PrusaSlicer-NonPlainar/xs/src/clipper.hpp
bubnikv 40a882d01e Experimental feature, which may make the Clipper offsets run faster
due to avoiding the 128bit multiply operations:
A filtered predicate is tried to calculate SlopesEqual()
to minimize the invocation of 128bit multiply operations.
2017-07-13 15:52:19 +02:00

488 lines
19 KiB
C++

/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.2.9 *
* Date : 16 February 2015 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2015 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
#ifndef clipper_hpp
#define clipper_hpp
#include <inttypes.h>
#define CLIPPER_VERSION "6.2.6"
//use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
//#define use_xyz
//use_lines: Enables line clipping. Adds a very minor cost to performance.
#define use_lines
//use_deprecated: Enables temporary support for the obsolete functions
//#define use_deprecated
#include <vector>
#include <deque>
#include <stdexcept>
#include <cstring>
#include <cstdlib>
#include <ostream>
#include <functional>
#include <queue>
namespace ClipperLib {
enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
enum PolyType { ptSubject, ptClip };
//By far the most widely used winding rules for polygon filling are
//EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
//Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
//see http://glprogramming.com/red/chapter11.html
enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
// Point coordinate type
typedef int64_t cInt;
// Maximum cInt value to allow a cross product calculation using 32bit expressions.
static cInt const loRange = 0x3FFFFFFF;
// Maximum allowed cInt value.
static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL;
struct IntPoint {
cInt X;
cInt Y;
#ifdef use_xyz
cInt Z;
IntPoint(cInt x = 0, cInt y = 0, cInt z = 0): X(x), Y(y), Z(z) {};
#else
IntPoint(cInt x = 0, cInt y = 0): X(x), Y(y) {};
#endif
friend inline bool operator== (const IntPoint& a, const IntPoint& b)
{
return a.X == b.X && a.Y == b.Y;
}
friend inline bool operator!= (const IntPoint& a, const IntPoint& b)
{
return a.X != b.X || a.Y != b.Y;
}
};
//------------------------------------------------------------------------------
typedef std::vector< IntPoint > Path;
typedef std::vector< Path > Paths;
inline Path& operator <<(Path& poly, const IntPoint& p) {poly.push_back(p); return poly;}
inline Paths& operator <<(Paths& polys, const Path& p) {polys.push_back(p); return polys;}
std::ostream& operator <<(std::ostream &s, const IntPoint &p);
std::ostream& operator <<(std::ostream &s, const Path &p);
std::ostream& operator <<(std::ostream &s, const Paths &p);
struct DoublePoint
{
double X;
double Y;
DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {}
DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {}
};
//------------------------------------------------------------------------------
#ifdef use_xyz
typedef void (*ZFillCallback)(IntPoint& e1bot, IntPoint& e1top, IntPoint& e2bot, IntPoint& e2top, IntPoint& pt);
#endif
enum InitOptions {ioReverseSolution = 1, ioStrictlySimple = 2, ioPreserveCollinear = 4};
enum JoinType {jtSquare, jtRound, jtMiter};
enum EndType {etClosedPolygon, etClosedLine, etOpenButt, etOpenSquare, etOpenRound};
class PolyNode;
typedef std::vector< PolyNode* > PolyNodes;
class PolyNode
{
public:
PolyNode() : Childs(), Parent(0), Index(0), m_IsOpen(false) {}
virtual ~PolyNode(){};
Path Contour;
PolyNodes Childs;
PolyNode* Parent;
// Traversal of the polygon tree in a depth first fashion.
PolyNode* GetNext() const { return Childs.empty() ? GetNextSiblingUp() : Childs.front(); }
bool IsHole() const;
bool IsOpen() const { return m_IsOpen; }
int ChildCount() const { return (int)Childs.size(); }
private:
unsigned Index; //node index in Parent.Childs
bool m_IsOpen;
JoinType m_jointype;
EndType m_endtype;
PolyNode* GetNextSiblingUp() const { return Parent ? ((Index == Parent->Childs.size() - 1) ? Parent->GetNextSiblingUp() : Parent->Childs[Index + 1]) : nullptr; }
void AddChild(PolyNode& child);
friend class Clipper; //to access Index
friend class ClipperOffset;
friend class PolyTree; //to implement the PolyTree::move operator
};
class PolyTree: public PolyNode
{
public:
PolyTree() {}
PolyTree(PolyTree &&src) { *this = std::move(src); }
virtual ~PolyTree(){Clear();};
PolyTree& operator=(PolyTree &&src) {
AllNodes = std::move(src.AllNodes);
Contour = std::move(src.Contour);
Childs = std::move(src.Childs);
Parent = nullptr;
Index = src.Index;
m_IsOpen = src.m_IsOpen;
m_jointype = src.m_jointype;
m_endtype = src.m_endtype;
for (size_t i = 0; i < Childs.size(); ++ i)
Childs[i]->Parent = this;
return *this;
}
PolyNode* GetFirst() const { return Childs.empty() ? nullptr : Childs.front(); }
void Clear() { AllNodes.clear(); Childs.clear(); }
int Total() const;
private:
PolyTree(const PolyTree &src) = delete;
PolyTree& operator=(const PolyTree &src) = delete;
std::vector<PolyNode> AllNodes;
friend class Clipper; //to access AllNodes
};
double Area(const Path &poly);
inline bool Orientation(const Path &poly) { return Area(poly) >= 0; }
int PointInPolygon(const IntPoint &pt, const Path &path);
void SimplifyPolygon(const Path &in_poly, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys, PolyFillType fillType = pftEvenOdd);
void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd);
void CleanPolygon(const Path& in_poly, Path& out_poly, double distance = 1.415);
void CleanPolygon(Path& poly, double distance = 1.415);
void CleanPolygons(const Paths& in_polys, Paths& out_polys, double distance = 1.415);
void CleanPolygons(Paths& polys, double distance = 1.415);
void MinkowskiSum(const Path& pattern, const Path& path, Paths& solution, bool pathIsClosed);
void MinkowskiSum(const Path& pattern, const Paths& paths, Paths& solution, bool pathIsClosed);
void MinkowskiDiff(const Path& poly1, const Path& poly2, Paths& solution);
void PolyTreeToPaths(const PolyTree& polytree, Paths& paths);
void ClosedPathsFromPolyTree(const PolyTree& polytree, Paths& paths);
void OpenPathsFromPolyTree(PolyTree& polytree, Paths& paths);
void ReversePath(Path& p);
void ReversePaths(Paths& p);
struct IntRect { cInt left; cInt top; cInt right; cInt bottom; };
//enums that are used internally ...
enum EdgeSide { esLeft = 1, esRight = 2};
// namespace Internal {
//forward declarations (for stuff used internally) ...
struct TEdge {
// Bottom point of this edge (with minimum Y).
IntPoint Bot;
// Current position.
IntPoint Curr;
// Top point of this edge (with maximum Y).
IntPoint Top;
// Vector from Bot to Top.
IntPoint Delta;
// Slope (dx/dy). For horiontal edges, the slope is set to HORIZONTAL (-1.0E+40).
double Dx;
PolyType PolyTyp;
EdgeSide Side;
// Winding number delta. 1 or -1 depending on winding direction, 0 for open paths and flat closed paths.
int WindDelta;
int WindCnt;
int WindCnt2; //winding count of the opposite polytype
int OutIdx;
// Next edge in the input path.
TEdge *Next;
// Previous edge in the input path.
TEdge *Prev;
// Next edge in the Local Minima List chain.
TEdge *NextInLML;
TEdge *NextInAEL;
TEdge *PrevInAEL;
TEdge *NextInSEL;
TEdge *PrevInSEL;
};
struct IntersectNode {
IntersectNode(TEdge *Edge1, TEdge *Edge2, IntPoint Pt) :
Edge1(Edge1), Edge2(Edge2), Pt(Pt) {}
TEdge *Edge1;
TEdge *Edge2;
IntPoint Pt;
};
struct LocalMinimum {
cInt Y;
TEdge *LeftBound;
TEdge *RightBound;
};
// Point of an output polygon.
// 36B on 64bit system without use_xyz.
struct OutPt {
// 4B
int Idx;
// 16B without use_xyz / 24B with use_xyz
IntPoint Pt;
// 4B on 32bit system, 8B on 64bit system
OutPt *Next;
// 4B on 32bit system, 8B on 64bit system
OutPt *Prev;
};
struct OutRec;
struct Join {
Join(OutPt *OutPt1, OutPt *OutPt2, IntPoint OffPt) :
OutPt1(OutPt1), OutPt2(OutPt2), OffPt(OffPt) {}
OutPt *OutPt1;
OutPt *OutPt2;
IntPoint OffPt;
};
// }; // namespace Internal
//------------------------------------------------------------------------------
//ClipperBase is the ancestor to the Clipper class. It should not be
//instantiated directly. This class simply abstracts the conversion of sets of
//polygon coordinates into edge objects that are stored in a LocalMinima list.
class ClipperBase
{
public:
ClipperBase() : m_UseFullRange(false), m_HasOpenPaths(false) {}
~ClipperBase() { Clear(); }
bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed);
bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed);
void Clear();
IntRect GetBounds();
// By default, when three or more vertices are collinear in input polygons (subject or clip), the Clipper object removes the 'inner' vertices before clipping.
// When enabled the PreserveCollinear property prevents this default behavior to allow these inner vertices to appear in the solution.
bool PreserveCollinear() const {return m_PreserveCollinear;};
void PreserveCollinear(bool value) {m_PreserveCollinear = value;};
protected:
bool AddPathInternal(const Path &pg, int highI, PolyType PolyTyp, bool Closed, TEdge* edges);
TEdge* AddBoundsToLML(TEdge *e, bool IsClosed);
void Reset();
TEdge* ProcessBound(TEdge* E, bool IsClockwise);
TEdge* DescendToMin(TEdge *&E);
void AscendToMax(TEdge *&E, bool Appending, bool IsClosed);
// Local minima (Y, left edge, right edge) sorted by ascending Y.
std::vector<LocalMinimum> m_MinimaList;
// True if the input polygons have abs values higher than loRange, but lower than hiRange.
// False if the input polygons have abs values lower or equal to loRange.
bool m_UseFullRange;
// A vector of edges per each input path.
std::vector<std::vector<TEdge>> m_edges;
// Don't remove intermediate vertices of a collinear sequence of points.
bool m_PreserveCollinear;
// Is any of the paths inserted by AddPath() or AddPaths() open?
bool m_HasOpenPaths;
};
//------------------------------------------------------------------------------
class Clipper : public ClipperBase
{
public:
Clipper(int initOptions = 0);
~Clipper() { Clear(); }
void Clear() { ClipperBase::Clear(); DisposeAllOutRecs(); }
bool Execute(ClipType clipType,
Paths &solution,
PolyFillType fillType = pftEvenOdd)
{ return Execute(clipType, solution, fillType, fillType); }
bool Execute(ClipType clipType,
Paths &solution,
PolyFillType subjFillType,
PolyFillType clipFillType);
bool Execute(ClipType clipType,
PolyTree &polytree,
PolyFillType fillType = pftEvenOdd)
{ return Execute(clipType, polytree, fillType, fillType); }
bool Execute(ClipType clipType,
PolyTree &polytree,
PolyFillType subjFillType,
PolyFillType clipFillType);
bool ReverseSolution() const { return m_ReverseOutput; };
void ReverseSolution(bool value) {m_ReverseOutput = value;};
bool StrictlySimple() const {return m_StrictSimple;};
void StrictlySimple(bool value) {m_StrictSimple = value;};
//set the callback function for z value filling on intersections (otherwise Z is 0)
#ifdef use_xyz
void ZFillFunction(ZFillCallback zFillFunc) { m_ZFill = zFillFunc; }
#endif
protected:
void Reset();
virtual bool ExecuteInternal();
private:
// Output polygons.
std::vector<OutRec*> m_PolyOuts;
// Output points, allocated by a continuous sets of m_OutPtsChunkSize.
std::vector<OutPt*> m_OutPts;
// List of free output points, to be used before taking a point from m_OutPts or allocating a new chunk.
OutPt *m_OutPtsFree;
size_t m_OutPtsChunkSize;
size_t m_OutPtsChunkLast;
std::vector<Join> m_Joins;
std::vector<Join> m_GhostJoins;
std::vector<IntersectNode> m_IntersectList;
ClipType m_ClipType;
// A priority queue (a binary heap) of Y coordinates.
std::priority_queue<cInt> m_Scanbeam;
// Maxima are collected by ProcessEdgesAtTopOfScanbeam(), consumed by ProcessHorizontal().
std::vector<cInt> m_Maxima;
TEdge *m_ActiveEdges;
TEdge *m_SortedEdges;
PolyFillType m_ClipFillType;
PolyFillType m_SubjFillType;
bool m_ReverseOutput;
// Does the result go to a PolyTree or Paths?
bool m_UsingPolyTree;
bool m_StrictSimple;
#ifdef use_xyz
ZFillCallback m_ZFill; //custom callback
#endif
void SetWindingCount(TEdge& edge) const;
bool IsEvenOddFillType(const TEdge& edge) const
{ return (edge.PolyTyp == ptSubject) ? m_SubjFillType == pftEvenOdd : m_ClipFillType == pftEvenOdd; }
bool IsEvenOddAltFillType(const TEdge& edge) const
{ return (edge.PolyTyp == ptSubject) ? m_ClipFillType == pftEvenOdd : m_SubjFillType == pftEvenOdd; }
void InsertLocalMinimaIntoAEL(const cInt botY);
void InsertEdgeIntoAEL(TEdge *edge, TEdge* startEdge);
void AddEdgeToSEL(TEdge *edge);
void CopyAELToSEL();
void DeleteFromSEL(TEdge *e);
void DeleteFromAEL(TEdge *e);
void UpdateEdgeIntoAEL(TEdge *&e);
void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
bool IsContributing(const TEdge& edge) const;
bool IsTopHorz(const cInt XPos);
void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
void DoMaxima(TEdge *e);
void ProcessHorizontals();
void ProcessHorizontal(TEdge *horzEdge);
void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutPt* AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
OutRec* GetOutRec(int idx);
void AppendPolygon(TEdge *e1, TEdge *e2) const;
void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt);
OutRec* CreateOutRec();
OutPt* AddOutPt(TEdge *e, const IntPoint &pt);
OutPt* GetLastOutPt(TEdge *e);
OutPt* AllocateOutPt();
OutPt* DupOutPt(OutPt* outPt, bool InsertAfter);
// Add the point to a list of free points.
void DisposeOutPt(OutPt *pt) { pt->Next = m_OutPtsFree; m_OutPtsFree = pt; }
void DisposeOutPts(OutPt*& pp) { if (pp != nullptr) { pp->Prev->Next = m_OutPtsFree; m_OutPtsFree = pp; } }
void DisposeAllOutRecs();
bool ProcessIntersections(const cInt topY);
void BuildIntersectList(const cInt topY);
void ProcessEdgesAtTopOfScanbeam(const cInt topY);
void BuildResult(Paths& polys);
void BuildResult2(PolyTree& polytree);
void SetHoleState(TEdge *e, OutRec *outrec) const;
bool FixupIntersectionOrder();
void FixupOutPolygon(OutRec &outrec);
void FixupOutPolyline(OutRec &outrec);
bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl);
void FixHoleLinkage(OutRec &outrec);
bool JoinPoints(Join *j, OutRec* outRec1, OutRec* outRec2);
bool JoinHorz(OutPt* op1, OutPt* op1b, OutPt* op2, OutPt* op2b, const IntPoint &Pt, bool DiscardLeft);
void JoinCommonEdges();
void DoSimplePolygons();
void FixupFirstLefts1(OutRec* OldOutRec, OutRec* NewOutRec) const;
void FixupFirstLefts2(OutRec* OldOutRec, OutRec* NewOutRec) const;
#ifdef use_xyz
void SetZ(IntPoint& pt, TEdge& e1, TEdge& e2);
#endif
};
//------------------------------------------------------------------------------
class ClipperOffset
{
public:
ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25, double shortestEdgeLength = 0.) :
MiterLimit(miterLimit), ArcTolerance(roundPrecision), ShortestEdgeLength(shortestEdgeLength), m_lowest(-1, 0) {}
~ClipperOffset() { Clear(); }
void AddPath(const Path& path, JoinType joinType, EndType endType);
void AddPaths(const Paths& paths, JoinType joinType, EndType endType);
void Execute(Paths& solution, double delta);
void Execute(PolyTree& solution, double delta);
void Clear();
double MiterLimit;
double ArcTolerance;
double ShortestEdgeLength;
private:
Paths m_destPolys;
Path m_srcPoly;
Path m_destPoly;
std::vector<DoublePoint> m_normals;
double m_delta, m_sinA, m_sin, m_cos;
double m_miterLim, m_StepsPerRad;
IntPoint m_lowest;
PolyNode m_polyNodes;
void FixOrientations();
void DoOffset(double delta);
void OffsetPoint(int j, int& k, JoinType jointype);
void DoSquare(int j, int k);
void DoMiter(int j, int k, double r);
void DoRound(int j, int k);
};
//------------------------------------------------------------------------------
class clipperException : public std::exception
{
public:
clipperException(const char* description): m_descr(description) {}
virtual ~clipperException() throw() {}
virtual const char* what() const throw() {return m_descr.c_str();}
private:
std::string m_descr;
};
//------------------------------------------------------------------------------
} //ClipperLib namespace
#endif //clipper_hpp