PrusaSlicer-NonPlainar/src/libslic3r/Geometry.hpp
Vojtech Bubnik b101a8e266 Fixes of the offset curves from Voronoi diagram.
The offset curve extractor is already quite usable,
though singular cases are still not covered yet
when the offset curve intersects or nearly intersects
a Voronoi vertex.

Removal of the PRINTF_ZU "%zu" Visual Studio printf compatibility macro.
Fixes of a contours self intersection test for collinear segments.
SVG exporter now exports white background, so that the GNOME Eye viewer is usable.
2020-06-16 13:15:48 +02:00

480 lines
18 KiB
C++

#ifndef slic3r_Geometry_hpp_
#define slic3r_Geometry_hpp_
#include "libslic3r.h"
#include "BoundingBox.hpp"
#include "ExPolygon.hpp"
#include "Polygon.hpp"
#include "Polyline.hpp"
// Serialization through the Cereal library
#include <cereal/access.hpp>
#define BOOST_VORONOI_USE_GMP 1
#include "boost/polygon/voronoi.hpp"
namespace ClipperLib {
class PolyNode;
using PolyNodes = std::vector<PolyNode*>;
}
namespace Slic3r { namespace Geometry {
// Generic result of an orientation predicate.
enum Orientation
{
ORIENTATION_CCW = 1,
ORIENTATION_CW = -1,
ORIENTATION_COLINEAR = 0
};
// Return orientation of the three points (clockwise, counter-clockwise, colinear)
// The predicate is exact for the coord_t type, using 64bit signed integers for the temporaries.
// which means, the coord_t types must not have some of the topmost bits utilized.
// As the points are limited to 30 bits + signum,
// the temporaries u, v, w are limited to 61 bits + signum,
// and d is limited to 63 bits + signum and we are good.
static inline Orientation orient(const Point &a, const Point &b, const Point &c)
{
// BOOST_STATIC_ASSERT(sizeof(coord_t) * 2 == sizeof(int64_t));
int64_t u = int64_t(b(0)) * int64_t(c(1)) - int64_t(b(1)) * int64_t(c(0));
int64_t v = int64_t(a(0)) * int64_t(c(1)) - int64_t(a(1)) * int64_t(c(0));
int64_t w = int64_t(a(0)) * int64_t(b(1)) - int64_t(a(1)) * int64_t(b(0));
int64_t d = u - v + w;
return (d > 0) ? ORIENTATION_CCW : ((d == 0) ? ORIENTATION_COLINEAR : ORIENTATION_CW);
}
// Return orientation of the polygon by checking orientation of the left bottom corner of the polygon
// using exact arithmetics. The input polygon must not contain duplicate points
// (or at least the left bottom corner point must not have duplicates).
static inline bool is_ccw(const Polygon &poly)
{
// The polygon shall be at least a triangle.
assert(poly.points.size() >= 3);
if (poly.points.size() < 3)
return true;
// 1) Find the lowest lexicographical point.
unsigned int imin = 0;
for (unsigned int i = 1; i < poly.points.size(); ++ i) {
const Point &pmin = poly.points[imin];
const Point &p = poly.points[i];
if (p(0) < pmin(0) || (p(0) == pmin(0) && p(1) < pmin(1)))
imin = i;
}
// 2) Detect the orientation of the corner imin.
size_t iPrev = ((imin == 0) ? poly.points.size() : imin) - 1;
size_t iNext = ((imin + 1 == poly.points.size()) ? 0 : imin + 1);
Orientation o = orient(poly.points[iPrev], poly.points[imin], poly.points[iNext]);
// The lowest bottom point must not be collinear if the polygon does not contain duplicate points
// or overlapping segments.
assert(o != ORIENTATION_COLINEAR);
return o == ORIENTATION_CCW;
}
inline bool ray_ray_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
{
double denom = v1(0) * v2(1) - v2(0) * v1(1);
if (std::abs(denom) < EPSILON)
return false;
double t = (v2(0) * (p1(1) - p2(1)) - v2(1) * (p1(0) - p2(0))) / denom;
res(0) = p1(0) + t * v1(0);
res(1) = p1(1) + t * v1(1);
return true;
}
inline bool segment_segment_intersection(const Vec2d &p1, const Vec2d &v1, const Vec2d &p2, const Vec2d &v2, Vec2d &res)
{
double denom = v1(0) * v2(1) - v2(0) * v1(1);
if (std::abs(denom) < EPSILON)
// Lines are collinear.
return false;
double s12_x = p1(0) - p2(0);
double s12_y = p1(1) - p2(1);
double s_numer = v1(0) * s12_y - v1(1) * s12_x;
bool denom_is_positive = false;
if (denom < 0.) {
denom_is_positive = true;
denom = - denom;
s_numer = - s_numer;
}
if (s_numer < 0.)
// Intersection outside of the 1st segment.
return false;
double t_numer = v2(0) * s12_y - v2(1) * s12_x;
if (! denom_is_positive)
t_numer = - t_numer;
if (t_numer < 0. || s_numer > denom || t_numer > denom)
// Intersection outside of the 1st or 2nd segment.
return false;
// Intersection inside both of the segments.
double t = t_numer / denom;
res(0) = p1(0) + t * v1(0);
res(1) = p1(1) + t * v1(1);
return true;
}
inline bool segments_intersect(
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
const Slic3r::Point &jp1, const Slic3r::Point &jp2)
{
assert(ip1 != ip2);
assert(jp1 != jp2);
auto segments_could_intersect = [](
const Slic3r::Point &ip1, const Slic3r::Point &ip2,
const Slic3r::Point &jp1, const Slic3r::Point &jp2) -> std::pair<int, int>
{
Vec2i64 iv = (ip2 - ip1).cast<int64_t>();
Vec2i64 vij1 = (jp1 - ip1).cast<int64_t>();
Vec2i64 vij2 = (jp2 - ip1).cast<int64_t>();
int64_t tij1 = cross2(iv, vij1);
int64_t tij2 = cross2(iv, vij2);
return std::make_pair(
// signum
(tij1 > 0) ? 1 : ((tij1 < 0) ? -1 : 0),
(tij2 > 0) ? 1 : ((tij2 < 0) ? -1 : 0));
};
std::pair<int, int> sign1 = segments_could_intersect(ip1, ip2, jp1, jp2);
std::pair<int, int> sign2 = segments_could_intersect(jp1, jp2, ip1, ip2);
int test1 = sign1.first * sign1.second;
int test2 = sign2.first * sign2.second;
if (test1 <= 0 && test2 <= 0) {
// The segments possibly intersect. They may also be collinear, but not intersect.
if (test1 != 0 || test2 != 0)
// Certainly not collinear, then the segments intersect.
return true;
// If the first segment is collinear with the other, the other is collinear with the first segment.
assert((sign1.first == 0 && sign1.second == 0) == (sign2.first == 0 && sign2.second == 0));
if (sign1.first == 0 && sign1.second == 0) {
// The segments are certainly collinear. Now verify whether they overlap.
Slic3r::Point vi = ip2 - ip1;
// Project both on the longer coordinate of vi.
int axis = std::abs(vi.x()) > std::abs(vi.y()) ? 0 : 1;
coord_t i = ip1(axis);
coord_t j = ip2(axis);
coord_t k = jp1(axis);
coord_t l = jp2(axis);
if (i > j)
std::swap(i, j);
if (k > l)
std::swap(k, l);
return (k >= i && k <= j) || (i >= k && i <= l);
}
}
return false;
}
template<typename T> inline T foot_pt(const T &line_pt, const T &line_dir, const T &pt)
{
T v = pt - line_pt;
auto l2 = line_dir.squaredNorm();
auto t = (l2 == 0) ? 0 : v.dot(line_dir) / l2;
return line_pt + line_dir * t;
}
inline Vec2d foot_pt(const Line &iline, const Point &ipt)
{
return foot_pt<Vec2d>(iline.a.cast<double>(), (iline.b - iline.a).cast<double>(), ipt.cast<double>());
}
template<typename T> inline auto ray_point_distance_squared(const T &ray_pt, const T &ray_dir, const T &pt)
{
return (foot_pt(ray_pt, ray_dir, pt) - pt).squaredNorm();
}
template<typename T> inline auto ray_point_distance(const T &ray_pt, const T &ray_dir, const T &pt)
{
return (foot_pt(ray_pt, ray_dir, pt) - pt).norm();
}
inline double ray_point_distance_squared(const Line &iline, const Point &ipt)
{
return (foot_pt(iline, ipt) - ipt.cast<double>()).squaredNorm();
}
inline double ray_point_distance(const Line &iline, const Point &ipt)
{
return (foot_pt(iline, ipt) - ipt.cast<double>()).norm();
}
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
template<typename T>
inline bool liang_barsky_line_clipping(
// Start and end points of the source line, result will be stored there as well.
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0,
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1,
// Bounding box to clip with.
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox)
{
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> v = x1 - x0;
double t0 = 0.0;
double t1 = 1.0;
// Traverse through left, right, bottom, top edges.
for (int edge = 0; edge < 4; ++ edge)
{
double p, q;
switch (edge) {
case 0: p = - v.x(); q = - bbox.min.x() + x0.x(); break;
case 1: p = v.x(); q = bbox.max.x() - x0.x(); break;
case 2: p = - v.y(); q = - bbox.min.y() + x0.y(); break;
default: p = v.y(); q = bbox.max.y() - x0.y(); break;
}
if (p == 0) {
if (q < 0)
// Line parallel to the bounding box edge is fully outside of the bounding box.
return false;
// else don't clip
} else {
double r = q / p;
if (p < 0) {
if (r > t1)
// Fully clipped.
return false;
if (r > t0)
// Partially clipped.
t0 = r;
} else {
assert(p > 0);
if (r < t0)
// Fully clipped.
return false;
if (r < t1)
// Partially clipped.
t1 = r;
}
}
}
// Clipped successfully.
x1 = x0 + t1 * v;
x0 += t0 * v;
return true;
}
// Based on Liang-Barsky function by Daniel White @ http://www.skytopia.com/project/articles/compsci/clipping.html
template<typename T>
bool liang_barsky_line_clipping(
// Start and end points of the source line.
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0src,
const Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1src,
// Bounding box to clip with.
const BoundingBoxBase<Eigen::Matrix<T, 2, 1, Eigen::DontAlign>> &bbox,
// Start and end points of the clipped line.
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x0clip,
Eigen::Matrix<T, 2, 1, Eigen::DontAlign> &x1clip)
{
x0clip = x0src;
x1clip = x1src;
return liang_barsky_line_clipping(x0clip, x1clip, bbox);
}
Pointf3s convex_hull(Pointf3s points);
Polygon convex_hull(Points points);
Polygon convex_hull(const Polygons &polygons);
bool directions_parallel(double angle1, double angle2, double max_diff = 0);
template<class T> bool contains(const std::vector<T> &vector, const Point &point);
template<typename T> T rad2deg(T angle) { return T(180.0) * angle / T(PI); }
double rad2deg_dir(double angle);
template<typename T> T deg2rad(T angle) { return T(PI) * angle / T(180.0); }
template<typename T> T angle_to_0_2PI(T angle)
{
static const T TWO_PI = T(2) * T(PI);
while (angle < T(0))
{
angle += TWO_PI;
}
while (TWO_PI < angle)
{
angle -= TWO_PI;
}
return angle;
}
/// Find the center of the circle corresponding to the vector of Points as an arc.
Point circle_taubin_newton(const Points::const_iterator& input_start, const Points::const_iterator& input_end, size_t cycles = 20);
inline Point circle_taubin_newton(const Points& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
/// Find the center of the circle corresponding to the vector of Pointfs as an arc.
Vec2d circle_taubin_newton(const Vec2ds::const_iterator& input_start, const Vec2ds::const_iterator& input_end, size_t cycles = 20);
inline Vec2d circle_taubin_newton(const Vec2ds& input, size_t cycles = 20) { return circle_taubin_newton(input.cbegin(), input.cend(), cycles); }
void simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval);
double linint(double value, double oldmin, double oldmax, double newmin, double newmax);
bool arrange(
// input
size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box,
// output
Pointfs &positions);
class VoronoiDiagram : public boost::polygon::voronoi_diagram<double> {
public:
typedef double coord_type;
typedef boost::polygon::point_data<coordinate_type> point_type;
typedef boost::polygon::segment_data<coordinate_type> segment_type;
typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
};
class MedialAxis {
public:
Lines lines;
const ExPolygon* expolygon;
double max_width;
double min_width;
MedialAxis(double _max_width, double _min_width, const ExPolygon* _expolygon = NULL)
: expolygon(_expolygon), max_width(_max_width), min_width(_min_width) {};
void build(ThickPolylines* polylines);
void build(Polylines* polylines);
private:
using VD = VoronoiDiagram;
VD vd;
std::set<const VD::edge_type*> edges, valid_edges;
std::map<const VD::edge_type*, std::pair<coordf_t,coordf_t> > thickness;
void process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline);
bool validate_edge(const VD::edge_type* edge);
const Line& retrieve_segment(const VD::cell_type* cell) const;
const Point& retrieve_endpoint(const VD::cell_type* cell) const;
};
// Sets the given transform by assembling the given transformations in the following order:
// 1) mirror
// 2) scale
// 3) rotate X
// 4) rotate Y
// 5) rotate Z
// 6) translate
void assemble_transform(Transform3d& transform, const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
// Returns the transform obtained by assembling the given transformations in the following order:
// 1) mirror
// 2) scale
// 3) rotate X
// 4) rotate Y
// 5) rotate Z
// 6) translate
Transform3d assemble_transform(const Vec3d& translation = Vec3d::Zero(), const Vec3d& rotation = Vec3d::Zero(), const Vec3d& scale = Vec3d::Ones(), const Vec3d& mirror = Vec3d::Ones());
// Returns the euler angles extracted from the given rotation matrix
// Warning -> The matrix should not contain any scale or shear !!!
Vec3d extract_euler_angles(const Eigen::Matrix<double, 3, 3, Eigen::DontAlign>& rotation_matrix);
// Returns the euler angles extracted from the given affine transform
// Warning -> The transform should not contain any shear !!!
Vec3d extract_euler_angles(const Transform3d& transform);
class Transformation
{
struct Flags
{
bool dont_translate;
bool dont_rotate;
bool dont_scale;
bool dont_mirror;
Flags();
bool needs_update(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror) const;
void set(bool dont_translate, bool dont_rotate, bool dont_scale, bool dont_mirror);
};
Vec3d m_offset; // In unscaled coordinates
Vec3d m_rotation; // Rotation around the three axes, in radians around mesh center point
Vec3d m_scaling_factor; // Scaling factors along the three axes
Vec3d m_mirror; // Mirroring along the three axes
mutable Transform3d m_matrix;
mutable Flags m_flags;
mutable bool m_dirty;
public:
Transformation();
explicit Transformation(const Transform3d& transform);
const Vec3d& get_offset() const { return m_offset; }
double get_offset(Axis axis) const { return m_offset(axis); }
void set_offset(const Vec3d& offset);
void set_offset(Axis axis, double offset);
const Vec3d& get_rotation() const { return m_rotation; }
double get_rotation(Axis axis) const { return m_rotation(axis); }
void set_rotation(const Vec3d& rotation);
void set_rotation(Axis axis, double rotation);
const Vec3d& get_scaling_factor() const { return m_scaling_factor; }
double get_scaling_factor(Axis axis) const { return m_scaling_factor(axis); }
void set_scaling_factor(const Vec3d& scaling_factor);
void set_scaling_factor(Axis axis, double scaling_factor);
bool is_scaling_uniform() const { return std::abs(m_scaling_factor.x() - m_scaling_factor.y()) < 1e-8 && std::abs(m_scaling_factor.x() - m_scaling_factor.z()) < 1e-8; }
const Vec3d& get_mirror() const { return m_mirror; }
double get_mirror(Axis axis) const { return m_mirror(axis); }
bool is_left_handed() const { return m_mirror.x() * m_mirror.y() * m_mirror.z() < 0.; }
void set_mirror(const Vec3d& mirror);
void set_mirror(Axis axis, double mirror);
void set_from_transform(const Transform3d& transform);
void reset();
const Transform3d& get_matrix(bool dont_translate = false, bool dont_rotate = false, bool dont_scale = false, bool dont_mirror = false) const;
Transformation operator * (const Transformation& other) const;
// Find volume transformation, so that the chained (instance_trafo * volume_trafo) will be as close to identity
// as possible in least squares norm in regard to the 8 corners of bbox.
// Bounding box is expected to be centered around zero in all axes.
static Transformation volume_to_bed_transformation(const Transformation& instance_transformation, const BoundingBoxf3& bbox);
private:
friend class cereal::access;
template<class Archive> void serialize(Archive & ar) { ar(m_offset, m_rotation, m_scaling_factor, m_mirror); }
explicit Transformation(int) : m_dirty(true) {}
template <class Archive> static void load_and_construct(Archive &ar, cereal::construct<Transformation> &construct)
{
// Calling a private constructor with special "int" parameter to indicate that no construction is necessary.
construct(1);
ar(construct.ptr()->m_offset, construct.ptr()->m_rotation, construct.ptr()->m_scaling_factor, construct.ptr()->m_mirror);
}
};
// For parsing a transformation matrix from 3MF / AMF.
extern Transform3d transform3d_from_string(const std::string& transform_str);
// Rotation when going from the first coordinate system with rotation rot_xyz_from applied
// to a coordinate system with rot_xyz_to applied.
extern Eigen::Quaterniond rotation_xyz_diff(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
// Rotation by Z to align rot_xyz_from to rot_xyz_to.
// This should only be called if it is known, that the two rotations only differ in rotation around the Z axis.
extern double rotation_diff_z(const Vec3d &rot_xyz_from, const Vec3d &rot_xyz_to);
// Is the angle close to a multiple of 90 degrees?
inline bool is_rotation_ninety_degrees(double a)
{
a = fmod(std::abs(a), 0.5 * M_PI);
if (a > 0.25 * PI)
a = 0.5 * PI - a;
return a < 0.001;
}
// Is the angle close to a multiple of 90 degrees?
inline bool is_rotation_ninety_degrees(const Vec3d &rotation)
{
return is_rotation_ninety_degrees(rotation.x()) && is_rotation_ninety_degrees(rotation.y()) && is_rotation_ninety_degrees(rotation.z());
}
} }
#endif