PrusaSlicer-NonPlainar/src/libslic3r/ExtrusionEntity.cpp
2020-04-18 10:41:37 +02:00

334 lines
12 KiB
C++

#include "ExtrusionEntity.hpp"
#include "ExtrusionEntityCollection.hpp"
#include "ExPolygonCollection.hpp"
#include "ClipperUtils.hpp"
#include "Extruder.hpp"
#include "Flow.hpp"
#include <cmath>
#include <limits>
#include <sstream>
#define L(s) (s)
namespace Slic3r {
void ExtrusionPath::intersect_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const
{
this->_inflate_collection(intersection_pl(this->polyline, (Polygons)collection), retval);
}
void ExtrusionPath::subtract_expolygons(const ExPolygonCollection &collection, ExtrusionEntityCollection* retval) const
{
this->_inflate_collection(diff_pl(this->polyline, (Polygons)collection), retval);
}
void ExtrusionPath::clip_end(double distance)
{
this->polyline.clip_end(distance);
}
void ExtrusionPath::simplify(double tolerance)
{
this->polyline.simplify(tolerance);
}
double ExtrusionPath::length() const
{
return this->polyline.length();
}
void ExtrusionPath::_inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const
{
for (const Polyline &polyline : polylines)
collection->entities.emplace_back(new ExtrusionPath(polyline, *this));
}
void ExtrusionPath::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
{
polygons_append(out, offset(this->polyline, float(scale_(this->width/2)) + scaled_epsilon));
}
void ExtrusionPath::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
{
// Instantiating the Flow class to get the line spacing.
// Don't know the nozzle diameter, setting to zero. It shall not matter it shall be optimized out by the compiler.
Flow flow(this->width, this->height, 0.f, is_bridge(this->role()));
polygons_append(out, offset(this->polyline, 0.5f * float(flow.scaled_spacing()) + scaled_epsilon));
}
void ExtrusionMultiPath::reverse()
{
for (ExtrusionPath &path : this->paths)
path.reverse();
std::reverse(this->paths.begin(), this->paths.end());
}
double ExtrusionMultiPath::length() const
{
double len = 0;
for (const ExtrusionPath &path : this->paths)
len += path.polyline.length();
return len;
}
void ExtrusionMultiPath::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
{
for (const ExtrusionPath &path : this->paths)
path.polygons_covered_by_width(out, scaled_epsilon);
}
void ExtrusionMultiPath::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
{
for (const ExtrusionPath &path : this->paths)
path.polygons_covered_by_spacing(out, scaled_epsilon);
}
double ExtrusionMultiPath::min_mm3_per_mm() const
{
double min_mm3_per_mm = std::numeric_limits<double>::max();
for (const ExtrusionPath &path : this->paths)
min_mm3_per_mm = std::min(min_mm3_per_mm, path.mm3_per_mm);
return min_mm3_per_mm;
}
Polyline ExtrusionMultiPath::as_polyline() const
{
Polyline out;
if (! paths.empty()) {
size_t len = 0;
for (size_t i_path = 0; i_path < paths.size(); ++ i_path) {
assert(! paths[i_path].polyline.points.empty());
assert(i_path == 0 || paths[i_path - 1].polyline.points.back() == paths[i_path].polyline.points.front());
len += paths[i_path].polyline.points.size();
}
// The connecting points between the segments are equal.
len -= paths.size() - 1;
assert(len > 0);
out.points.reserve(len);
out.points.push_back(paths.front().polyline.points.front());
for (size_t i_path = 0; i_path < paths.size(); ++ i_path)
out.points.insert(out.points.end(), paths[i_path].polyline.points.begin() + 1, paths[i_path].polyline.points.end());
}
return out;
}
bool ExtrusionLoop::make_clockwise()
{
bool was_ccw = this->polygon().is_counter_clockwise();
if (was_ccw) this->reverse();
return was_ccw;
}
bool ExtrusionLoop::make_counter_clockwise()
{
bool was_cw = this->polygon().is_clockwise();
if (was_cw) this->reverse();
return was_cw;
}
void ExtrusionLoop::reverse()
{
for (ExtrusionPath &path : this->paths)
path.reverse();
std::reverse(this->paths.begin(), this->paths.end());
}
Polygon ExtrusionLoop::polygon() const
{
Polygon polygon;
for (const ExtrusionPath &path : this->paths) {
// for each polyline, append all points except the last one (because it coincides with the first one of the next polyline)
polygon.points.insert(polygon.points.end(), path.polyline.points.begin(), path.polyline.points.end()-1);
}
return polygon;
}
double ExtrusionLoop::length() const
{
double len = 0;
for (const ExtrusionPath &path : this->paths)
len += path.polyline.length();
return len;
}
bool ExtrusionLoop::split_at_vertex(const Point &point)
{
for (ExtrusionPaths::iterator path = this->paths.begin(); path != this->paths.end(); ++path) {
int idx = path->polyline.find_point(point);
if (idx != -1) {
if (this->paths.size() == 1) {
// just change the order of points
path->polyline.points.insert(path->polyline.points.end(), path->polyline.points.begin() + 1, path->polyline.points.begin() + idx + 1);
path->polyline.points.erase(path->polyline.points.begin(), path->polyline.points.begin() + idx);
} else {
// new paths list starts with the second half of current path
ExtrusionPaths new_paths;
new_paths.reserve(this->paths.size() + 1);
{
ExtrusionPath p = *path;
p.polyline.points.erase(p.polyline.points.begin(), p.polyline.points.begin() + idx);
if (p.polyline.is_valid()) new_paths.push_back(p);
}
// then we add all paths until the end of current path list
new_paths.insert(new_paths.end(), path+1, this->paths.end()); // not including this path
// then we add all paths since the beginning of current list up to the previous one
new_paths.insert(new_paths.end(), this->paths.begin(), path); // not including this path
// finally we add the first half of current path
{
ExtrusionPath p = *path;
p.polyline.points.erase(p.polyline.points.begin() + idx + 1, p.polyline.points.end());
if (p.polyline.is_valid()) new_paths.push_back(p);
}
// we can now override the old path list with the new one and stop looping
std::swap(this->paths, new_paths);
}
return true;
}
}
return false;
}
// Splitting an extrusion loop, possibly made of multiple segments, some of the segments may be bridging.
void ExtrusionLoop::split_at(const Point &point, bool prefer_non_overhang)
{
if (this->paths.empty())
return;
// Find the closest path and closest point belonging to that path. Avoid overhangs, if asked for.
size_t path_idx = 0;
Point p;
{
double min = std::numeric_limits<double>::max();
Point p_non_overhang;
size_t path_idx_non_overhang = 0;
double min_non_overhang = std::numeric_limits<double>::max();
for (const ExtrusionPath &path : this->paths) {
Point p_tmp = point.projection_onto(path.polyline);
double dist = (p_tmp - point).cast<double>().norm();
if (dist < min) {
p = p_tmp;
min = dist;
path_idx = &path - &this->paths.front();
}
if (prefer_non_overhang && ! is_bridge(path.role()) && dist < min_non_overhang) {
p_non_overhang = p_tmp;
min_non_overhang = dist;
path_idx_non_overhang = &path - &this->paths.front();
}
}
if (prefer_non_overhang && min_non_overhang != std::numeric_limits<double>::max()) {
// Only apply the non-overhang point if there is one.
path_idx = path_idx_non_overhang;
p = p_non_overhang;
}
}
// now split path_idx in two parts
const ExtrusionPath &path = this->paths[path_idx];
ExtrusionPath p1(path.role(), path.mm3_per_mm, path.width, path.height);
ExtrusionPath p2(path.role(), path.mm3_per_mm, path.width, path.height);
path.polyline.split_at(p, &p1.polyline, &p2.polyline);
if (this->paths.size() == 1) {
if (! p1.polyline.is_valid())
std::swap(this->paths.front().polyline.points, p2.polyline.points);
else if (! p2.polyline.is_valid())
std::swap(this->paths.front().polyline.points, p1.polyline.points);
else {
p2.polyline.points.insert(p2.polyline.points.end(), p1.polyline.points.begin() + 1, p1.polyline.points.end());
std::swap(this->paths.front().polyline.points, p2.polyline.points);
}
} else {
// install the two paths
this->paths.erase(this->paths.begin() + path_idx);
if (p2.polyline.is_valid()) this->paths.insert(this->paths.begin() + path_idx, p2);
if (p1.polyline.is_valid()) this->paths.insert(this->paths.begin() + path_idx, p1);
}
// split at the new vertex
this->split_at_vertex(p);
}
void ExtrusionLoop::clip_end(double distance, ExtrusionPaths* paths) const
{
*paths = this->paths;
while (distance > 0 && !paths->empty()) {
ExtrusionPath &last = paths->back();
double len = last.length();
if (len <= distance) {
paths->pop_back();
distance -= len;
} else {
last.polyline.clip_end(distance);
break;
}
}
}
bool ExtrusionLoop::has_overhang_point(const Point &point) const
{
for (const ExtrusionPath &path : this->paths) {
int pos = path.polyline.find_point(point);
if (pos != -1) {
// point belongs to this path
// we consider it overhang only if it's not an endpoint
return (is_bridge(path.role()) && pos > 0 && pos != (int)(path.polyline.points.size())-1);
}
}
return false;
}
void ExtrusionLoop::polygons_covered_by_width(Polygons &out, const float scaled_epsilon) const
{
for (const ExtrusionPath &path : this->paths)
path.polygons_covered_by_width(out, scaled_epsilon);
}
void ExtrusionLoop::polygons_covered_by_spacing(Polygons &out, const float scaled_epsilon) const
{
for (const ExtrusionPath &path : this->paths)
path.polygons_covered_by_spacing(out, scaled_epsilon);
}
double ExtrusionLoop::min_mm3_per_mm() const
{
double min_mm3_per_mm = std::numeric_limits<double>::max();
for (const ExtrusionPath &path : this->paths)
min_mm3_per_mm = std::min(min_mm3_per_mm, path.mm3_per_mm);
return min_mm3_per_mm;
}
std::string ExtrusionEntity::role_to_string(ExtrusionRole role)
{
switch (role) {
#if ENABLE_GCODE_VIEWER
case erNone : return L("Unknown");
#else
case erNone : return L("None");
#endif // ENABLE_GCODE_VIEWER
case erPerimeter : return L("Perimeter");
case erExternalPerimeter : return L("External perimeter");
case erOverhangPerimeter : return L("Overhang perimeter");
case erInternalInfill : return L("Internal infill");
case erSolidInfill : return L("Solid infill");
case erTopSolidInfill : return L("Top solid infill");
case erBridgeInfill : return L("Bridge infill");
case erGapFill : return L("Gap fill");
case erSkirt : return L("Skirt");
case erSupportMaterial : return L("Support material");
case erSupportMaterialInterface : return L("Support material interface");
case erWipeTower : return L("Wipe tower");
case erCustom : return L("Custom");
case erMixed : return L("Mixed");
default : assert(false);
}
return "";
}
}