538 lines
20 KiB
C++
538 lines
20 KiB
C++
#ifndef slic3r_Geometry_hpp_
|
|
#define slic3r_Geometry_hpp_
|
|
|
|
#include "libslic3r.h"
|
|
#include "BoundingBox.hpp"
|
|
#include "ExPolygon.hpp"
|
|
#include "Polygon.hpp"
|
|
#include "Polyline.hpp"
|
|
|
|
// Serialization through the Cereal library
|
|
#include <cereal/access.hpp>
|
|
|
|
#define BOOST_VORONOI_USE_GMP 1
|
|
|
|
#ifdef _MSC_VER
|
|
// Suppress warning C4146 in OpenVDB: unary minus operator applied to unsigned type, result still unsigned
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4146)
|
|
#endif // _MSC_VER
|
|
#include "boost/polygon/voronoi.hpp"
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif // _MSC_VER
|
|
|
|
namespace Slic3r {
|
|
|
|
namespace ClipperLib {
|
|
class PolyNode;
|
|
using PolyNodes = std::vector<PolyNode*>;
|
|
}
|
|
|
|
namespace Geometry {
|
|
|
|
// Generic result of an orientation predicate.
|
|
enum Orientation
|
|
{
|
|
ORIENTATION_CCW = 1,
|
|
ORIENTATION_CW = -1,
|
|
ORIENTATION_COLINEAR = 0
|
|
};
|
|
|
|
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
|
|
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
|
|
// which means, the coord_t types must not have some of the topmost bits utilized.
|
|
// As the points are limited to 30 bits + signum,
|
|
// the temporaries u, v, w are limited to 61 bits + signum,
|
|
// and d is limited to 63 bits + signum and we are good.
|
|
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
|
|
{
|
|
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
|
|
int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
|
|
int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
|
|
int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
|
|
int64_t d = u - v + w;
|
|
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
|
|
}
|
|
|
|
// Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
|
|
// using exact arithmetics. The input polygon must not contain duplicate points
|
|
// (or at least the left bottom corner point must not have duplicates).
|
|
static inline bool is_ccw(const Polygon &poly)
|
|
{
|
|
// The polygon shall be at least a triangle.
|
|
assert(poly.points.size() >= 3);
|
|
if (poly.points.size() < 3)
|
|
return true;
|
|
|
|
// 1) Find the lowest lexicographical point.
|
|
unsigned int imin = 0;
|
|
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
|
|
const Point &pmin = poly.points[imin];
|
|
const Point &p = poly.points[i];
|
|
if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
|
|
imin = i;
|
|
}
|
|
|
|
// 2) Detect the orientation of the corner imin.
|
|
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
|
|
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
|
|
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
|
|
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
|
|
// or overlapping segments.
|
|
assert(o != ORIENTATION_COLINEAR);
|
|
return o == ORIENTATION_CCW;
|
|
}
|
|
|
|
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
|
{
|
|
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
|
if (std::abs(denom) < EPSILON)
|
|
return false;
|
|
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
|
|
res(0) = p1(0) + t * v1(0);
|
|
res(1) = p1(1) + t * v1(1);
|
|
return true;
|
|
}
|
|
|
|
inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
|
|
{
|
|
double denom = v1(0) * v2(1) - v2(0) * v1(1);
|
|
if (std::abs(denom) < EPSILON)
|
|
// Lines are collinear.
|
|
return false;
|
|
double s12_x = p1(0) - p2(0);
|
|
double s12_y = p1(1) - p2(1);
|
|
double s_numer = v1(0) * s12_y - v1(1) * s12_x;
|
|
bool denom_is_positive = false;
|
|
if (denom < 0.) {
|
|
denom_is_positive = true;
|
|
denom = - denom;
|
|
s_numer = - s_numer;
|
|
}
|
|
if (s_numer < 0.)
|
|
// Intersection outside of the 1st segment.
|
|
return false;
|
|
double t_numer = v2(0) * s12_y - v2(1) * s12_x;
|
|
if (! denom_is_positive)
|
|
t_numer = - t_numer;
|
|
if (t_numer < 0. || s_numer > denom || t_numer > denom)
|
|
// Intersection outside of the 1st or 2nd segment.
|
|
return false;
|
|
// Intersection inside both of the segments.
|
|
double t = t_numer / denom;
|
|
res(0) = p1(0) + t * v1(0);
|
|
res(1) = p1(1) + t * v1(1);
|
|
return true;
|
|
}
|
|
|
|
inline bool segments_intersect(
|
|
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
|
|
const Slic3r::Point &jp1, const Slic3r::Point &jp2)
|
|
{
|
|
assert(ip1 != ip2);
|
|
assert(jp1 != jp2);
|
|
|
|
auto segments_could_intersect = [](
|
|
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
|
|
const Slic3r::Point &jp1, const Slic3r::Point &jp2) -> std::pair<int, int>
|
|
{
|
|
Vec2i64 iv = (ip2 - ip1).cast<int64_t>();
|
|
Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
|
|
Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
|
|
int64_t tij1 = cross2(iv, vij1);
|
|
int64_t tij2 = cross2(iv, vij2);
|
|
return std::make_pair(
|
|
// signum
|
|
(tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0),
|
|
(tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0));
|
|
};
|
|
|
|
std::pair<int, int> sign1 = segments_could_intersect(ip1, ip2, jp1, jp2);
|
|
std::pair<int, int> sign2 = segments_could_intersect(jp1, jp2, ip1, ip2);
|
|
int test1 = sign1.first * sign1.second;
|
|
int test2 = sign2.first * sign2.second;
|
|
if (test1 <= 0 && test2 <= 0) {
|
|
// The segments possibly intersect. They may also be collinear, but not intersect.
|
|
if (test1 != 0 || test2 != 0)
|
|
// Certainly not collinear, then the segments intersect.
|
|
return true;
|
|
// If the first segment is collinear with the other, the other is collinear with the first segment.
|
|
assert((sign1.first == 0 && sign1.second == 0) == (sign2.first == 0 && sign2.second == 0));
|
|
if (sign1.first == 0 && sign1.second == 0) {
|
|
// The segments are certainly collinear. Now verify whether they overlap.
|
|
Slic3r::Point vi = ip2 - ip1;
|
|
// Project both on the longer coordinate of vi.
|
|
int axis = std::abs(vi.x()) > std::abs(vi.y()) ? 0 : 1;
|
|
coord_t i = ip1(axis);
|
|
coord_t j = ip2(axis);
|
|
coord_t k = jp1(axis);
|
|
coord_t l = jp2(axis);
|
|
if (i > j)
|
|
std::swap(i, j);
|
|
if (k > l)
|
|
std::swap(k, l);
|
|
return (k >= i && k <= j) || (i >= k && i <= l);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename T> inline T foot_pt(const T &line_pt, const T &line_dir, const T &pt)
|
|
{
|
|
T v = pt - line_pt;
|
|
auto l2 = line_dir.squaredNorm();
|
|
auto t = (l2 == 0) ? 0 : v.dot(line_dir) / l2;
|
|
return line_pt + line_dir * t;
|
|
}
|
|
|
|
inline Vec2d foot_pt(const Line &iline, const Point &ipt)
|
|
{
|
|
return foot_pt<Vec2d>(iline.a.cast<double>(), (iline.b - iline.a).cast<double>(), ipt.cast<double>());
|
|
}
|
|
|
|
template<typename T> inline auto ray_point_distance_squared(const T &ray_pt, const T &ray_dir, const T &pt)
|
|
{
|
|
return (foot_pt(ray_pt, ray_dir, pt) - pt).squaredNorm();
|
|
}
|
|
|
|
template<typename T> inline auto ray_point_distance(const T &ray_pt, const T &ray_dir, const T &pt)
|
|
{
|
|
return (foot_pt(ray_pt, ray_dir, pt) - pt).norm();
|
|
}
|
|
|
|
inline double ray_point_distance_squared(const Line &iline, const Point &ipt)
|
|
{
|
|
return (foot_pt(iline, ipt) - ipt.cast<double>()).squaredNorm();
|
|
}
|
|
|
|
inline double ray_point_distance(const Line &iline, const Point &ipt)
|
|
{
|
|
return (foot_pt(iline, ipt) - ipt.cast<double>()).norm();
|
|
}
|
|
|
|
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
|
|
template<typename T>
|
|
inline bool liang_barsky_line_clipping_interval(
|
|
// Start and end points of the source line, result will be stored there as well.
|
|
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
|
|
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &v,
|
|
// Bounding box to clip with.
|
|
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox,
|
|
std::pair<double, double> &out_interval)
|
|
{
|
|
double t0 = 0.0;
|
|
double t1 = 1.0;
|
|
// Traverse through left, right, bottom, top edges.
|
|
auto clip_side = [&t0, &t1](double p, double q) -> bool {
|
|
if (p == 0) {
|
|
if (q < 0)
|
|
// Line parallel to the bounding box edge is fully outside of the bounding box.
|
|
return false;
|
|
// else don't clip
|
|
} else {
|
|
double r = q / p;
|
|
if (p < 0) {
|
|
if (r > t1)
|
|
// Fully clipped.
|
|
return false;
|
|
if (r > t0)
|
|
// Partially clipped.
|
|
t0 = r;
|
|
} else {
|
|
assert(p > 0);
|
|
if (r < t0)
|
|
// Fully clipped.
|
|
return false;
|
|
if (r < t1)
|
|
// Partially clipped.
|
|
t1 = r;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (clip_side(- v.x(), - bbox.min.x() + x0.x()) &&
|
|
clip_side( v.x(), bbox.max.x() - x0.x()) &&
|
|
clip_side(- v.y(), - bbox.min.y() + x0.y()) &&
|
|
clip_side( v.y(), bbox.max.y() - x0.y())) {
|
|
out_interval.first = t0;
|
|
out_interval.second = t1;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
inline bool liang_barsky_line_clipping(
|
|
// Start and end points of the source line, result will be stored there as well.
|
|
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
|
|
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1,
|
|
// Bounding box to clip with.
|
|
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox)
|
|
{
|
|
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> v = x1 - x0;
|
|
std::pair<double, double> interval;
|
|
if (liang_barsky_line_clipping_interval(x0, v, bbox, interval)) {
|
|
// Clipped successfully.
|
|
x1 = x0 + interval.second * v;
|
|
x0 += interval.first * v;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
|
|
template<typename T>
|
|
bool liang_barsky_line_clipping(
|
|
// Start and end points of the source line.
|
|
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0src,
|
|
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1src,
|
|
// Bounding box to clip with.
|
|
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox,
|
|
// Start and end points of the clipped line.
|
|
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0clip,
|
|
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1clip)
|
|
{
|
|
x0clip = x0src;
|
|
x1clip = x1src;
|
|
return liang_barsky_line_clipping(x0clip, x1clip, bbox);
|
|
}
|
|
|
|
// Ugly named variant, that accepts the squared line
|
|
// Don't call me with a nearly zero length vector!
|
|
// sympy:
|
|
// factor(solve([a * x + b * y + c, x**2 + y**2 - r**2], [x, y])[0])
|
|
// factor(solve([a * x + b * y + c, x**2 + y**2 - r**2], [x, y])[1])
|
|
template<typename T>
|
|
int ray_circle_intersections_r2_lv2_c(T r2, T a, T b, T lv2, T c, std::pair<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>, Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &out)
|
|
{
|
|
T x0 = - a * c;
|
|
T y0 = - b * c;
|
|
T d2 = r2 * lv2 - c * c;
|
|
if (d2 < T(0))
|
|
return 0;
|
|
T d = sqrt(d2);
|
|
out.first.x() = (x0 + b * d) / lv2;
|
|
out.first.y() = (y0 - a * d) / lv2;
|
|
out.second.x() = (x0 - b * d) / lv2;
|
|
out.second.y() = (y0 + a * d) / lv2;
|
|
return d == T(0) ? 1 : 2;
|
|
}
|
|
template<typename T>
|
|
int ray_circle_intersections(T r, T a, T b, T c, std::pair<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>, Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &out)
|
|
{
|
|
T lv2 = a * a + b * b;
|
|
if (lv2 < T(SCALED_EPSILON * SCALED_EPSILON)) {
|
|
//FIXME what is the correct epsilon?
|
|
// What if the line touches the circle?
|
|
return false;
|
|
}
|
|
return ray_circle_intersections_r2_lv2_c2(r * r, a, b, a * a + b * b, c, out);
|
|
}
|
|
|
|
Pointf3s convex_hull(Pointf3s points);
|
|
Polygon convex_hull(Points points);
|
|
Polygon convex_hull(const Polygons &polygons);
|
|
|
|
bool directions_parallel(double angle1, double angle2, double max_diff = 0);
|
|
template<class T> bool contains(const std::vector<T> &vector, const Point &point);
|
|
template<typename T> T rad2deg(T angle) { return T(180.0) * angle / T(PI); }
|
|
double rad2deg_dir(double angle);
|
|
template<typename T> constexpr T deg2rad(const T angle) { return T(PI) * angle / T(180.0); }
|
|
template<typename T> T angle_to_0_2PI(T angle)
|
|
{
|
|
static const T TWO_PI = T(2) * T(PI);
|
|
while (angle < T(0))
|
|
{
|
|
angle += TWO_PI;
|
|
}
|
|
while (TWO_PI < angle)
|
|
{
|
|
angle -= TWO_PI;
|
|
}
|
|
|
|
return angle;
|
|
}
|
|
|
|
/// Find the center of the circle corresponding to the vector of Points as an arc.
|
|
Point circle_center_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
|
|
inline Point circle_center_taubin_newton(const Points& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
|
|
|
/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
|
|
Vec2d circle_center_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
|
|
inline Vec2d circle_center_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_center_taubin_newton(input.cbegin(), input.cend(), cycles); }
|
|
|
|
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
|
|
|
|
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
|
|
bool arrange(
|
|
// input
|
|
size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
|
|
// output
|
|
Pointfs &positions);
|
|
|
|
class VoronoiDiagram : public boost::polygon::voronoi_diagram<double> {
|
|
public:
|
|
typedef double coord_type;
|
|
typedef boost::polygon::point_data<coordinate_type> point_type;
|
|
typedef boost::polygon::segment_data<coordinate_type> segment_type;
|
|
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
|
|
};
|
|
|
|
class MedialAxis {
|
|
public:
|
|
Lines lines;
|
|
const ExPolygon* expolygon;
|
|
double max_width;
|
|
double min_width;
|
|
MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
|
|
: expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
|
|
void build(ThickPolylines* polylines);
|
|
void build(Polylines* polylines);
|
|
|
|
private:
|
|
using VD = VoronoiDiagram;
|
|
VD vd;
|
|
std::set<const VD::edge_type*> edges, valid_edges;
|
|
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
|
|
void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
|
|
bool validate_edge(const VD::edge_type* edge);
|
|
const Line& retrieve_segment(const VD::cell_type* cell) const;
|
|
const Point& retrieve_endpoint(const VD::cell_type* cell) const;
|
|
};
|
|
|
|
// Sets the given transform by assembling the given transformations in the following order:
|
|
// 1) mirror
|
|
// 2) scale
|
|
// 3) rotate X
|
|
// 4) rotate Y
|
|
// 5) rotate Z
|
|
// 6) translate
|
|
void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
|
|
|
|
// Returns the transform obtained by assembling the given transformations in the following order:
|
|
// 1) mirror
|
|
// 2) scale
|
|
// 3) rotate X
|
|
// 4) rotate Y
|
|
// 5) rotate Z
|
|
// 6) translate
|
|
Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
|
|
|
|
// Returns the euler angles extracted from the given rotation matrix
|
|
// Warning -> The matrix should not contain any scale or shear !!!
|
|
Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix);
|
|
|
|
// Returns the euler angles extracted from the given affine transform
|
|
// Warning -> The transform should not contain any shear !!!
|
|
Vec3d extract_euler_angles(const Transform3d& transform);
|
|
|
|
class Transformation
|
|
{
|
|
struct Flags
|
|
{
|
|
bool dont_translate;
|
|
bool dont_rotate;
|
|
bool dont_scale;
|
|
bool dont_mirror;
|
|
|
|
Flags();
|
|
|
|
bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const;
|
|
void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror);
|
|
};
|
|
|
|
Vec3d m_offset; // In unscaled coordinates
|
|
Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point
|
|
Vec3d m_scaling_factor; // Scaling factors along the three axes
|
|
Vec3d m_mirror; // Mirroring along the three axes
|
|
|
|
mutable Transform3d m_matrix;
|
|
mutable Flags m_flags;
|
|
mutable bool m_dirty;
|
|
|
|
public:
|
|
Transformation();
|
|
explicit Transformation(const Transform3d& transform);
|
|
|
|
const Vec3d& get_offset() const { return m_offset; }
|
|
double get_offset(Axis axis) const { return m_offset(axis); }
|
|
|
|
void set_offset(const Vec3d& offset);
|
|
void set_offset(Axis axis, double offset);
|
|
|
|
const Vec3d& get_rotation() const { return m_rotation; }
|
|
double get_rotation(Axis axis) const { return m_rotation(axis); }
|
|
|
|
void set_rotation(const Vec3d& rotation);
|
|
void set_rotation(Axis axis, double rotation);
|
|
|
|
const Vec3d& get_scaling_factor() const { return m_scaling_factor; }
|
|
double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
|
|
|
|
void set_scaling_factor(const Vec3d& scaling_factor);
|
|
void set_scaling_factor(Axis axis, double scaling_factor);
|
|
bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; }
|
|
|
|
const Vec3d& get_mirror() const { return m_mirror; }
|
|
double get_mirror(Axis axis) const { return m_mirror(axis); }
|
|
bool is_left_handed() const { return m_mirror.x() * m_mirror.y() * m_mirror.z() < 0.; }
|
|
|
|
void set_mirror(const Vec3d& mirror);
|
|
void set_mirror(Axis axis, double mirror);
|
|
|
|
void set_from_transform(const Transform3d& transform);
|
|
|
|
void reset();
|
|
|
|
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
|
|
|
|
Transformation operator * (const Transformation& other) const;
|
|
|
|
// Find volume transformation, so that the chained (instance_trafo * volume_trafo) will be as close to identity
|
|
// as possible in least squares norm in regard to the 8 corners of bbox.
|
|
// Bounding box is expected to be centered around zero in all axes.
|
|
static Transformation volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox);
|
|
|
|
private:
|
|
friend class cereal::access;
|
|
template<class Archive> void serialize(Archive & ar) { ar(m_offset, m_rotation, m_scaling_factor, m_mirror); }
|
|
explicit Transformation(int) : m_dirty(true) {}
|
|
template <class Archive> static void load_and_construct(Archive &ar, cereal::construct<Transformation> &construct)
|
|
{
|
|
// Calling a private constructor with special "int" parameter to indicate that no construction is necessary.
|
|
construct(1);
|
|
ar(construct.ptr()->m_offset, construct.ptr()->m_rotation, construct.ptr()->m_scaling_factor, construct.ptr()->m_mirror);
|
|
}
|
|
};
|
|
|
|
// For parsing a transformation matrix from 3MF / AMF.
|
|
extern Transform3d transform3d_from_string(const std::string& transform_str);
|
|
|
|
// Rotation when going from the first coordinate system with rotation rot_xyz_from applied
|
|
// to a coordinate system with rot_xyz_to applied.
|
|
extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
|
|
// Rotation by Z to align rot_xyz_from to rot_xyz_to.
|
|
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
|
|
extern double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
|
|
|
|
// Is the angle close to a multiple of 90 degrees?
|
|
inline bool is_rotation_ninety_degrees(double a)
|
|
{
|
|
a = fmod(std::abs(a), 0.5 * M_PI);
|
|
if (a > 0.25 * PI)
|
|
a = 0.5 * PI - a;
|
|
return a < 0.001;
|
|
}
|
|
|
|
// Is the angle close to a multiple of 90 degrees?
|
|
inline bool is_rotation_ninety_degrees(const Vec3d &rotation)
|
|
{
|
|
return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z());
|
|
}
|
|
|
|
} } // namespace Slicer::Geometry
|
|
|
|
#endif
|