PrusaSlicer-NonPlainar/sandboxes/its_neighbor_index/ItsNeighborIndex.cpp
Vojtech Bubnik 0d70a2be69 Renamed create_face_neighbors_index() to its_face_edge_ids().
Renamed its_create_neighbors_index() / its_create_neighbors_index_par() to its_face_neighbors() / its_face_neighbors_par().
New variant of its_face_edge_ids() to create edge IDs from face neighbors.
Fixed some incorrect use of _NDEBUG, it should be NDEBUG.
PrintObject::slice_support_volumes() returns newly Polygons, which are cheaper than ExPolygons.
Updated SeamPlacer and SupportMaterial to use regions defined as Polygons, not ExPolygons.
TriangleSelector::get_facets_strict() returning a patch with T-joints retriangulated.
New slice_mesh_slabs() - slicing projections of a triangle patch into top / bottom layers of slices, for MMU top / bottom segmentation.
TriangleMeshSlicer - use 64 mutexes instead of one when scattering sliced triangles into layers. This makes a big difference on modern many core desktop computers.
When applying MM segmented regions to input regions, the split regions are now re-merged with 10x higher positive offset epsilon to avoid creating gaps.
When testing for existence of paint-on supports or seam, use a more efficient has_facets() test, which does not deserialize into the expensive TriangleSelector tree structure.
GLIndexedVertexArray newly uses Eigen::AlignedBox<float, 3> for efficiency instead of our double based BoundingBoxf3.
Improved MMU painting refresh speed by optimizing generation of the vertex buffers.
Refactored MMU segmentation - projection of painted surfaces from top / bottom.
	1) Parallelized.
	2) Using the new slice_mesh_slabs() instead of projecting one triangle by the other and merging them with Clipper.
2021-06-20 15:21:12 +02:00

614 lines
24 KiB
C++

#include <iostream>
#include <vector>
#include <unordered_map>
#include <map>
#include "ItsNeighborIndex.hpp"
#include "libslic3r/Execution/ExecutionTBB.hpp"
#include "libslic3r/Execution/ExecutionSeq.hpp"
#include "tbb/parallel_sort.h"
namespace Slic3r {
FaceNeighborIndex its_create_neighbors_index_1(const indexed_triangle_set &its)
{
// Just to be clear what type of object are we referencing
using FaceID = size_t;
using VertexID = uint64_t;
using EdgeID = uint64_t;
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
struct Edge // Will contain IDs of the two facets touching this edge
{
FaceID first, second;
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
void assign(FaceID fid)
{
first == UNASSIGNED ? first = fid : second = fid;
}
};
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
std::unordered_map< EdgeID, Edge> edge_index;
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
edge_index[e1].assign(face_id);
edge_index[e2].assign(face_id);
edge_index[e3].assign(face_id);
}
FaceNeighborIndex index(its.indices.size());
// Now collect the neighbors for each facet into the final index
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
const Edge &neighs1 = edge_index[e1];
const Edge &neighs2 = edge_index[e2];
const Edge &neighs3 = edge_index[e3];
std::array<size_t, 3> &neighs = index[face_id];
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
}
return index;
}
std::vector<Vec3i> its_create_neighbors_index_2(const indexed_triangle_set &its)
{
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
// Create a mapping from triangle edge into face.
struct EdgeToFace {
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
int vertex_low;
// Index of the 2nd vertex of the triangle edge.
int vertex_high;
// Index of a triangular face.
int face;
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
int face_edge;
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
};
std::vector<EdgeToFace> edges_map;
edges_map.assign(its.indices.size() * 3, EdgeToFace());
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
for (int i = 0; i < 3; ++ i) {
EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
e2f.vertex_low = its.indices[facet_idx][i];
e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
e2f.face = facet_idx;
// 1 based indexing, to be always strictly positive.
e2f.face_edge = i + 1;
if (e2f.vertex_low > e2f.vertex_high) {
// Sort the vertices
std::swap(e2f.vertex_low, e2f.vertex_high);
// and make the face_edge negative to indicate a flipped edge.
e2f.face_edge = - e2f.face_edge;
}
}
std::sort(edges_map.begin(), edges_map.end());
// Assign a unique common edge id to touching triangle edges.
int num_edges = 0;
for (size_t i = 0; i < edges_map.size(); ++ i) {
EdgeToFace &edge_i = edges_map[i];
if (edge_i.face == -1)
// This edge has been connected to some neighbor already.
continue;
// Unconnected edge. Find its neighbor with the correct orientation.
size_t j;
bool found = false;
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
// Faces touching with opposite oriented edges and none of the edges is connected yet.
found = true;
break;
}
if (! found) {
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
// admesh can assign the same edge ID to more than two facets (which is
// still topologically correct), so we have to search for a duplicate of
// this edge too in case it was already seen in this orientation
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edges_map[j].face != -1) {
// Faces touching with equally oriented edges and none of the edges is connected yet.
found = true;
break;
}
}
// Assign an edge index to the 1st face.
// out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
if (found) {
EdgeToFace &edge_j = edges_map[j];
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
// Mark the edge as connected.
edge_j.face = -1;
}
++ num_edges;
}
return out;
}
std::vector<Vec3i> its_create_neighbors_index_3(const indexed_triangle_set &its)
{
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
// Create a mapping from triangle edge into face.
struct EdgeToFace {
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
int vertex_low;
// Index of the 2nd vertex of the triangle edge.
int vertex_high;
// Index of a triangular face.
int face;
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
int face_edge;
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
};
std::vector<EdgeToFace> edges_map;
edges_map.assign(its.indices.size() * 3, EdgeToFace());
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
for (int i = 0; i < 3; ++ i) {
EdgeToFace &e2f = edges_map[facet_idx * 3 + i];
e2f.vertex_low = its.indices[facet_idx][i];
e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
e2f.face = facet_idx;
// 1 based indexing, to be always strictly positive.
e2f.face_edge = i + 1;
if (e2f.vertex_low > e2f.vertex_high) {
// Sort the vertices
std::swap(e2f.vertex_low, e2f.vertex_high);
// and make the face_edge negative to indicate a flipped edge.
e2f.face_edge = - e2f.face_edge;
}
}
tbb::parallel_sort(edges_map.begin(), edges_map.end());
// Assign a unique common edge id to touching triangle edges.
int num_edges = 0;
for (size_t i = 0; i < edges_map.size(); ++ i) {
EdgeToFace &edge_i = edges_map[i];
if (edge_i.face == -1)
// This edge has been connected to some neighbor already.
continue;
// Unconnected edge. Find its neighbor with the correct orientation.
size_t j;
bool found = false;
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
// Faces touching with opposite oriented edges and none of the edges is connected yet.
found = true;
break;
}
if (! found) {
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
// admesh can assign the same edge ID to more than two facets (which is
// still topologically correct), so we have to search for a duplicate of
// this edge too in case it was already seen in this orientation
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edges_map[j].face != -1) {
// Faces touching with equally oriented edges and none of the edges is connected yet.
found = true;
break;
}
}
// Assign an edge index to the 1st face.
// out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
if (found) {
EdgeToFace &edge_j = edges_map[j];
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = edge_j.face;
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = edge_i.face;
// Mark the edge as connected.
edge_j.face = -1;
}
++ num_edges;
}
return out;
}
FaceNeighborIndex its_create_neighbors_index_4(const indexed_triangle_set &its)
{
// Just to be clear what type of object are we referencing
using FaceID = size_t;
using VertexID = uint64_t;
using EdgeID = uint64_t;
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
struct Edge // Will contain IDs of the two facets touching this edge
{
FaceID first, second;
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
void assign(FaceID fid)
{
first == UNASSIGNED ? first = fid : second = fid;
}
};
Benchmark bm;
bm.start();
// All vertex IDs will fit into this number of bits. (Used for hashing)
// const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
// assert(max_vertex_id_bits <= 32);
const uint64_t Vn = its.vertices.size();
// const uint64_t Fn = 3 * its.indices.size();
// double MaxQ = double(Vn) * (Vn + 1) / Fn;
// const uint64_t Nq = MaxQ < 0 ? 0 : std::ceil(std::log2(MaxQ));
// const uint64_t Nr = std::ceil(std::log2(std::min(Vn * (Vn + 1), Fn)));
// const uint64_t Nfn = std::ceil(std::log2(Fn));
//// const uint64_t max_edge_ids = (uint64_t(1) << (Nq + Nr));
// const uint64_t max_edge_ids = MaxQ * Fn + (std::min(Vn * (Vn + 1), Fn)); //(uint64_t(1) << Nfn);
const uint64_t Fn = 3 * its.indices.size();
std::vector< Edge > edge_index(3 * Fn);
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [Vn, Fn /*, Nr*/] (VertexID a, VertexID b) {
if (a > b) std::swap(a, b);
uint64_t C = Vn * a + b;
uint64_t Q = C / Fn, R = C % Fn;
return Q * Fn + R;
};
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
edge_index[e1].assign(face_id);
edge_index[e2].assign(face_id);
edge_index[e3].assign(face_id);
}
FaceNeighborIndex index(its.indices.size());
// Now collect the neighbors for each facet into the final index
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
const Edge &neighs1 = edge_index[e1];
const Edge &neighs2 = edge_index[e2];
const Edge &neighs3 = edge_index[e3];
std::array<size_t, 3> &neighs = index[face_id];
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
}
bm.stop();
std::cout << "Creating neighbor index took: " << bm.getElapsedSec() << " seconds." << std::endl;
return index;
}
// Create an index of faces belonging to each vertex. The returned vector can
// be indexed with vertex indices and contains a list of face indices for each
// vertex.
std::vector<std::vector<size_t>> create_vertex_faces_index(const indexed_triangle_set &its)
{
std::vector<std::vector<size_t>> index;
if (! its.vertices.empty()) {
size_t res = its.indices.size() / its.vertices.size();
index.assign(its.vertices.size(), reserve_vector<size_t>(res));
for (size_t fi = 0; fi < its.indices.size(); ++fi) {
auto &face = its.indices[fi];
index[face(0)].emplace_back(fi);
index[face(1)].emplace_back(fi);
index[face(2)].emplace_back(fi);
}
}
return index;
}
//static int get_vertex_index(size_t vertex_index, const stl_triangle_vertex_indices &triangle_indices) {
// if (vertex_index == triangle_indices[0]) return 0;
// if (vertex_index == triangle_indices[1]) return 1;
// if (vertex_index == triangle_indices[2]) return 2;
// return -1;
//}
//static Vec2crd get_edge_indices(int edge_index, const stl_triangle_vertex_indices &triangle_indices)
//{
// int next_edge_index = (edge_index == 2) ? 0 : edge_index + 1;
// coord_t vi0 = triangle_indices[edge_index];
// coord_t vi1 = triangle_indices[next_edge_index];
// return Vec2crd(vi0, vi1);
//}
static std::vector<std::vector<size_t>> create_vertex_faces_index(
const std::vector<stl_triangle_vertex_indices>& indices, size_t count_vertices)
{
if (count_vertices == 0) return {};
std::vector<std::vector<size_t>> index;
size_t res = indices.size() / count_vertices;
index.assign(count_vertices, reserve_vector<size_t>(res));
for (size_t fi = 0; fi < indices.size(); ++fi) {
auto &face = indices[fi];
index[face(0)].emplace_back(fi);
index[face(1)].emplace_back(fi);
index[face(2)].emplace_back(fi);
}
return index;
}
std::vector<Vec3crd> its_create_neighbors_index_5(const indexed_triangle_set &its)
{
const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
size_t vertices_size = its.vertices.size();
if (indices.empty() || vertices_size == 0) return {};
std::vector<std::vector<size_t>> vertex_triangles = create_vertex_faces_index(indices, vertices_size);
coord_t no_value = -1;
std::vector<Vec3crd> neighbors(indices.size(), Vec3crd(no_value, no_value, no_value));
for (const stl_triangle_vertex_indices& triangle_indices : indices) {
coord_t index = &triangle_indices - &indices.front();
Vec3crd& neighbor = neighbors[index];
for (int edge_index = 0; edge_index < 3; ++edge_index) {
// check if done
coord_t& neighbor_edge = neighbor[edge_index];
if (neighbor_edge != no_value) continue;
Vec2crd edge_indices = get_edge_indices(edge_index, triangle_indices);
// IMPROVE: use same vector for 2 sides of triangle
const std::vector<size_t> &faces = vertex_triangles[edge_indices[0]];
for (const size_t &face : faces) {
if (face <= index) continue;
const stl_triangle_vertex_indices &face_indices = indices[face];
int vertex_index = get_vertex_index(edge_indices[1], face_indices);
// NOT Contain second vertex?
if (vertex_index < 0) continue;
// Has NOT oposit direction?
if (edge_indices[0] != face_indices[(vertex_index + 1) % 3]) continue;
neighbor_edge = face;
neighbors[face][vertex_index] = index;
break;
}
// must be paired
assert(neighbor_edge != no_value);
}
}
return neighbors;
}
std::vector<std::array<size_t, 3>> its_create_neighbors_index_6(const indexed_triangle_set &its)
{
constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
struct Edge
{
uint64_t id = UNASSIGNED_EDGE;
size_t face_id = UNASSIGNED_FACE;
bool operator < (const Edge &e) const { return id < e.id; }
};
const size_t facenum = its.indices.size();
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
std::vector<Edge> edge_map(3 * facenum);
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < facenum; ++face_id) {
const Vec3i &face = its.indices[face_id];
edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
}
std::sort(edge_map.begin(), edge_map.end());
std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
};
for (auto it = edge_map.begin(); it != edge_map.end();) {
size_t face_id = it->face_id;
uint64_t edge_id = it->id;
while (++it != edge_map.end() && (it->id == edge_id)) {
size_t other_face_id = it->face_id;
add_neighbor(out[other_face_id], face_id);
add_neighbor(out[face_id], other_face_id);
}
}
return out;
}
std::vector<std::array<size_t, 3>> its_create_neighbors_index_7(const indexed_triangle_set &its)
{
constexpr auto UNASSIGNED_EDGE = std::numeric_limits<uint64_t>::max();
constexpr auto UNASSIGNED_FACE = std::numeric_limits<size_t>::max();
struct Edge
{
uint64_t id = UNASSIGNED_EDGE;
size_t face_id = UNASSIGNED_FACE;
bool operator < (const Edge &e) const { return id < e.id; }
};
const size_t facenum = its.indices.size();
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (uint64_t a, uint64_t b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
std::vector<Edge> edge_map(3 * facenum);
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < facenum; ++face_id) {
const Vec3i &face = its.indices[face_id];
edge_map[face_id * 3] = {hash(face(0), face(1)), face_id};
edge_map[face_id * 3 + 1] = {hash(face(1), face(2)), face_id};
edge_map[face_id * 3 + 2] = {hash(face(2), face(0)), face_id};
}
tbb::parallel_sort(edge_map.begin(), edge_map.end());
std::vector<std::array<size_t, 3>> out(facenum, {UNASSIGNED_FACE, UNASSIGNED_FACE, UNASSIGNED_FACE});
auto add_neighbor = [](std::array<size_t, 3> &slot, size_t face_id) {
if (slot[0] == UNASSIGNED_FACE) { slot[0] = face_id; return; }
if (slot[1] == UNASSIGNED_FACE) { slot[1] = face_id; return; }
if (slot[2] == UNASSIGNED_FACE) { slot[2] = face_id; return; }
};
for (auto it = edge_map.begin(); it != edge_map.end();) {
size_t face_id = it->face_id;
uint64_t edge_id = it->id;
while (++it != edge_map.end() && (it->id == edge_id)) {
size_t other_face_id = it->face_id;
add_neighbor(out[other_face_id], face_id);
add_neighbor(out[face_id], other_face_id);
}
}
return out;
}
FaceNeighborIndex its_create_neighbors_index_8(const indexed_triangle_set &its)
{
// Just to be clear what type of object are we referencing
using FaceID = size_t;
using VertexID = uint64_t;
using EdgeID = uint64_t;
constexpr auto UNASSIGNED = std::numeric_limits<FaceID>::max();
struct Edge // Will contain IDs of the two facets touching this edge
{
FaceID first, second;
Edge() : first{UNASSIGNED}, second{UNASSIGNED} {}
void assign(FaceID fid)
{
first == UNASSIGNED ? first = fid : second = fid;
}
};
// All vertex IDs will fit into this number of bits. (Used for hashing)
const int max_vertex_id_bits = std::ceil(std::log2(its.vertices.size()));
assert(max_vertex_id_bits <= 32);
std::map< EdgeID, Edge > edge_index;
// Edge id is constructed by concatenating two vertex ids, starting with
// the lowest in MSB
auto hash = [max_vertex_id_bits] (VertexID a, VertexID b) {
if (a > b) std::swap(a, b);
return (a << max_vertex_id_bits) + b;
};
// Go through all edges of all facets and mark the facets touching each edge
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
edge_index[e1].assign(face_id);
edge_index[e2].assign(face_id);
edge_index[e3].assign(face_id);
}
FaceNeighborIndex index(its.indices.size());
// Now collect the neighbors for each facet into the final index
for (size_t face_id = 0; face_id < its.indices.size(); ++face_id) {
const Vec3i &face = its.indices[face_id];
EdgeID e1 = hash(face(0), face(1)), e2 = hash(face(1), face(2)),
e3 = hash(face(2), face(0));
const Edge &neighs1 = edge_index[e1];
const Edge &neighs2 = edge_index[e2];
const Edge &neighs3 = edge_index[e3];
std::array<size_t, 3> &neighs = index[face_id];
neighs[0] = neighs1.first == face_id ? neighs1.second : neighs1.first;
neighs[1] = neighs2.first == face_id ? neighs2.second : neighs2.first;
neighs[2] = neighs3.first == face_id ? neighs3.second : neighs3.first;
}
return index;
}
std::vector<Vec3crd> its_create_neighbors_index_9(const indexed_triangle_set &its)
{
return create_face_neighbors_index(ex_seq, its);
}
std::vector<Vec3i> its_create_neighbors_index_10(const indexed_triangle_set &its)
{
return create_face_neighbors_index(ex_tbb, its);
}
} // namespace Slic3r