PrusaSlicer-NonPlainar/src/slic3r/GUI/Camera.cpp
2019-08-03 09:07:38 +02:00

443 lines
13 KiB
C++

#include "libslic3r/libslic3r.h"
#include "Camera.hpp"
#include "3DScene.hpp"
#include "GUI_App.hpp"
#include "AppConfig.hpp"
#include <GL/glew.h>
static const float GIMBALL_LOCK_THETA_MAX = 180.0f;
// phi / theta angles to orient the camera.
static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f };
static const float VIEW_LEFT[2] = { 90.0f, 90.0f };
static const float VIEW_RIGHT[2] = { -90.0f, 90.0f };
static const float VIEW_TOP[2] = { 0.0f, 0.0f };
static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f };
static const float VIEW_FRONT[2] = { 0.0f, 90.0f };
static const float VIEW_REAR[2] = { 180.0f, 90.0f };
namespace Slic3r {
namespace GUI {
const double Camera::DefaultDistance = 1000.0;
double Camera::FrustrumMinZRange = 50.0;
double Camera::FrustrumMinNearZ = 100.0;
double Camera::FrustrumZMargin = 10.0;
double Camera::MaxFovDeg = 60.0;
Camera::Camera()
: phi(45.0f)
, requires_zoom_to_bed(false)
, inverted_phi(false)
, m_type(Perspective)
, m_target(Vec3d::Zero())
, m_theta(45.0f)
, m_zoom(1.0)
, m_distance(DefaultDistance)
, m_gui_scale(1.0)
, m_view_matrix(Transform3d::Identity())
, m_projection_matrix(Transform3d::Identity())
{
}
std::string Camera::get_type_as_string() const
{
switch (m_type)
{
case Unknown:
return "unknown";
case Perspective:
return "perspective";
default:
case Ortho:
return "orthographic";
};
}
void Camera::set_type(EType type)
{
if (m_type != type)
{
m_type = type;
wxGetApp().app_config->set("use_perspective_camera", (m_type == Perspective) ? "1" : "0");
wxGetApp().app_config->save();
}
}
void Camera::set_type(const std::string& type)
{
if (type == "1")
set_type(Perspective);
else
set_type(Ortho);
}
void Camera::select_next_type()
{
unsigned char next = (unsigned char)m_type + 1;
if (next == (unsigned char)Num_types)
next = 1;
set_type((EType)next);
}
void Camera::set_target(const Vec3d& target)
{
m_target = target;
m_target(0) = clamp(m_scene_box.min(0), m_scene_box.max(0), m_target(0));
m_target(1) = clamp(m_scene_box.min(1), m_scene_box.max(1), m_target(1));
m_target(2) = clamp(m_scene_box.min(2), m_scene_box.max(2), m_target(2));
}
void Camera::set_theta(float theta, bool apply_limit)
{
if (apply_limit)
m_theta = clamp(0.0f, GIMBALL_LOCK_THETA_MAX, theta);
else
{
m_theta = fmod(theta, 360.0f);
if (m_theta < 0.0f)
m_theta += 360.0f;
}
}
void Camera::set_zoom(double zoom, const BoundingBoxf3& max_box, int canvas_w, int canvas_h)
{
zoom = std::max(std::min(zoom, 4.0), -4.0) / 10.0;
zoom = m_zoom / (1.0 - zoom);
// Don't allow to zoom too far outside the scene.
double zoom_min = calc_zoom_to_bounding_box_factor(max_box, canvas_w, canvas_h);
if (zoom_min > 0.0)
zoom = std::max(zoom, zoom_min * 0.7);
// Don't allow to zoom too close to the scene.
zoom = std::min(zoom, 100.0);
m_zoom = zoom;
}
bool Camera::select_view(const std::string& direction)
{
const float* dir_vec = nullptr;
if (direction == "iso")
dir_vec = VIEW_DEFAULT;
else if (direction == "left")
dir_vec = VIEW_LEFT;
else if (direction == "right")
dir_vec = VIEW_RIGHT;
else if (direction == "top")
dir_vec = VIEW_TOP;
else if (direction == "bottom")
dir_vec = VIEW_BOTTOM;
else if (direction == "front")
dir_vec = VIEW_FRONT;
else if (direction == "rear")
dir_vec = VIEW_REAR;
if (dir_vec != nullptr)
{
phi = dir_vec[0];
set_theta(dir_vec[1], false);
return true;
}
else
return false;
}
double Camera::get_fov() const
{
switch (m_type)
{
case Perspective:
return 2.0 * Geometry::rad2deg(std::atan(1.0 / m_projection_matrix.matrix()(1, 1)));
default:
case Ortho:
return 0.0;
};
}
void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h) const
{
glsafe(::glViewport(0, 0, w, h));
glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data()));
}
void Camera::apply_view_matrix() const
{
double theta_rad = Geometry::deg2rad(-(double)m_theta);
double phi_rad = Geometry::deg2rad((double)phi);
double sin_theta = ::sin(theta_rad);
Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad));
glsafe(::glMatrixMode(GL_MODELVIEW));
glsafe(::glLoadIdentity());
glsafe(::glRotatef(-m_theta, 1.0f, 0.0f, 0.0f)); // pitch
glsafe(::glRotatef(phi, 0.0f, 0.0f, 1.0f)); // yaw
glsafe(::glTranslated(-camera_pos(0), -camera_pos(1), -camera_pos(2)));
glsafe(::glGetDoublev(GL_MODELVIEW_MATRIX, m_view_matrix.data()));
}
void Camera::apply_projection(const BoundingBoxf3& box) const
{
set_distance(DefaultDistance);
double w = 0.0;
double h = 0.0;
while (true)
{
m_frustrum_zs = calc_tight_frustrum_zs_around(box);
w = 0.5 * (double)m_viewport[2];
h = 0.5 * (double)m_viewport[3];
if (m_zoom != 0.0)
{
double inv_zoom = 1.0 / m_zoom;
w *= inv_zoom;
h *= inv_zoom;
}
switch (m_type)
{
default:
case Ortho:
{
m_gui_scale = 1.0;
break;
}
case Perspective:
{
// scale near plane to keep w and h constant on the plane at z = m_distance
double scale = m_frustrum_zs.first / m_distance;
w *= scale;
h *= scale;
m_gui_scale = scale;
break;
}
}
if (m_type == Perspective)
{
double fov_deg = Geometry::rad2deg(2.0 * std::atan(h / m_frustrum_zs.first));
// adjust camera distance to keep fov in a limited range
if (fov_deg > MaxFovDeg)
{
double delta_z = h / ::tan(0.5 * Geometry::deg2rad(MaxFovDeg)) - m_frustrum_zs.first;
if (delta_z > 0.001)
set_distance(m_distance + delta_z);
else
break;
}
else
break;
}
else
break;
}
glsafe(::glMatrixMode(GL_PROJECTION));
glsafe(::glLoadIdentity());
switch (m_type)
{
default:
case Ortho:
{
glsafe(::glOrtho(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
break;
}
case Perspective:
{
glsafe(::glFrustum(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
break;
}
}
glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data()));
glsafe(::glMatrixMode(GL_MODELVIEW));
}
void Camera::zoom_to_box(const BoundingBoxf3& box, int canvas_w, int canvas_h)
{
// Calculate the zoom factor needed to adjust the view around the given box.
double zoom = calc_zoom_to_bounding_box_factor(box, canvas_w, canvas_h);
if (zoom > 0.0)
{
m_zoom = zoom;
// center view around box center
m_target = box.center();
}
}
#if ENABLE_CAMERA_STATISTICS
void Camera::debug_render() const
{
ImGuiWrapper& imgui = *wxGetApp().imgui();
imgui.set_next_window_bg_alpha(0.5f);
imgui.begin(std::string("Camera statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);
std::string type = get_type_as_string();
Vec3f position = get_position().cast<float>();
Vec3f target = m_target.cast<float>();
float distance = (float)get_distance();
Vec3f forward = get_dir_forward().cast<float>();
Vec3f right = get_dir_right().cast<float>();
Vec3f up = get_dir_up().cast<float>();
float nearZ = (float)m_frustrum_zs.first;
float farZ = (float)m_frustrum_zs.second;
float deltaZ = farZ - nearZ;
float zoom = (float)m_zoom;
float fov = (float)get_fov();
float gui_scale = (float)get_gui_scale();
ImGui::InputText("Type", const_cast<char*>(type.data()), type.length(), ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat3("Position", position.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat3("Target", target.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Distance", &distance, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat3("Forward", forward.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat3("Right", right.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat3("Up", up.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat("Near Z", &nearZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Far Z", &farZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Delta Z", &deltaZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat("Zoom", &zoom, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::InputFloat("Fov", &fov, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
ImGui::Separator();
ImGui::InputFloat("GUI scale", &gui_scale, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
imgui.end();
}
#endif // ENABLE_CAMERA_STATISTICS
std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const
{
std::pair<double, double> ret;
while (true)
{
ret = std::make_pair(DBL_MAX, -DBL_MAX);
// box vertices in world space
std::vector<Vec3d> vertices;
vertices.reserve(8);
vertices.push_back(box.min);
vertices.emplace_back(box.max(0), box.min(1), box.min(2));
vertices.emplace_back(box.max(0), box.max(1), box.min(2));
vertices.emplace_back(box.min(0), box.max(1), box.min(2));
vertices.emplace_back(box.min(0), box.min(1), box.max(2));
vertices.emplace_back(box.max(0), box.min(1), box.max(2));
vertices.push_back(box.max);
vertices.emplace_back(box.min(0), box.max(1), box.max(2));
// set the Z range in eye coordinates (negative Zs are in front of the camera)
for (const Vec3d& v : vertices)
{
double z = -(m_view_matrix * v)(2);
ret.first = std::min(ret.first, z);
ret.second = std::max(ret.second, z);
}
// apply margin
ret.first -= FrustrumZMargin;
ret.second += FrustrumZMargin;
// ensure min size
if (ret.second - ret.first < FrustrumMinZRange)
{
double mid_z = 0.5 * (ret.first + ret.second);
double half_size = 0.5 * FrustrumMinZRange;
ret.first = mid_z - half_size;
ret.second = mid_z + half_size;
}
if (ret.first >= FrustrumMinNearZ)
break;
// ensure min Near Z
set_distance(m_distance + FrustrumMinNearZ - ret.first);
}
return ret;
}
double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, int canvas_w, int canvas_h) const
{
double max_bb_size = box.max_size();
if (max_bb_size == 0.0)
return -1.0;
// project the box vertices on a plane perpendicular to the camera forward axis
// then calculates the vertices coordinate on this plane along the camera xy axes
// ensure that the view matrix is updated
apply_view_matrix();
Vec3d right = get_dir_right();
Vec3d up = get_dir_up();
Vec3d forward = get_dir_forward();
Vec3d bb_center = box.center();
// box vertices in world space
std::vector<Vec3d> vertices;
vertices.reserve(8);
vertices.push_back(box.min);
vertices.emplace_back(box.max(0), box.min(1), box.min(2));
vertices.emplace_back(box.max(0), box.max(1), box.min(2));
vertices.emplace_back(box.min(0), box.max(1), box.min(2));
vertices.emplace_back(box.min(0), box.min(1), box.max(2));
vertices.emplace_back(box.max(0), box.min(1), box.max(2));
vertices.push_back(box.max);
vertices.emplace_back(box.min(0), box.max(1), box.max(2));
double max_x = 0.0;
double max_y = 0.0;
// margin factor to give some empty space around the box
double margin_factor = 1.25;
for (const Vec3d& v : vertices)
{
// project vertex on the plane perpendicular to camera forward axis
Vec3d pos(v(0) - bb_center(0), v(1) - bb_center(1), v(2) - bb_center(2));
Vec3d proj_on_plane = pos - pos.dot(forward) * forward;
// calculates vertex coordinate along camera xy axes
double x_on_plane = proj_on_plane.dot(right);
double y_on_plane = proj_on_plane.dot(up);
max_x = std::max(max_x, std::abs(x_on_plane));
max_y = std::max(max_y, std::abs(y_on_plane));
}
if ((max_x == 0.0) || (max_y == 0.0))
return -1.0f;
max_x *= margin_factor;
max_y *= margin_factor;
return std::min((double)canvas_w / (2.0 * max_x), (double)canvas_h / (2.0 * max_y));
}
void Camera::set_distance(double distance) const
{
m_distance = distance;
apply_view_matrix();
}
} // GUI
} // Slic3r