PrusaSlicer-NonPlainar/lib/Slic3r/Geometry.pm
2018-09-14 10:25:20 +02:00

271 lines
7.7 KiB
Perl

package Slic3r::Geometry;
use strict;
use warnings;
require Exporter;
our @ISA = qw(Exporter);
# Exported by this module. The last section starting with convex_hull is exported by Geometry.xsp
our @EXPORT_OK = qw(
PI epsilon
angle3points
collinear
dot
line_intersection
normalize
point_in_segment
polyline_lines
polygon_is_convex
polygon_segment_having_point
scale
unscale
scaled_epsilon
size_2D
X Y Z
convex_hull
chained_path_from
deg2rad
rad2deg
rad2deg_dir
);
use constant PI => 4 * atan2(1, 1);
use constant A => 0;
use constant B => 1;
use constant X1 => 0;
use constant Y1 => 1;
use constant X2 => 2;
use constant Y2 => 3;
sub epsilon () { 1E-4 }
sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR }
sub scale ($) { $_[0] / &Slic3r::SCALING_FACTOR }
sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR }
# used by geometry.t, polygon_segment_having_point
sub point_in_segment {
my ($point, $line) = @_;
my ($x, $y) = @$point;
my $line_p = $line->pp;
my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X];
my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y];
# check whether the point is in the segment bounding box
return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
&& $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
# if line is vertical, check whether point's X is the same as the line
if ($line_p->[A][X] == $line_p->[B][X]) {
return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0;
}
# calculate the Y in line at X of the point
my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y])
* ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]);
return abs($y3 - $y) < epsilon ? 1 : 0;
}
# used by geometry.t
sub polyline_lines {
my ($polyline) = @_;
my @points = @$polyline;
return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1;
}
# given a $polygon, return the (first) segment having $point
# used by geometry.t
sub polygon_segment_having_point {
my ($polygon, $point) = @_;
foreach my $line (@{ $polygon->lines }) {
return $line if point_in_segment($point, $line);
}
return undef;
}
# polygon must be simple (non complex) and ccw
sub polygon_is_convex {
my ($points) = @_;
for (my $i = 0; $i <= $#$points; $i++) {
my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]);
return 0 if $angle < PI;
}
return 1;
}
sub normalize {
my ($line) = @_;
my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) )
or return [0, 0, 0]; # to avoid illegal division by zero
return [ map $_ / $len, @$line ];
}
# 2D dot product
# used by 3DScene.pm
sub dot {
my ($u, $v) = @_;
return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
}
sub line_intersection {
my ($line1, $line2, $require_crossing) = @_;
$require_crossing ||= 0;
my $intersection = _line_intersection(map @$_, @$line1, @$line2);
return (ref $intersection && $intersection->[1] == $require_crossing)
? $intersection->[0]
: undef;
}
# Used by test cases.
sub collinear {
my ($line1, $line2, $require_overlapping) = @_;
my $intersection = _line_intersection(map @$_, @$line1, @$line2);
return 0 unless !ref($intersection)
&& ($intersection eq 'parallel collinear'
|| ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
if ($require_overlapping) {
my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
}
return 1;
}
sub _line_intersection {
my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;
my ($x, $y); # The as-yet-undetermined intersection point.
my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
my $dx10 = $x1 - $x0; # between the points P and Q.
my $dy32 = $y3 - $y2;
my $dx32 = $x3 - $x2;
my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
my $dx10z = abs( $dx10 ) < epsilon;
my $dy32z = abs( $dy32 ) < epsilon;
my $dx32z = abs( $dx32 ) < epsilon;
my $dyx10; # The slopes.
my $dyx32;
$dyx10 = $dy10 / $dx10 unless $dx10z;
$dyx32 = $dy32 / $dx32 unless $dx32z;
# Now we know all differences and the slopes;
# we can detect horizontal/vertical special cases.
# E.g., slope = 0 means a horizontal line.
unless ( defined $dyx10 or defined $dyx32 ) {
return "parallel vertical";
}
elsif ( $dy10z and not $dy32z ) { # First line horizontal.
$y = $y0;
$x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
}
elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
$y = $y2;
$x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
}
elsif ( $dx10z and not $dx32z ) { # First line vertical.
$x = $x0;
$y = $y2 + $dyx32 * ( $x - $x2 );
}
elsif ( not $dx10z and $dx32z ) { # Second line vertical.
$x = $x2;
$y = $y0 + $dyx10 * ( $x - $x0 );
}
elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
# The slopes are suspiciously close to each other.
# Either we have parallel collinear or just parallel lines.
# The bounding box checks have already weeded the cases
# "parallel horizontal" and "parallel vertical" away.
my $ya = $y0 - $dyx10 * $x0;
my $yb = $y2 - $dyx32 * $x2;
return "parallel collinear" if abs( $ya - $yb ) < epsilon;
return "parallel";
}
else {
# None of the special cases matched.
# We have a "honest" line intersection.
$x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
$y = $y0 + $dyx10 * ($x - $x0);
}
my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);
return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
}
# 2D
sub bounding_box {
my ($points) = @_;
my @x = map $_->x, @$points;
my @y = map $_->y, @$points; #,,
my @bb = (undef, undef, undef, undef);
for (0..$#x) {
$bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1];
$bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2];
$bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1];
$bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2];
}
return @bb[X1,Y1,X2,Y2];
}
# used by ExPolygon::size
sub size_2D {
my @bounding_box = bounding_box(@_);
return (
($bounding_box[X2] - $bounding_box[X1]),
($bounding_box[Y2] - $bounding_box[Y1]),
);
}
# Used by sub collinear, which is used by test cases.
# bounding_box_intersect($d, @a, @b)
# Return true if the given bounding boxes @a and @b intersect
# in $d dimensions. Used by sub collinear.
sub bounding_box_intersect {
my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
my @aa = splice( @bb, 0, 2 * $d ); # The first box.
# (@bb is the second one.)
# Must intersect in all dimensions.
for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
my $i_max = $i_min + $d; # The index for the maximum.
return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
}
return 1;
}
# Used by test cases.
# this assumes a CCW rotation from $p2 to $p3 around $p1
sub angle3points {
my ($p1, $p2, $p3) = @_;
# p1 is the center
my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
- atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
# we only want to return only positive angles
return $angle <= 0 ? $angle + 2*PI() : $angle;
}
1;