
append(m_first_layer_convex_hull.points, m_skirt_convex_hull);
|
|
if (m_first_layer_convex_hull.empty()) {
|
|
// Neither skirt nor brim was extruded. Collect points of printed objects from 1st layer.
|
|
for (Polygon &poly : this->first_layer_islands())
|
|
append(m_first_layer_convex_hull.points, std::move(poly.points));
|
|
}
|
|
append(m_first_layer_convex_hull.points, this->first_layer_wipe_tower_corners());
|
|
m_first_layer_convex_hull = Geometry::convex_hull(m_first_layer_convex_hull.points);
|
|
}
|
|
|
|
// Wipe tower support.
|
|
bool Print::has_wipe_tower() const
|
|
{
|
|
return
|
|
! m_config.spiral_vase.value &&
|
|
m_config.wipe_tower.value &&
|
|
m_config.nozzle_diameter.values.size() > 1;
|
|
}
|
|
|
|
const WipeTowerData& Print::wipe_tower_data(size_t extruders_cnt, double first_layer_height, double nozzle_diameter) const
|
|
{
|
|
// If the wipe tower wasn't created yet, make sure the depth and brim_width members are set to default.
|
|
if (! is_step_done(psWipeTower) && extruders_cnt !=0) {
|
|
|
|
float width = float(m_config.wipe_tower_width);
|
|
float brim_spacing = float(nozzle_diameter * 1.25f - first_layer_height * (1. - M_PI_4));
|
|
|
|
const_cast<Print*>(this)->m_wipe_tower_data.depth = (900.f/width) * float(extruders_cnt - 1);
|
|
const_cast<Print*>(this)->m_wipe_tower_data.brim_width = 4.5f * brim_spacing;
|
|
}
|
|
|
|
return m_wipe_tower_data;
|
|
}
|
|
|
|
void Print::_make_wipe_tower()
|
|
{
|
|
m_wipe_tower_data.clear();
|
|
if (! this->has_wipe_tower())
|
|
return;
|
|
|
|
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
|
|
std::vector<float> wiping_matrix(cast<float>(m_config.wiping_volumes_matrix.values));
|
|
// Extract purging volumes for each extruder pair:
|
|
std::vector<std::vector<float>> wipe_volumes;
|
|
const unsigned int number_of_extruders = (unsigned int)(sqrt(wiping_matrix.size())+EPSILON);
|
|
for (unsigned int i = 0; i<number_of_extruders; ++i)
|
|
wipe_volumes.push_back(std::vector<float>(wiping_matrix.begin()+i*number_of_extruders, wiping_matrix.begin()+(i+1)*number_of_extruders));
|
|
|
|
// Let the ToolOrdering class know there will be initial priming extrusions at the start of the print.
|
|
m_wipe_tower_data.tool_ordering = ToolOrdering(*this, (unsigned int)-1, true);
|
|
|
|
if (! m_wipe_tower_data.tool_ordering.has_wipe_tower())
|
|
// Don't generate any wipe tower.
|
|
return;
|
|
|
|
// Check whether there are any layers in m_tool_ordering, which are marked with has_wipe_tower,
|
|
// they print neither object, nor support. These layers are above the raft and below the object, and they
|
|
// shall be added to the support layers to be printed.
|
|
// see https://github.com/prusa3d/PrusaSlicer/issues/607
|
|
{
|
|
size_t idx_begin = size_t(-1);
|
|
size_t idx_end = m_wipe_tower_data.tool_ordering.layer_tools().size();
|
|
// Find the first wipe tower layer, which does not have a counterpart in an object or a support layer.
|
|
for (size_t i = 0; i < idx_end; ++ i) {
|
|
const LayerTools < = m_wipe_tower_data.tool_ordering.layer_tools()[i];
|
|
if (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support) {
|
|
idx_begin = i;
|
|
break;
|
|
}
|
|
}
|
|
if (idx_begin != size_t(-1)) {
|
|
// Find the position in m_objects.first()->support_layers to insert these new support layers.
|
|
double wipe_tower_new_layer_print_z_first = m_wipe_tower_data.tool_ordering.layer_tools()[idx_begin].print_z;
|
|
SupportLayerPtrs::const_iterator it_layer = m_objects.front()->support_layers().begin();
|
|
SupportLayerPtrs::const_iterator it_end = m_objects.front()->support_layers().end();
|
|
for (; it_layer != it_end && (*it_layer)->print_z - EPSILON < wipe_tower_new_layer_print_z_first; ++ it_layer);
|
|
// Find the stopper of the sequence of wipe tower layers, which do not have a counterpart in an object or a support layer.
|
|
for (size_t i = idx_begin; i < idx_end; ++ i) {
|
|
LayerTools < = const_cast<LayerTools&>(m_wipe_tower_data.tool_ordering.layer_tools()[i]);
|
|
if (! (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support))
|
|
break;
|
|
lt.has_support = true;
|
|
// Insert the new support layer.
|
|
double height = lt.print_z - (i == 0 ? 0. : m_wipe_tower_data.tool_ordering.layer_tools()[i-1].print_z);
|
|
//FIXME the support layer ID is set to -1, as Vojtech hopes it is not being used anyway.
|
|
it_layer = m_objects.front()->insert_support_layer(it_layer, -1, height, lt.print_z, lt.print_z - 0.5 * height);
|
|
++ it_layer;
|
|
}
|
|
}
|
|
}
|
|
this->throw_if_canceled();
|
|
|
|
// Initialize the wipe tower.
|
|
WipeTower wipe_tower(m_config, wipe_volumes, m_wipe_tower_data.tool_ordering.first_extruder());
|
|
|
|
//wipe_tower.set_retract();
|
|
//wipe_tower.set_zhop();
|
|
|
|
// Set the extruder & material properties at the wipe tower object.
|
|
for (size_t i = 0; i < number_of_extruders; ++ i)
|
|
|
|
wipe_tower.set_extruder(
|
|
i, m_config);
|
|
|
|
m_wipe_tower_data.priming = Slic3r::make_unique<std::vector<WipeTower::ToolChangeResult>>(
|
|
wipe_tower.prime((float)this->skirt_first_layer_height(), m_wipe_tower_data.tool_ordering.all_extruders(), false));
|
|
|
|
// Lets go through the wipe tower layers and determine pairs of extruder changes for each
|
|
// to pass to wipe_tower (so that it can use it for planning the layout of the tower)
|
|
{
|
|
unsigned int current_extruder_id = m_wipe_tower_data.tool_ordering.all_extruders().back();
|
|
for (auto &layer_tools : m_wipe_tower_data.tool_ordering.layer_tools()) { // for all layers
|
|
if (!layer_tools.has_wipe_tower) continue;
|
|
bool first_layer = &layer_tools == &m_wipe_tower_data.tool_ordering.front();
|
|
wipe_tower.plan_toolchange((float)layer_tools.print_z, (float)layer_tools.wipe_tower_layer_height, current_extruder_id, current_extruder_id, false);
|
|
for (const auto extruder_id : layer_tools.extruders) {
|
|
if ((first_layer && extruder_id == m_wipe_tower_data.tool_ordering.all_extruders().back()) || extruder_id != current_extruder_id) {
|
|
float volume_to_wipe = wipe_volumes[current_extruder_id][extruder_id]; // total volume to wipe after this toolchange
|
|
// Not all of that can be used for infill purging:
|
|
volume_to_wipe -= (float)m_config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
|
|
|
|
// try to assign some infills/objects for the wiping:
|
|
volume_to_wipe = layer_tools.wiping_extrusions().mark_wiping_extrusions(*this, current_extruder_id, extruder_id, volume_to_wipe);
|
|
|
|
// add back the minimal amount toforce on the wipe tower:
|
|
volume_to_wipe += (float)m_config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);
|
|
|
|
// request a toolchange at the wipe tower with at least volume_to_wipe purging amount
|
|
wipe_tower.plan_toolchange((float)layer_tools.print_z, (float)layer_tools.wipe_tower_layer_height, current_extruder_id, extruder_id,
|
|
first_layer && extruder_id == m_wipe_tower_data.tool_ordering.all_extruders().back(), volume_to_wipe);
|
|
current_extruder_id = extruder_id;
|
|
}
|
|
}
|
|
layer_tools.wiping_extrusions().ensure_perimeters_infills_order(*this);
|
|
if (&layer_tools == &m_wipe_tower_data.tool_ordering.back() || (&layer_tools + 1)->wipe_tower_partitions == 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Generate the wipe tower layers.
|
|
m_wipe_tower_data.tool_changes.reserve(m_wipe_tower_data.tool_ordering.layer_tools().size());
|
|
wipe_tower.generate(m_wipe_tower_data.tool_changes);
|
|
m_wipe_tower_data.depth = wipe_tower.get_depth();
|
|
m_wipe_tower_data.brim_width = wipe_tower.get_brim_width();
|
|
|
|
// Unload the current filament over the purge tower.
|
|
coordf_t layer_height = m_objects.front()->config().layer_height.value;
|
|
if (m_wipe_tower_data.tool_ordering.back().wipe_tower_partitions > 0) {
|
|
// The wipe tower goes up to the last layer of the print.
|
|
if (wipe_tower.layer_finished()) {
|
|
// The wipe tower is printed to the top of the print and it has no space left for the final extruder purge.
|
|
// Lift Z to the next layer.
|
|
wipe_tower.set_layer(float(m_wipe_tower_data.tool_ordering.back().print_z + layer_height), float(layer_height), 0, false, true);
|
|
} else {
|
|
// There is yet enough space at this layer of the wipe tower for the final purge.
|
|
}
|
|
} else {
|
|
// The wipe tower does not reach the last print layer, perform the pruge at the last print layer.
|
|
assert(m_wipe_tower_data.tool_ordering.back().wipe_tower_partitions == 0);
|
|
wipe_tower.set_layer(float(m_wipe_tower_data.tool_ordering.back().print_z), float(layer_height), 0, false, true);
|
|
}
|
|
m_wipe_tower_data.final_purge = Slic3r::make_unique<WipeTower::ToolChangeResult>(
|
|
wipe_tower.tool_change((unsigned int)(-1)));
|
|
|
|
m_wipe_tower_data.used_filament = wipe_tower.get_used_filament();
|
|
m_wipe_tower_data.number_of_toolchanges = wipe_tower.get_number_of_toolchanges();
|
|
}
|
|
|
|
// Generate a recommended G-code output file name based on the format template, default extension, and template parameters
|
|
// (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
|
|
// Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before G-code is finalized).
|
|
std::string Print::output_filename(const std::string &filename_base) const
|
|
{
|
|
// Set the placeholders for the data know first after the G-code export is finished.
|
|
// These values will be just propagated into the output file name.
|
|
DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders();
|
|
config.set_key_value("num_extruders", new ConfigOptionInt((int)m_config.nozzle_diameter.size()));
|
|
return this->PrintBase::output_filename(m_config.output_filename_format.value, ".gcode", filename_base, &config);
|
|
}
|
|
|
|
DynamicConfig PrintStatistics::config() const
|
|
{
|
|
DynamicConfig config;
|
|
std::string normal_print_time = short_time(this->estimated_normal_print_time);
|
|
std::string silent_print_time = short_time(this->estimated_silent_print_time);
|
|
config.set_key_value("print_time", new ConfigOptionString(normal_print_time));
|
|
config.set_key_value("normal_print_time", new ConfigOptionString(normal_print_time));
|
|
config.set_key_value("silent_print_time", new ConfigOptionString(silent_print_time));
|
|
config.set_key_value("used_filament", new ConfigOptionFloat(this->total_used_filament / 1000.));
|
|
config.set_key_value("extruded_volume", new ConfigOptionFloat(this->total_extruded_volume));
|
|
config.set_key_value("total_cost", new ConfigOptionFloat(this->total_cost));
|
|
config.set_key_value("total_toolchanges", new ConfigOptionInt(this->total_toolchanges));
|
|
config.set_key_value("total_weight", new ConfigOptionFloat(this->total_weight));
|
|
config.set_key_value("total_wipe_tower_cost", new ConfigOptionFloat(this->total_wipe_tower_cost));
|
|
config.set_key_value("total_wipe_tower_filament", new ConfigOptionFloat(this->total_wipe_tower_filament));
|
|
return config;
|
|
}
|
|
|
|
DynamicConfig PrintStatistics::placeholders()
|
|
{
|
|
DynamicConfig config;
|
|
for (const std::string &key : {
|
|
"print_time", "normal_print_time", "silent_print_time",
|
|
"used_filament", "extruded_volume", "total_cost", "total_weight",
|
|
"total_toolchanges", "total_wipe_tower_cost", "total_wipe_tower_filament"})
|
|
config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}"));
|
|
return config;
|
|
}
|
|
|
|
std::string PrintStatistics::finalize_output_path(const std::string &path_in) const
|
|
{
|
|
std::string final_path;
|
|
try {
|
|
boost::filesystem::path path(path_in);
|
|
DynamicConfig cfg = this->config();
|
|
PlaceholderParser pp;
|
|
std::string new_stem = pp.process(path.stem().string(), 0, &cfg);
|
|
final_path = (path.parent_path() / (new_stem + path.extension().string())).string();
|
|
} catch (const std::exception &ex) {
|
|
BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what();
|
|
final_path = path_in;
|
|
}
|
|
return final_path;
|
|
}
|
|
|
|
} // namespace Slic3r
|