PrusaSlicer-NonPlainar/src/libslic3r/Geometry.hpp

538 lines
20 KiB
C++

#ifndef slic3r_Geometry_hpp_
#define slic3r_Geometry_hpp_
#include "libslic3r.h"
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
// Serialization through the Cereal library
#include <cereal/access.hpp>
#define BOOST_VORONOI_USE_GMP 1
#ifdef _MSC_VER
// Suppress warning C4146 in OpenVDB: unary minus operator applied to unsigned type, result still unsigned
#pragma warning(push)
#pragma warning(disable : 4146)
#endif // _MSC_VER
#include "boost/polygon/voronoi.hpp"
#ifdef _MSC_VER
#pragma warning(pop)
#endif // _MSC_VER
namespace Slic3r {
namespace ClipperLib {
class PolyNode;
using PolyNodes = std::vector<PolyNode*>;
}
namespace Geometry {
// Generic result of an orientation predicate.
enum Orientation
{
ORIENTATION_CCW = 1,
ORIENTATION_CW = -1,
ORIENTATION_COLINEAR = 0
};
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
// which means, the coord_t types must not have some of the topmost bits utilized.
// As the points are limited to 30 bits + signum,
// the temporaries u, v, w are limited to 61 bits + signum,
// and d is limited to 63 bits + signum and we are good.
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
int64_t d = u - v + w;
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
}
// Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
// using exact arithmetics. The input polygon must not contain duplicate points
// (or at least the left bottom corner point must not have duplicates).
static inline bool is_ccw(const Polygon &poly)
{
// The polygon shall be at least a triangle.
assert(poly.points.size() >= 3);
if (poly.points.size() < 3)
return true;
// 1) Find the lowest lexicographical point.
unsigned int imin = 0;
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
const Point &pmin = poly.points[imin];
const Point &p = poly.points[i];
if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
imin = i;
}
// 2) Detect the orientation of the corner imin.
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
// or overlapping segments.
assert(o != ORIENTATION_COLINEAR);
return o == ORIENTATION_CCW;
}
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
{
double denom = v1(0) * v2(1) - v2(0) * v1(1);
if (std::abs(denom) < EPSILON)
return false;
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
res(0) = p1(0) + t * v1(0);
res(1) = p1(1) + t * v1(1);
return true;
}
inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
{
double denom = v1(0) * v2(1) - v2(0) * v1(1);
if (std::abs(denom) < EPSILON)
// Lines are collinear.
return false;
double s12_x = p1(0) - p2(0);
double s12_y = p1(1) - p2(1);
double s_numer = v1(0) * s12_y - v1(1) * s12_x;
bool denom_is_positive = false;
if (denom < 0.) {
denom_is_positive = true;
denom = - denom;
s_numer = - s_numer;
}
if (s_numer < 0.)
// Intersection outside of the 1st segment.
return false;
double t_numer = v2(0) * s12_y - v2(1) * s12_x;
if (! denom_is_positive)
t_numer = - t_numer;
if (t_numer < 0. || s_numer > denom || t_numer > denom)
// Intersection outside of the 1st or 2nd segment.
return false;
// Intersection inside both of the segments.
double t = t_numer / denom;
res(0) = p1(0) + t * v1(0);
res(1) = p1(1) + t * v1(1);
return true;
}
inline bool segments_intersect(
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
const Slic3r::Point &jp1, const Slic3r::Point &jp2)
{
assert(ip1 != ip2);
assert(jp1 != jp2);
auto segments_could_intersect = [](
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
const Slic3r::Point &jp1, const Slic3r::Point &jp2) -> std::pair<int, int>
{
Vec2i64 iv = (ip2 - ip1).cast<int64_t>();
Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
int64_t tij1 = cross2(iv, vij1);
int64_t tij2 = cross2(iv, vij2);
return std::make_pair(
// signum
(tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0),
(tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0));
};
std::pair<int, int> sign1 = segments_could_intersect(ip1, ip2, jp1, jp2);
std::pair<int, int> sign2 = segments_could_intersect(jp1, jp2, ip1, ip2);
int test1 = sign1.first * sign1.second;
int test2 = sign2.first * sign2.second;
if (test1 <= 0 && test2 <= 0) {
// The segments possibly intersect. They may also be collinear, but not intersect.
if (test1 != 0 || test2 != 0)
// Certainly not collinear, then the segments intersect.
return true;
// If the first segment is collinear with the other, the other is collinear with the first segment.
assert((sign1.first == 0 && sign1.second == 0) == (sign2.first == 0 && sign2.second == 0));
if (sign1.first == 0 && sign1.second == 0) {
// The segments are certainly collinear. Now verify whether they overlap.
Slic3r::Point vi = ip2 - ip1;
// Project both on the longer coordinate of vi.
int axis = std::abs(vi.x()) > std::abs(vi.y()) ? 0 : 1;
coord_t i = ip1(axis);
coord_t j = ip2(axis);
coord_t k = jp1(axis);
coord_t l = jp2(axis);
if (i > j)
std::swap(i, j);
if (k > l)
std::swap(k, l);
return (k >= i && k <= j) || (i >= k && i <= l);
}
}
return false;
}
template<typename T> inline T foot_pt(const T &line_pt, const T &line_dir, const T &pt)
{
T v = pt - line_pt;
auto l2 = line_dir.squaredNorm();
auto t = (l2 == 0) ? 0 : v.dot(line_dir) / l2;
return line_pt + line_dir * t;
}
inline Vec2d foot_pt(const Line &iline, const Point &ipt)
{
return foot_pt<Vec2d>(iline.a.cast<double>(), (iline.b - iline.a).cast<double>(), ipt.cast<double>());
}
template<typename T> inline auto ray_point_distance_squared(const T &ray_pt, const T &ray_dir, const T &pt)
{
return (foot_pt(ray_pt, ray_dir, pt) - pt).squaredNorm();
}
template<typename T> inline auto ray_point_distance(const T &ray_pt, const T &ray_dir, const T &pt)
{
return (foot_pt(ray_pt, ray_dir, pt) - pt).norm();
}
inline double ray_point_distance_squared(const Line &iline, const Point &ipt)
{
return (foot_pt(iline, ipt) - ipt.cast<double>()).squaredNorm();
}
inline double ray_point_distance(const Line &iline, const Point &ipt)
{
return (foot_pt(iline, ipt) - ipt.cast<double>()).norm();
}
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
template<typename T>
inline bool liang_barsky_line_clipping_interval(
// Start and end points of the source line, result will be stored there as well.
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &v,
// Bounding box to clip with.
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox,
std::pair<double, double> &out_interval)
{
double t0 = 0.0;
double t1 = 1.0;
// Traverse through left, right, bottom, top edges.
auto clip_side = [&t0, &t1](double p, double q) -> bool {
if (p == 0) {
if (q < 0)
// Line parallel to the bounding box edge is fully outside of the bounding box.
return false;
// else don't clip
} else {
double r = q / p;
if (p < 0) {
if (r > t1)
// Fully clipped.
return false;
if (r > t0)
// Partially clipped.
t0 = r;
} else {
assert(p > 0);
if (r < t0)
// Fully clipped.
return false;
if (r < t1)
// Partially clipped.
t1 = r;
}
}
return true;
};
if (clip_side(- v.x(), - bbox.min.x() + x0.x()) &&
clip_side( v.x(), bbox.max.x() - x0.x()) &&
clip_side(- v.y(), - bbox.min.y() + x0.y()) &&
clip_side( v.y(), bbox.max.y() - x0.y())) {
out_interval.first = t0;
out_interval.second = t1;
return true;
}
return false;
}
template<typename T>
inline bool liang_barsky_line_clipping(
// Start and end points of the source line, result will be stored there as well.
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1,
// Bounding box to clip with.
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox)
{
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> v = x1 - x0;
std::pair<double, double> interval;
if (liang_barsky_line_clipping_interval(x0, v, bbox, interval)) {
// Clipped successfully.
x1 = x0 + interval.second * v;
x0 += interval.first * v;
return true;
}
return false;
}
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
template<typename T>
bool liang_barsky_line_clipping(
// Start and end points of the source line.
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0src,
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1src,
// Bounding box to clip with.
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox,
// Start and end points of the clipped line.
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0clip,
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1clip)
{
x0clip = x0src;
x1clip = x1src;
return liang_barsky_line_clipping(x0clip, x1clip, bbox);
}
// Ugly named variant, that accepts the squared line
// Don't call me with a nearly zero length vector!
// sympy:
// factor(solve([a * x + b * y + c, x**2 + y**2 - r**2], [x, y])[0])
// factor(solve([a * x + b * y + c, x**2 + y**2 - r**2], [x, y])[1])
template<typename T>
int ray_circle_intersections_r2_lv2_c(T r2, T a, T b, T lv2, T c, std::pair<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>, Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &out)
{
T x0 = - a * c;
T y0 = - b * c;
T d2 = r2 * lv2 - c * c;
if (d2 < T(0))
return 0;
T d = sqrt(d2);
out.first.x() = (x0 + b * d) / lv2;
out.first.y() = (y0 - a * d) / lv2;
out.second.x() = (x0 - b * d) / lv2;
out.second.y() = (y0 + a * d) / lv2;
return d == T(0) ? 1 : 2;
}
template<typename T>
int ray_circle_intersections(T r, T a, T b, T c, std::pair<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>, Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &out)
{
T lv2 = a * a + b * b;
if (lv2 < T(SCALED_EPSILON * SCALED_EPSILON)) {
//FIXME what is the correct epsilon?
// What if the line touches the circle?
return false;
}
return ray_circle_intersections_r2_lv2_c2(r * r, a, b, a * a + b * b, c, out);
}
Pointf3s convex_hull(Pointf3s points);
Polygon convex_hull(Points points);
Polygon convex_hull(const Polygons &polygons);
bool directions_parallel(double angle1, double angle2, double max_diff = 0);
template<class T> bool contains(const std::vector<T> &vector, const Point &point);
template<typename T> T rad2deg(T angle) { return T(180.0) * angle / T(PI); }
double rad2deg_dir(double angle);
template<typename T> constexpr T deg2rad(const T angle) { return T(PI) * angle / T(180.0); }
template<typename T> T angle_to_0_2PI(T angle)
{
static const T TWO_PI = T(2) * T(PI);
while (angle < T(0))
{
angle += TWO_PI;
}
while (TWO_PI < angle)
{
angle -= TWO_PI;
}
return angle;
}
/// Find the center of the circle corresponding to the vector of Points as an arc.
Point circle_center_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
inline Point circle_center_taubin_newton(const Points& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
inline Vec2d circle_center_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
bool arrange(
// input
size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
// output
Pointfs &positions);
class VoronoiDiagram : public boost::polygon::voronoi_diagram<double> {
public:
typedef double coord_type;
typedef boost::polygon::point_data<coordinate_type> point_type;
typedef boost::polygon::segment_data<coordinate_type> segment_type;
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
};
class MedialAxis {
public:
Lines lines;
const ExPolygon* expolygon;
double max_width;
double min_width;
MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
: expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
void build(ThickPolylines* polylines);
void build(Polylines* polylines);
private:
using VD = VoronoiDiagram;
VD vd;
std::set<const VD::edge_type*> edges, valid_edges;
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
bool validate_edge(const VD::edge_type* edge);
const Line& retrieve_segment(const VD::cell_type* cell) const;
const Point& retrieve_endpoint(const VD::cell_type* cell) const;
};
// Sets the given transform by assembling the given transformations in the following order:
// 1) mirror
// 2) scale
// 3) rotate X
// 4) rotate Y
// 5) rotate Z
// 6) translate
void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
// Returns the transform obtained by assembling the given transformations in the following order:
// 1) mirror
// 2) scale
// 3) rotate X
// 4) rotate Y
// 5) rotate Z
// 6) translate
Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
// Returns the euler angles extracted from the given rotation matrix
// Warning -> The matrix should not contain any scale or shear !!!
Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix);
// Returns the euler angles extracted from the given affine transform
// Warning -> The transform should not contain any shear !!!
Vec3d extract_euler_angles(const Transform3d& transform);
class Transformation
{
struct Flags
{
bool dont_translate;
bool dont_rotate;
bool dont_scale;
bool dont_mirror;
Flags();
bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const;
void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror);
};
Vec3d m_offset; // In unscaled coordinates
Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point
Vec3d m_scaling_factor; // Scaling factors along the three axes
Vec3d m_mirror; // Mirroring along the three axes
mutable Transform3d m_matrix;
mutable Flags m_flags;
mutable bool m_dirty;
public:
Transformation();
explicit Transformation(const Transform3d& transform);
const Vec3d& get_offset() const { return m_offset; }
double get_offset(Axis axis) const { return m_offset(axis); }
void set_offset(const Vec3d& offset);
void set_offset(Axis axis, double offset);
const Vec3d& get_rotation() const { return m_rotation; }
double get_rotation(Axis axis) const { return m_rotation(axis); }
void set_rotation(const Vec3d& rotation);
void set_rotation(Axis axis, double rotation);
const Vec3d& get_scaling_factor() const { return m_scaling_factor; }
double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor);
void set_scaling_factor(Axis axis, double scaling_factor);
bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; }
const Vec3d& get_mirror() const { return m_mirror; }
double get_mirror(Axis axis) const { return m_mirror(axis); }
bool is_left_handed() const { return m_mirror.x() * m_mirror.y() * m_mirror.z() < 0.; }
void set_mirror(const Vec3d& mirror);
void set_mirror(Axis axis, double mirror);
void set_from_transform(const Transform3d& transform);
void reset();
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
Transformation operator * (const Transformation& other) const;
// Find volume transformation, so that the chained (instance_trafo * volume_trafo) will be as close to identity
// as possible in least squares norm in regard to the 8 corners of bbox.
// Bounding box is expected to be centered around zero in all axes.
static Transformation volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox);
private:
friend class cereal::access;
template<class Archive> void serialize(Archive & ar) { ar(m_offset, m_rotation, m_scaling_factor, m_mirror); }
explicit Transformation(int) : m_dirty(true) {}
template <class Archive> static void load_and_construct(Archive &ar, cereal::construct<Transformation> &construct)
{
// Calling a private constructor with special "int" parameter to indicate that no construction is necessary.
construct(1);
ar(construct.ptr()->m_offset, construct.ptr()->m_rotation, construct.ptr()->m_scaling_factor, construct.ptr()->m_mirror);
}
};
// For parsing a transformation matrix from 3MF / AMF.
extern Transform3d transform3d_from_string(const std::string& transform_str);
// Rotation when going from the first coordinate system with rotation rot_xyz_from applied
// to a coordinate system with rot_xyz_to applied.
extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
// Rotation by Z to align rot_xyz_from to rot_xyz_to.
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
extern double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
// Is the angle close to a multiple of 90 degrees?
inline bool is_rotation_ninety_degrees(double a)
{
a = fmod(std::abs(a), 0.5 * M_PI);
if (a > 0.25 * PI)
a = 0.5 * PI - a;
return a < 0.001;
}
// Is the angle close to a multiple of 90 degrees?
inline bool is_rotation_ninety_degrees(const Vec3d &rotation)
{
return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z());
}
} } // namespace Slicer::Geometry
#endif