3991 lines
154 KiB
C++
3991 lines
154 KiB
C++
#include "CutSurface.hpp"
|
|
|
|
/// models_input.obj - Check transormation of model to each others
|
|
/// projection_center.obj - circle representing center of projection with correct distance
|
|
/// {M} .. model index
|
|
/// model/model{M}.off - CGAL model created from index_triangle_set
|
|
/// model_neg/model{M}.off - CGAL model created for differenciate (multi volume object)
|
|
/// shape.off - CGAL model created from shapes
|
|
/// constrained/model{M}.off - Visualization of inside and outside triangles
|
|
/// Green - not along constrained edge
|
|
/// Red - sure that are inside
|
|
/// Purple - sure that are outside
|
|
/// (only along constrained edge)
|
|
/// filled/model{M}.off - flood fill green triangles inside of red area
|
|
/// - Same meaning of color as constrained
|
|
/// {N} .. Order of cutted Area of Interestmodel from model surface
|
|
/// model_AOIs/{M}/cutAOI{N}.obj - Extracted Area of interest from corefined model
|
|
/// model_AOIs/{M}/outline{N}.obj - Outline of Cutted Area
|
|
/// {O} .. Order number of patch
|
|
/// patches/patch{O}.off
|
|
/// result.obj - Merged result its
|
|
/// result_contours/{O}.obj - visualization of contours for result patches
|
|
//#define DEBUG_OUTPUT_DIR std::string("C:/data/temp/cutSurface/")
|
|
|
|
using namespace Slic3r;
|
|
#include "ExPolygonsIndex.hpp"
|
|
|
|
#include <CGAL/Polygon_mesh_processing/corefinement.h>
|
|
#include <CGAL/Exact_integer.h>
|
|
#include <CGAL/Surface_mesh.h>
|
|
#include <CGAL/Cartesian_converter.h>
|
|
#include <tbb/parallel_for.h>
|
|
|
|
// libslic3r
|
|
#include "TriangleMesh.hpp" // its_merge
|
|
#include "Utils.hpp" // next_highest_power_of_2
|
|
#include "ClipperUtils.hpp" // union_ex + offset_ex
|
|
|
|
namespace priv {
|
|
|
|
using Project = Emboss::IProjection;
|
|
using Project3d = Emboss::IProject3d;
|
|
|
|
/// <summary>
|
|
/// Set true for indices out of area of interest
|
|
/// </summary>
|
|
/// <param name="skip_indicies">Flag to convert triangle to cgal</param>
|
|
/// <param name="its">model</param>
|
|
/// <param name="projection">Convert 2d point to pair of 3d points</param>
|
|
/// <param name="shapes_bb">2d bounding box define AOI</param>
|
|
void set_skip_for_out_of_aoi(std::vector<bool> &skip_indicies,
|
|
const indexed_triangle_set &its,
|
|
const Project &projection,
|
|
const BoundingBox &shapes_bb);
|
|
|
|
/// <summary>
|
|
/// Set true for indicies outward and almost parallel together.
|
|
/// Note: internally calculate normals
|
|
/// </summary>
|
|
/// <param name="skip_indicies">Flag to convert triangle to cgal</param>
|
|
/// <param name="its">model</param>
|
|
/// <param name="projection">Direction to measure angle</param>
|
|
/// <param name="max_angle">Maximal allowed angle between opposit normal and
|
|
/// projection direction [in DEG]</param>
|
|
void set_skip_by_angle(std::vector<bool> &skip_indicies,
|
|
const indexed_triangle_set &its,
|
|
const Project3d &projection,
|
|
double max_angle = 89.);
|
|
|
|
|
|
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
|
|
using CutMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
|
|
using CutMeshes = std::vector<CutMesh>;
|
|
|
|
using VI = CGAL::SM_Vertex_index;
|
|
using HI = CGAL::SM_Halfedge_index;
|
|
using EI = CGAL::SM_Edge_index;
|
|
using FI = CGAL::SM_Face_index;
|
|
using P3 = CGAL::Epick::Point_3;
|
|
|
|
/// <summary>
|
|
/// Convert triangle mesh model to CGAL Surface_mesh
|
|
/// Filtrate out opposite triangles
|
|
/// Add property map for source face index
|
|
/// </summary>
|
|
/// <param name="its">Model</param>
|
|
/// <param name="skip_indicies">Flags that triangle should be skiped</param>
|
|
/// <param name="flip">When true triangle will flip normal</param>
|
|
/// <returns>CGAL mesh - half edge mesh</returns>
|
|
CutMesh to_cgal(const indexed_triangle_set &its,
|
|
const std::vector<bool> &skip_indicies,
|
|
bool flip = false);
|
|
|
|
/// <summary>
|
|
/// Covert 2d shape (e.g. Glyph) to CGAL model
|
|
/// NOTE: internaly create
|
|
/// edge_shape_map .. Property map to store conversion from edge to contour
|
|
/// face_shape_map .. Property map to store conversion from face to contour
|
|
/// </summary>
|
|
/// <param name="shapes">2d shapes to project</param>
|
|
/// <param name="projection">Define transformation 2d point into 3d</param>
|
|
/// <returns>CGAL model of extruded shape</returns>
|
|
CutMesh to_cgal(const ExPolygons &shapes, const Project &projection);
|
|
// function to check result of projection. 2d int32_t -> 3d double
|
|
bool exist_duplicit_vertex(const CutMesh& mesh);
|
|
|
|
|
|
/// <summary>
|
|
/// IntersectingElement
|
|
///
|
|
/// Adress polygon inside of ExPolygon
|
|
/// Keep information about source of vertex:
|
|
/// - from face (one of 2 possible)
|
|
/// - from edge (one of 2 possible)
|
|
///
|
|
/// V1~~~~~V2
|
|
/// | f1 /:
|
|
/// | / :
|
|
/// e1| /e2:
|
|
/// | / :
|
|
/// |/ f2 :
|
|
/// V1'~~~~V2'
|
|
///
|
|
/// | .. edge
|
|
/// / .. edge
|
|
/// : .. foreign edge - neighbor
|
|
/// ~ .. no care edge - idealy should not cross model
|
|
/// V1,V1' .. projected 2d point to 3d
|
|
/// V2,V2' .. projected 2d point to 3d
|
|
///
|
|
/// Vertex indexing
|
|
/// V1 .. i (vertex_base + 2x index of point in polygon)
|
|
/// V1' .. i + 1
|
|
/// V2 .. j = i + 2 || 0 (for last i in polygon)
|
|
/// V2' .. j + 1
|
|
///
|
|
/// f1 .. text_face_1 (triangle face made by side of shape contour)
|
|
/// f2 .. text_face_2
|
|
/// e1 .. text_edge_1 (edge on side of face made by side of shape contour)
|
|
/// e2 .. text_edge_2
|
|
///
|
|
/// </summary>
|
|
struct IntersectingElement
|
|
{
|
|
// identify source point in shapes
|
|
uint32_t shape_point_index{std::numeric_limits<uint32_t>::max()};
|
|
|
|
// store together type, is_first, is_last
|
|
unsigned char attr{std::numeric_limits<unsigned char>::max()};
|
|
|
|
// vertex or edge ID, where edge ID is the index of the source point.
|
|
// There are 4 consecutive indices generated for a single contour edge:
|
|
// 0th - 1st text edge (straight)
|
|
// 1th - 1st text face
|
|
// 2nd - 2nd text edge (diagonal)
|
|
// 3th - 2nd text face
|
|
// Type of intersecting element from extruded shape( 3d )
|
|
// NOTE: type must be storable to 3bit -> max value is 7
|
|
enum class Type: unsigned char {
|
|
edge_1 = 0,
|
|
face_1 = 1,
|
|
edge_2 = 2,
|
|
face_2 = 3,
|
|
undefined = 4
|
|
};
|
|
|
|
IntersectingElement &set_type(Type t)
|
|
{
|
|
attr = static_cast<unsigned char>(
|
|
attr + (int) t - (int) get_type());
|
|
return *this;
|
|
}
|
|
void set_is_first(){ attr += 8; }
|
|
void set_is_last(){ attr += 16; }
|
|
Type get_type() const { return static_cast<Type>(attr % 8);}
|
|
bool is_first() const { return 8 <= attr && attr < 16; }
|
|
bool is_last() const { return attr >= 16; }
|
|
};
|
|
|
|
// stored in model made by shape
|
|
using EdgeShapeMap = CutMesh::Property_map<EI, IntersectingElement>;
|
|
using FaceShapeMap = CutMesh::Property_map<FI, IntersectingElement>;
|
|
|
|
// stored in surface source - pointer to EdgeShapeMap | FaceShapeMap
|
|
using VertexShapeMap = CutMesh::Property_map<VI, const IntersectingElement *>;
|
|
|
|
// stored in model made by shape
|
|
const std::string edge_shape_map_name = "e:IntersectingElement";
|
|
const std::string face_shape_map_name = "f:IntersectingElement";
|
|
|
|
// stored in surface source
|
|
const std::string vert_shape_map_name = "v:IntersectingElement";
|
|
|
|
/// <summary>
|
|
/// Flag for faces in CGAL mesh
|
|
/// </summary>
|
|
enum class FaceType {
|
|
// face inside of the cutted shape
|
|
inside,
|
|
// face outside of the cutted shape
|
|
outside,
|
|
// face without constrained edge (In or Out)
|
|
not_constrained,
|
|
|
|
// Helper flag that inside was processed
|
|
inside_processed
|
|
};
|
|
using FaceTypeMap = CutMesh::Property_map<FI, FaceType>;
|
|
const std::string face_type_map_name = "f:side";
|
|
|
|
// Conversion one vertex index to another
|
|
using CvtVI2VI = CutMesh::Property_map<VI, VI>;
|
|
// Each Patch track outline vertex conversion to tource model
|
|
const std::string patch_source_name = "v:patch_source";
|
|
|
|
// For VI that should be reduced, contain VI to use instead of reduced
|
|
// Other VI are invalid
|
|
using ReductionMap = CvtVI2VI;
|
|
const std::string vertex_reduction_map_name = "v:reduction";
|
|
|
|
// A property map containing the constrained-or-not status of each edge
|
|
using EdgeBoolMap = CutMesh::Property_map<EI, bool>;
|
|
const std::string is_constrained_edge_name = "e:is_constrained";
|
|
|
|
/// <summary>
|
|
/// Create map to reduce unnecesary triangles,
|
|
/// Triangles are made by divided quad to two triangles
|
|
/// on side of cutting shape mesh
|
|
/// Note: also use from mesh (have to be created)
|
|
/// face_type_map .. Type of shape inside / outside
|
|
/// vert_shape_map .. Source of outline vertex
|
|
/// </summary>
|
|
/// <param name="reduction_map">Reduction map from vertex to vertex,
|
|
/// when key == value than no reduction</param>
|
|
/// <param name="faces">Faces of one </param>
|
|
/// <param name="mesh">Input object</param>
|
|
void create_reduce_map(ReductionMap &reduction_map, const CutMesh &meshes);
|
|
|
|
// Patch made by Cut area of interest from model
|
|
// connected faces(triangles) and outlines(halfEdges) for one surface cut
|
|
using CutAOI = std::pair<std::vector<FI>, std::vector<HI>>;
|
|
// vector of Cutted Area of interest cutted from one CGAL model
|
|
using CutAOIs = std::vector<CutAOI>;
|
|
// vector of CutAOIs for each model
|
|
using VCutAOIs = std::vector<CutAOIs>;
|
|
|
|
/// <summary>
|
|
/// Create AOIs(area of interest) on model surface
|
|
/// </summary>
|
|
/// <param name="cgal_model">Input model converted to CGAL
|
|
/// NOTE: will be extended by corefine edge </param>
|
|
/// <param name="shapes">2d contours</param>
|
|
/// <param name="cgal_shape">[const]Model made by shapes
|
|
/// NOTE: Can't be definde as const because of corefine function input definition,
|
|
/// but it is.</param>
|
|
/// <param name="projection_ratio">Wanted projection distance</param>
|
|
/// <param name="s2i">Convert index to shape point from ExPolygons</param>
|
|
/// <returns>Patches from model surface</returns>
|
|
CutAOIs cut_from_model(CutMesh &cgal_model,
|
|
const ExPolygons &shapes,
|
|
/*const*/ CutMesh &cgal_shape,
|
|
float projection_ratio,
|
|
const ExPolygonsIndices &s2i);
|
|
|
|
using Loop = std::vector<VI>;
|
|
using Loops = std::vector<Loop>;
|
|
|
|
/// <summary>
|
|
/// Create closed loops of contour vertices created from open half edges
|
|
/// </summary>
|
|
/// <param name="outlines">Unsorted half edges</param>
|
|
/// <param name="mesh">Source mesh for half edges</param>
|
|
/// <returns>Closed loops</returns>
|
|
Loops create_loops(const std::vector<HI> &outlines, const CutMesh &mesh);
|
|
|
|
// To track during diff_models,
|
|
// what was cutted off, from CutAOI
|
|
struct SurfacePatch
|
|
{
|
|
// converted cut to CGAL mesh
|
|
// Mesh is reduced.
|
|
// (do not contain divided triangles on contour - created by side Quad)
|
|
CutMesh mesh;
|
|
// CvtVI2VI cvt = mesh.property_map<VI, VI>(patch_source_name);
|
|
// Conversion VI from this patch to source VI(model) is stored in mesh property
|
|
|
|
// Outlines - converted CutAOI.second (half edges)
|
|
// to loops (vertex indicies) by function create_loops
|
|
Loops loops;
|
|
|
|
// bounding box of mesh
|
|
BoundingBoxf3 bb;
|
|
|
|
//// Data needed to find best projection distances
|
|
// index of source model in models
|
|
size_t model_id;
|
|
// index of source CutAOI
|
|
size_t aoi_id;
|
|
// index of shape from ExPolygons
|
|
size_t shape_id = 0;
|
|
|
|
// flag that this patch contain whole CutAOI
|
|
bool is_whole_aoi = true;
|
|
};
|
|
using SurfacePatches = std::vector<SurfacePatch>;
|
|
|
|
struct ModelCutId
|
|
{
|
|
// index of model
|
|
uint32_t model_index;
|
|
// index of cut inside model
|
|
uint32_t cut_index;
|
|
};
|
|
|
|
/// <summary>
|
|
/// Keep conversion from VCutAOIs to Index and vice versa
|
|
/// Model_index .. contour(or hole) poin from ExPolygons
|
|
/// Index .. continous number
|
|
/// </summary>
|
|
class ModelCut2index
|
|
{
|
|
std::vector<uint32_t> m_offsets;
|
|
// for check range of index
|
|
uint32_t m_count;
|
|
|
|
public:
|
|
ModelCut2index(const VCutAOIs &cuts);
|
|
uint32_t calc_index(const ModelCutId &id) const;
|
|
ModelCutId calc_id(uint32_t index) const;
|
|
uint32_t get_count() const { return m_count; };
|
|
const std::vector<uint32_t> &get_offsets() const { return m_offsets; }
|
|
};
|
|
|
|
/// <summary>
|
|
/// Differenciate other models
|
|
/// </summary>
|
|
/// <param name="cuts">Patches from meshes</param>
|
|
/// <param name="cut_models">Source points for Cutted AOIs
|
|
/// NOTE: Create Reduction map as mesh property - clean on end</param>
|
|
/// <param name="models">Original models without cut modifications
|
|
/// used for differenciation
|
|
/// NOTE: Clip function modify Mesh</param>
|
|
/// <param name="projection">Define projection direction</param>
|
|
/// <returns>Cuts differenciate by models - Patch</returns>
|
|
SurfacePatches diff_models(VCutAOIs &cuts,
|
|
/*const*/ CutMeshes &cut_models,
|
|
/*const*/ CutMeshes &models,
|
|
const Project3d &projection);
|
|
|
|
/// <summary>
|
|
/// Checking whether patch is uninterrupted cover of whole expolygon it belongs.
|
|
/// </summary>
|
|
/// <param name="cutAOI">Part of surface to check</param>
|
|
/// <param name="shape">Source shape</param>
|
|
/// <param name="mesh">Source of cut</param>
|
|
/// <returns>True when cover whole expolygon otherwise false</returns>
|
|
bool is_over_whole_expoly(const CutAOI &cutAOI,
|
|
const ExPolygon &shape,
|
|
const CutMesh &mesh);
|
|
|
|
/// <summary>
|
|
/// Checking whether patch is uninterrupted cover of whole expolygon it belongs.
|
|
/// </summary>
|
|
/// <param name="patch">Part of surface to check</param>
|
|
/// <param name="shape">Source shape</param>
|
|
/// <returns>True when cover whole expolygon otherwise false</returns>
|
|
bool is_over_whole_expoly(const SurfacePatch &patch,
|
|
const ExPolygons &shapes,
|
|
const VCutAOIs &cutAOIs,
|
|
const CutMeshes &meshes);
|
|
/// <summary>
|
|
/// Unptoject points from outline loops of patch
|
|
/// </summary>
|
|
/// <param name="patch">Contain loops and vertices</param>
|
|
/// <param name="projection">Know how to project from 3d to 2d</param>
|
|
/// <param name="depth_range">Range of unprojected points x .. min, y .. max value</param>
|
|
/// <returns>Unprojected points in loops</returns>
|
|
Polygons unproject_loops(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range);
|
|
|
|
/// <summary>
|
|
/// Unproject points from loops and create expolygons
|
|
/// </summary>
|
|
/// <param name="patch">Patch to convert on expolygon</param>
|
|
/// <param name="projection">Convert 3d point to 2d</param>
|
|
/// <param name="depth_range">Range of unprojected points x .. min, y .. max value</param>
|
|
/// <returns>Expolygon represent patch in 2d</returns>
|
|
ExPolygon to_expoly(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range);
|
|
|
|
/// <summary>
|
|
/// To select surface near projection distance
|
|
/// </summary>
|
|
struct ProjectionDistance
|
|
{
|
|
// index of source model
|
|
uint32_t model_index = std::numeric_limits<uint32_t>::max();
|
|
|
|
// index of CutAOI
|
|
uint32_t aoi_index = std::numeric_limits<uint32_t>::max();
|
|
|
|
// index of Patch
|
|
uint32_t patch_index = std::numeric_limits<uint32_t>::max();
|
|
|
|
// signed distance to projection
|
|
float distance = std::numeric_limits<float>::max();
|
|
};
|
|
// addresed by ExPolygonsIndices
|
|
using ProjectionDistances = std::vector<ProjectionDistance>;
|
|
|
|
// each point in shapes has its ProjectionDistances
|
|
using VDistances = std::vector<ProjectionDistances>;
|
|
|
|
/// <summary>
|
|
/// Calculate distances for SurfacePatches outline points
|
|
/// NOTE:
|
|
/// each model has to have "vert_shape_map" .. Know source of new vertices
|
|
/// </summary>
|
|
/// <param name="patches">Part of surface</param>
|
|
/// <param name="models">Vertices position</param>
|
|
/// <param name="shapes_mesh">Mesh created by shapes</param>
|
|
/// <param name="count_shapes_points">Count of contour points in shapes</param>
|
|
/// <param name="projection_ratio">Define best distnace</param>
|
|
/// <returns>Projection distances of cutted shape points</returns>
|
|
VDistances calc_distances(const SurfacePatches &patches,
|
|
const CutMeshes &models,
|
|
const CutMesh &shapes_mesh,
|
|
size_t count_shapes_points,
|
|
float projection_ratio);
|
|
|
|
/// <summary>
|
|
/// Select distances in similar depth between expolygons
|
|
/// </summary>
|
|
/// <param name="distances">All distances - Vector distances for each shape point</param>
|
|
/// <param name="shapes">Vector of letters</param>
|
|
/// <param name="start">Pivot for start projection in 2d</param>
|
|
/// <param name="s2i">Convert index to addresss inside of shape</param>
|
|
/// <param name="patches">Cutted parts from surface</param>
|
|
/// <returns>Closest distance projection indexed by points in shapes(see s2i)</returns>
|
|
ProjectionDistances choose_best_distance(
|
|
const VDistances &distances,
|
|
const ExPolygons &shapes,
|
|
const Point &start,
|
|
const ExPolygonsIndices &s2i,
|
|
const SurfacePatches &patches);
|
|
|
|
/// <summary>
|
|
/// Create mask for patches
|
|
/// </summary>
|
|
/// <param name="best_distances">For each point selected closest distance</param>
|
|
/// <param name="patches">All patches</param>
|
|
/// <param name="shapes">All patches</param>
|
|
/// <returns>Mask of used patch</returns>
|
|
std::vector<bool> select_patches(const ProjectionDistances &best_distances,
|
|
const SurfacePatches &patches,
|
|
|
|
const ExPolygons &shapes,
|
|
const ExPolygonsIndices &s2i,
|
|
const VCutAOIs &cutAOIs,
|
|
const CutMeshes &meshes,
|
|
const Project &projection);
|
|
|
|
/// <summary>
|
|
/// Merge two surface cuts together
|
|
/// Added surface cut will be consumed
|
|
/// </summary>
|
|
/// <param name="sc">Surface cut to extend</param>
|
|
/// <param name="sc_add">Surface cut to consume</param>
|
|
void append(SurfaceCut &sc, SurfaceCut &&sc_add);
|
|
|
|
/// <summary>
|
|
/// Convert patch to indexed_triangle_set
|
|
/// </summary>
|
|
/// <param name="patch">Part of surface</param>
|
|
/// <returns>Converted patch</returns>
|
|
SurfaceCut patch2cut(SurfacePatch &patch);
|
|
|
|
/// <summary>
|
|
/// Merge masked patches to one surface cut
|
|
/// </summary>
|
|
/// <param name="patches">All patches
|
|
/// NOTE: Not const because One needs to add property for Convert indices</param>
|
|
/// <param name="mask">Mash for using patch</param>
|
|
/// <returns>Result surface cut</returns>
|
|
SurfaceCut merge_patches(/*const*/ SurfacePatches &patches,
|
|
const std::vector<bool> &mask);
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
void prepare_dir(const std::string &dir);
|
|
void initialize_store(const std::string &dir_to_clear);
|
|
/// <summary>
|
|
/// Debug purpose store of mesh with colored face by face type
|
|
/// </summary>
|
|
/// <param name="mesh">Input mesh, could add property color
|
|
/// NOTE: Not const because need to [optionaly] append color property map</param>
|
|
/// <param name="face_type_map">Color source</param>
|
|
/// <param name="file">File to store</param>
|
|
void store(const CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string &dir, bool is_filled = false);
|
|
void store(const ExPolygons &shapes, const std::string &svg_file);
|
|
void store(const CutMesh &mesh, const ReductionMap &reduction_map, const std::string &dir);
|
|
void store(const CutAOIs &aois, const CutMesh &mesh, const std::string &dir);
|
|
void store(const SurfacePatches &patches, const std::string &dir);
|
|
void store(const Vec3f &vertex, const Vec3f &normal, const std::string &file, float size = 2.f);
|
|
//void store(const ProjectionDistances &pds, const VCutAOIs &aois, const CutMeshes &meshes, const std::string &file, float width = 0.2f/* [in mm] */);
|
|
using Connection = std::pair<size_t, size_t>; using Connections = std::vector<Connection>;
|
|
void store(const ExPolygons &shapes, const std::vector<bool> &mask_distances, const Connections &connections, const std::string &file_svg);
|
|
void store(const SurfaceCut &cut, const std::string &file, const std::string &contour_dir);
|
|
void store(const std::vector<indexed_triangle_set> &models, const std::string &obj_filename);
|
|
void store(const std::vector<CutMesh>&models, const std::string &dir);
|
|
void store(const Emboss::IProjection &projection, const Point &point_to_project, float projection_ratio, const std::string &obj_filename);
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
} // namespace privat
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
#include "libslic3r/SVG.hpp"
|
|
#include <boost/log/trivial.hpp>
|
|
#include <filesystem>
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
SurfaceCut Slic3r::cut_surface(const ExPolygons &shapes,
|
|
const std::vector<indexed_triangle_set> &models,
|
|
const Emboss::IProjection &projection,
|
|
float projection_ratio)
|
|
{
|
|
assert(!models.empty());
|
|
assert(!shapes.empty());
|
|
if (models.empty() || shapes.empty() ) return {};
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
priv::initialize_store(DEBUG_OUTPUT_DIR);
|
|
priv::store(models, DEBUG_OUTPUT_DIR + "models_input.obj");
|
|
priv::store(shapes, DEBUG_OUTPUT_DIR + "shapes.svg");
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
// for filter out triangles out of bounding box
|
|
BoundingBox shapes_bb = get_extents(shapes);
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
priv::store(projection, shapes_bb.center(), projection_ratio, DEBUG_OUTPUT_DIR + "projection_center.obj");
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
// for filttrate opposite triangles and a little more
|
|
const float max_angle = 89.9f;
|
|
priv::CutMeshes cgal_models; // source for patch
|
|
priv::CutMeshes cgal_neg_models; // model used for differenciate patches
|
|
cgal_models.reserve(models.size());
|
|
for (const indexed_triangle_set &its : models) {
|
|
std::vector<bool> skip_indicies(its.indices.size(), {false});
|
|
priv::set_skip_for_out_of_aoi(skip_indicies, its, projection, shapes_bb);
|
|
|
|
// create model for differenciate cutted patches
|
|
bool flip = true;
|
|
cgal_neg_models.push_back(priv::to_cgal(its, skip_indicies, flip));
|
|
|
|
// cut out more than only opposit triangles
|
|
priv::set_skip_by_angle(skip_indicies, its, projection, max_angle);
|
|
cgal_models.push_back(priv::to_cgal(its, skip_indicies));
|
|
}
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
priv::store(cgal_models, DEBUG_OUTPUT_DIR + "model/");// model[0-N].off
|
|
priv::store(cgal_neg_models, DEBUG_OUTPUT_DIR + "model_neg/"); // model[0-N].off
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
priv::CutMesh cgal_shape = priv::to_cgal(shapes, projection);
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
CGAL::IO::write_OFF(DEBUG_OUTPUT_DIR + "shape.off", cgal_shape); // only debug
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
// create tool for convert index to shape Point adress and vice versa
|
|
ExPolygonsIndices s2i(shapes);
|
|
priv::VCutAOIs model_cuts;
|
|
// cut shape from each cgal model
|
|
for (priv::CutMesh &cgal_model : cgal_models) {
|
|
priv::CutAOIs cutAOIs = priv::cut_from_model(
|
|
cgal_model, shapes, cgal_shape, projection_ratio, s2i);
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
size_t index = &cgal_model - &cgal_models.front();
|
|
priv::store(cutAOIs, cgal_model, DEBUG_OUTPUT_DIR + "model_AOIs/" + std::to_string(index) + "/"); // only debug
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
model_cuts.push_back(std::move(cutAOIs));
|
|
}
|
|
|
|
priv::SurfacePatches patches = priv::diff_models(model_cuts, cgal_models, cgal_neg_models, projection);
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
priv::store(patches, DEBUG_OUTPUT_DIR + "patches/");
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
if (patches.empty()) return {};
|
|
|
|
// fix - convert shape_point_id to expolygon index
|
|
// save 1 param(s2i) from diff_models call
|
|
for (priv::SurfacePatch &patch : patches)
|
|
patch.shape_id = s2i.cvt(patch.shape_id).expolygons_index;
|
|
|
|
// calc distance to projection for all outline points of cutAOI(shape)
|
|
// it is used for distiguish the top one
|
|
uint32_t shapes_points = s2i.get_count();
|
|
// for each point collect all projection distances
|
|
priv::VDistances distances = priv::calc_distances(patches, cgal_models, cgal_shape, shapes_points, projection_ratio);
|
|
|
|
Point start = shapes_bb.center(); // only align center
|
|
|
|
// Use only outline points
|
|
// for each point select best projection
|
|
priv::ProjectionDistances best_projection = priv::choose_best_distance(distances, shapes, start, s2i, patches);
|
|
std::vector<bool> use_patch = priv::select_patches(best_projection, patches,
|
|
shapes, s2i,model_cuts, cgal_models, projection);
|
|
SurfaceCut result = merge_patches(patches, use_patch);
|
|
//*/
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
priv::store(result, DEBUG_OUTPUT_DIR + "result.obj", DEBUG_OUTPUT_DIR + "result_contours/");
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
return result;
|
|
}
|
|
|
|
indexed_triangle_set Slic3r::cut2model(const SurfaceCut &cut,
|
|
const Emboss::IProject3d &projection)
|
|
{
|
|
assert(!cut.empty());
|
|
size_t count_vertices = cut.vertices.size() * 2;
|
|
size_t count_indices = cut.indices.size() * 2;
|
|
|
|
// indices from from zig zag
|
|
for (const auto &c : cut.contours) {
|
|
assert(!c.empty());
|
|
count_indices += c.size() * 2;
|
|
}
|
|
|
|
indexed_triangle_set result;
|
|
result.vertices.reserve(count_vertices);
|
|
result.indices.reserve(count_indices);
|
|
|
|
// front
|
|
result.vertices.insert(result.vertices.end(),
|
|
cut.vertices.begin(), cut.vertices.end());
|
|
result.indices.insert(result.indices.end(),
|
|
cut.indices.begin(), cut.indices.end());
|
|
|
|
// back
|
|
for (const Vec3f &v : cut.vertices) {
|
|
Vec3d vd = v.cast<double>();
|
|
Vec3d vd2 = projection.project(vd);
|
|
result.vertices.push_back(vd2.cast<float>());
|
|
}
|
|
|
|
size_t back_offset = cut.vertices.size();
|
|
for (const auto &i : cut.indices) {
|
|
// check range of indices in cut
|
|
assert(i.x() + back_offset < result.vertices.size());
|
|
assert(i.y() + back_offset < result.vertices.size());
|
|
assert(i.z() + back_offset < result.vertices.size());
|
|
assert(i.x() >= 0 && i.x() < cut.vertices.size());
|
|
assert(i.y() >= 0 && i.y() < cut.vertices.size());
|
|
assert(i.z() >= 0 && i.z() < cut.vertices.size());
|
|
// Y and Z is swapped CCW triangles for back side
|
|
result.indices.emplace_back(i.x() + back_offset,
|
|
i.z() + back_offset,
|
|
i.y() + back_offset);
|
|
}
|
|
|
|
// zig zag indices
|
|
for (const auto &contour : cut.contours) {
|
|
size_t prev_front_index = contour.back();
|
|
size_t prev_back_index = back_offset + prev_front_index;
|
|
for (size_t front_index : contour) {
|
|
assert(front_index < cut.vertices.size());
|
|
size_t back_index = back_offset + front_index;
|
|
result.indices.emplace_back(front_index, prev_front_index, back_index);
|
|
result.indices.emplace_back(prev_front_index, prev_back_index, back_index);
|
|
prev_front_index = front_index;
|
|
prev_back_index = back_index;
|
|
}
|
|
}
|
|
|
|
assert(count_vertices == result.vertices.size());
|
|
assert(count_indices == result.indices.size());
|
|
return result;
|
|
}
|
|
|
|
// set_skip_for_out_of_aoi helping functions
|
|
namespace priv {
|
|
// define plane
|
|
using PointNormal = std::pair<Vec3d, Vec3d>;
|
|
using PointNormals = std::array<PointNormal, 4>;
|
|
|
|
/// <summary>
|
|
/// Check
|
|
/// </summary>
|
|
/// <param name="side"></param>
|
|
/// <param name="v"></param>
|
|
/// <param name="point_normals"></param>
|
|
/// <returns></returns>
|
|
bool is_out_of(const Vec3d &v, const PointNormal &point_normal);
|
|
|
|
using IsOnSides = std::vector<std::array<bool, 4>>;
|
|
/// <summary>
|
|
/// Check if triangle t has all vertices out of any plane
|
|
/// </summary>
|
|
/// <param name="t">Triangle</param>
|
|
/// <param name="is_on_sides">Flag is vertex index out of plane</param>
|
|
/// <returns>True when triangle is out of one of plane</returns>
|
|
bool is_all_on_one_side(const Vec3i &t, const IsOnSides& is_on_sides);
|
|
|
|
} // namespace priv
|
|
|
|
bool priv::is_out_of(const Vec3d &v, const PointNormal &point_normal)
|
|
{
|
|
const Vec3d& p = point_normal.first;
|
|
const Vec3d& n = point_normal.second;
|
|
double signed_distance = (v - p).dot(n);
|
|
return signed_distance > 1e-5;
|
|
};
|
|
|
|
bool priv::is_all_on_one_side(const Vec3i &t, const IsOnSides& is_on_sides) {
|
|
for (size_t side = 0; side < 4; side++) {
|
|
bool result = true;
|
|
for (auto vi : t) {
|
|
if (!is_on_sides[vi][side]) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
if (result) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void priv::set_skip_for_out_of_aoi(std::vector<bool> &skip_indicies,
|
|
const indexed_triangle_set &its,
|
|
const Project &projection,
|
|
const BoundingBox &shapes_bb)
|
|
{
|
|
assert(skip_indicies.size() == its.indices.size());
|
|
// 1`*----* 2`
|
|
// / 2 /|
|
|
// 1 *----* |
|
|
// | | * 3`
|
|
// | |/
|
|
// 0 *----* 3
|
|
//////////////////
|
|
std::array<std::pair<Vec3d, Vec3d>, 4> bb;
|
|
int index = 0;
|
|
for (Point v :
|
|
{shapes_bb.min, Point{shapes_bb.min.x(), shapes_bb.max.y()},
|
|
shapes_bb.max, Point{shapes_bb.max.x(), shapes_bb.min.y()}})
|
|
bb[index++] = projection.create_front_back(v);
|
|
|
|
// define planes to test
|
|
// 0 .. under
|
|
// 1 .. left
|
|
// 2 .. above
|
|
// 3 .. right
|
|
size_t prev_i = 3;
|
|
// plane is defined by point and normal
|
|
PointNormals point_normals;
|
|
for (size_t i = 0; i < 4; i++) {
|
|
const Vec3d &p1 = bb[i].first;
|
|
const Vec3d &p2 = bb[i].second;
|
|
const Vec3d &p3 = bb[prev_i].first;
|
|
prev_i = i;
|
|
|
|
Vec3d v1 = p2 - p1;
|
|
v1.normalize();
|
|
Vec3d v2 = p3 - p1;
|
|
v2.normalize();
|
|
|
|
Vec3d normal = v2.cross(v1);
|
|
normal.normalize();
|
|
|
|
point_normals[i] = {p1, normal};
|
|
}
|
|
// same meaning as point normal
|
|
IsOnSides is_on_sides(its.vertices.size(), {false,false,false,false});
|
|
|
|
// inspect all vertices when it is out of bounding box
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.vertices.size()),
|
|
[&its, &point_normals, &is_on_sides](const tbb::blocked_range<size_t> &range) {
|
|
for (size_t i = range.begin(); i < range.end(); ++i) {
|
|
Vec3d v = its.vertices[i].cast<double>();
|
|
// under + above
|
|
for (int side : {0, 2}) {
|
|
if (is_out_of(v, point_normals[side])) {
|
|
is_on_sides[i][side] = true;
|
|
// when it is under it can't be above
|
|
break;
|
|
}
|
|
}
|
|
// left + right
|
|
for (int side : {1, 3}) {
|
|
if (is_out_of(v, point_normals[side])) {
|
|
is_on_sides[i][side] = true;
|
|
// when it is on left side it can't be on right
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}); // END parallel for
|
|
|
|
// inspect all triangles, when it is out of bounding box
|
|
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.indices.size()),
|
|
[&its, &is_on_sides, &skip_indicies](const tbb::blocked_range<size_t> &range) {
|
|
for (size_t i = range.begin(); i < range.end(); ++i) {
|
|
if (is_all_on_one_side(its.indices[i], is_on_sides))
|
|
skip_indicies[i] = true;
|
|
}
|
|
}); // END parallel for
|
|
}
|
|
|
|
indexed_triangle_set Slic3r::its_mask(const indexed_triangle_set &its,
|
|
const std::vector<bool> &mask)
|
|
{
|
|
if (its.indices.size() != mask.size()) {
|
|
assert(false);
|
|
return {};
|
|
}
|
|
|
|
std::vector<uint32_t> cvt_vetices(its.vertices.size(), {std::numeric_limits<uint32_t>::max()});
|
|
size_t vertices_count = 0;
|
|
size_t faces_count = 0;
|
|
for (const auto &t : its.indices) {
|
|
size_t index = &t - &its.indices.front();
|
|
if (!mask[index]) continue;
|
|
++faces_count;
|
|
for (const auto vi : t) {
|
|
uint32_t &cvt = cvt_vetices[vi];
|
|
if (cvt == std::numeric_limits<uint32_t>::max())
|
|
cvt = vertices_count++;
|
|
}
|
|
}
|
|
if (faces_count == 0) return {};
|
|
|
|
indexed_triangle_set result;
|
|
result.indices.reserve(faces_count);
|
|
result.vertices = std::vector<Vec3f>(vertices_count);
|
|
for (size_t i = 0; i < its.vertices.size(); ++i) {
|
|
uint32_t index = cvt_vetices[i];
|
|
if (index == std::numeric_limits<uint32_t>::max()) continue;
|
|
result.vertices[index] = its.vertices[i];
|
|
}
|
|
|
|
for (const stl_triangle_vertex_indices &f : its.indices)
|
|
if (mask[&f - &its.indices.front()])
|
|
result.indices.push_back(stl_triangle_vertex_indices(
|
|
cvt_vetices[f[0]], cvt_vetices[f[1]], cvt_vetices[f[2]]));
|
|
|
|
return result;
|
|
}
|
|
|
|
indexed_triangle_set Slic3r::its_cut_AoI(const indexed_triangle_set &its,
|
|
const BoundingBox &bb,
|
|
const Emboss::IProjection &projection)
|
|
{
|
|
std::vector<bool> skip_indicies(its.indices.size(), false);
|
|
priv::set_skip_for_out_of_aoi(skip_indicies, its, projection, bb);
|
|
// invert values in vector of bool
|
|
skip_indicies.flip();
|
|
return its_mask(its, skip_indicies);
|
|
}
|
|
|
|
void priv::set_skip_by_angle(std::vector<bool> &skip_indicies,
|
|
const indexed_triangle_set &its,
|
|
const Project3d &projection,
|
|
double max_angle)
|
|
{
|
|
assert(max_angle < 90. && max_angle > 89.);
|
|
assert(skip_indicies.size() == its.indices.size());
|
|
float threshold = static_cast<float>(cos(max_angle / 180. * M_PI));
|
|
for (const stl_triangle_vertex_indices& face : its.indices) {
|
|
size_t index = &face - &its.indices.front();
|
|
if (skip_indicies[index]) continue;
|
|
Vec3f n = its_face_normal(its, face);
|
|
const Vec3f& v = its.vertices[face[0]];
|
|
const Vec3d vd = v.cast<double>();
|
|
// Improve: For Orthogonal Projection it is same for each vertex
|
|
Vec3d projectedd = projection.project(vd);
|
|
Vec3f projected = projectedd.cast<float>();
|
|
Vec3f project_dir = projected - v;
|
|
project_dir.normalize();
|
|
float cos_alpha = project_dir.dot(n);
|
|
if (cos_alpha > threshold) continue;
|
|
skip_indicies[index] = true;
|
|
}
|
|
}
|
|
|
|
priv::CutMesh priv::to_cgal(const indexed_triangle_set &its,
|
|
const std::vector<bool> &skip_indicies,
|
|
bool flip)
|
|
{
|
|
const std::vector<stl_vertex> &vertices = its.vertices;
|
|
const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
|
|
|
|
std::vector<bool> use_vetices(vertices.size(), {false});
|
|
|
|
size_t vertices_count = 0;
|
|
size_t faces_count = 0;
|
|
size_t edges_count = 0;
|
|
|
|
for (const auto &t : indices) {
|
|
size_t index = &t - &indices.front();
|
|
if (skip_indicies[index]) continue;
|
|
++faces_count;
|
|
size_t count_used_vertices = 0;
|
|
for (const auto vi : t) {
|
|
if (!use_vetices[vi]) {
|
|
++vertices_count;
|
|
use_vetices[vi] = true;
|
|
} else {
|
|
++count_used_vertices;
|
|
}
|
|
}
|
|
switch (count_used_vertices) {
|
|
case 3: break; // all edges are already counted
|
|
case 2: edges_count += 2; break;
|
|
case 1:
|
|
case 0: edges_count += 3; break;
|
|
default: assert(false);
|
|
}
|
|
}
|
|
assert(vertices_count <= vertices.size());
|
|
assert(edges_count <= (indices.size() * 3));
|
|
assert(faces_count <= indices.size());
|
|
|
|
CutMesh result;
|
|
result.reserve(vertices_count, edges_count, faces_count);
|
|
|
|
std::vector<VI> to_filtrated_vertices_index(vertices.size());
|
|
size_t filtrated_vertices_index = 0;
|
|
for (size_t i = 0; i < vertices.size(); ++i)
|
|
if (use_vetices[i]) {
|
|
to_filtrated_vertices_index[i] = VI(filtrated_vertices_index);
|
|
++filtrated_vertices_index;
|
|
}
|
|
|
|
for (const stl_vertex& v : vertices) {
|
|
if (!use_vetices[&v - &vertices.front()]) continue;
|
|
result.add_vertex(CutMesh::Point{v.x(), v.y(), v.z()});
|
|
}
|
|
|
|
if (!flip) {
|
|
for (const stl_triangle_vertex_indices &f : indices) {
|
|
if (skip_indicies[&f - &indices.front()]) continue;
|
|
result.add_face(to_filtrated_vertices_index[f[0]],
|
|
to_filtrated_vertices_index[f[1]],
|
|
to_filtrated_vertices_index[f[2]]);
|
|
}
|
|
} else {
|
|
for (const stl_triangle_vertex_indices &f : indices) {
|
|
if (skip_indicies[&f - &indices.front()]) continue;
|
|
result.add_face(to_filtrated_vertices_index[f[2]],
|
|
to_filtrated_vertices_index[f[1]],
|
|
to_filtrated_vertices_index[f[0]]);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool priv::exist_duplicit_vertex(const CutMesh &mesh) {
|
|
std::vector<Vec3d> points;
|
|
points.reserve(mesh.vertices().size());
|
|
// copy points
|
|
for (VI vi : mesh.vertices()) {
|
|
const P3 &p = mesh.point(vi);
|
|
points.emplace_back(p.x(), p.y(), p.z());
|
|
}
|
|
std::sort(points.begin(), points.end(), [](const Vec3d &v1, const Vec3d &v2) {
|
|
return v1.x() < v2.x() ||
|
|
(v1.x() == v2.x() &&
|
|
(v1.y() < v2.y() ||
|
|
(v1.y() == v2.y() &&
|
|
v1.z() < v2.z())));
|
|
});
|
|
// find first duplicit
|
|
auto it = std::adjacent_find(points.begin(), points.end());
|
|
return it != points.end();
|
|
}
|
|
|
|
priv::CutMesh priv::to_cgal(const ExPolygons &shapes,
|
|
const Project &projection)
|
|
{
|
|
if (shapes.empty()) return {};
|
|
|
|
CutMesh result;
|
|
EdgeShapeMap edge_shape_map = result.add_property_map<EI, IntersectingElement>(edge_shape_map_name).first;
|
|
FaceShapeMap face_shape_map = result.add_property_map<FI, IntersectingElement>(face_shape_map_name).first;
|
|
|
|
std::vector<VI> indices;
|
|
auto insert_contour = [&projection, &indices, &result,
|
|
&edge_shape_map, &face_shape_map]
|
|
(const Polygon &polygon) {
|
|
indices.clear();
|
|
indices.reserve(polygon.points.size() * 2);
|
|
size_t num_vertices_old = result.number_of_vertices();
|
|
for (const Point &polygon_point : polygon.points) {
|
|
auto [front, back] = projection.create_front_back(polygon_point);
|
|
P3 v_front{front.x(), front.y(), front.z()};
|
|
VI vi1 = result.add_vertex(v_front);
|
|
assert(vi1.idx() == (indices.size() + num_vertices_old));
|
|
indices.push_back(vi1);
|
|
|
|
P3 v_back{back.x(), back.y(), back.z()};
|
|
VI vi2 = result.add_vertex(v_back);
|
|
assert(vi2.idx() == (indices.size() + num_vertices_old));
|
|
indices.push_back(vi2);
|
|
}
|
|
|
|
auto find_edge = [&result](FI fi, VI from, VI to) {
|
|
HI hi = result.halfedge(fi);
|
|
for (; result.target(hi) != to; hi = result.next(hi));
|
|
assert(result.source(hi) == from);
|
|
assert(result.target(hi) == to);
|
|
return result.edge(hi);
|
|
};
|
|
|
|
uint32_t contour_index = static_cast<uint32_t>(num_vertices_old / 2);
|
|
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
|
|
bool is_first = i == 0;
|
|
bool is_last = size_t(i + 2) >= indices.size();
|
|
int32_t j = is_last ? 0 : (i + 2);
|
|
|
|
FI fi1 = result.add_face(indices[i], indices[j], indices[i + 1]);
|
|
EI ei1 = find_edge(fi1, indices[i + 1], indices[i]);
|
|
EI ei2 = find_edge(fi1, indices[j], indices[i + 1]);
|
|
FI fi2 = result.add_face(indices[j], indices[j + 1], indices[i + 1]);
|
|
IntersectingElement element {contour_index, (unsigned char)IntersectingElement::Type::undefined};
|
|
if (is_first) element.set_is_first();
|
|
if (is_last) element.set_is_last();
|
|
edge_shape_map[ei1] = element.set_type(IntersectingElement::Type::edge_1);
|
|
face_shape_map[fi1] = element.set_type(IntersectingElement::Type::face_1);
|
|
edge_shape_map[ei2] = element.set_type(IntersectingElement::Type::edge_2);
|
|
face_shape_map[fi2] = element.set_type(IntersectingElement::Type::face_2);
|
|
++contour_index;
|
|
}
|
|
};
|
|
|
|
size_t count_point = count_points(shapes);
|
|
result.reserve(result.number_of_vertices() + 2 * count_point,
|
|
result.number_of_edges() + 4 * count_point,
|
|
result.number_of_faces() + 2 * count_point);
|
|
|
|
// Identify polygon
|
|
for (const ExPolygon &shape : shapes) {
|
|
insert_contour(shape.contour);
|
|
for (const Polygon &hole : shape.holes)
|
|
insert_contour(hole);
|
|
}
|
|
assert(!exist_duplicit_vertex(result));
|
|
return result;
|
|
}
|
|
|
|
priv::ModelCut2index::ModelCut2index(const VCutAOIs &cuts)
|
|
{
|
|
// prepare offsets
|
|
m_offsets.reserve(cuts.size());
|
|
uint32_t offset = 0;
|
|
for (const CutAOIs &model_cuts: cuts) {
|
|
m_offsets.push_back(offset);
|
|
offset += model_cuts.size();
|
|
}
|
|
m_count = offset;
|
|
}
|
|
|
|
uint32_t priv::ModelCut2index::calc_index(const ModelCutId &id) const
|
|
{
|
|
assert(id.model_index < m_offsets.size());
|
|
uint32_t offset = m_offsets[id.model_index];
|
|
uint32_t res = offset + id.cut_index;
|
|
assert(((id.model_index+1) < m_offsets.size() && res < m_offsets[id.model_index+1]) ||
|
|
((id.model_index+1) == m_offsets.size() && res < m_count));
|
|
return res;
|
|
}
|
|
|
|
priv::ModelCutId priv::ModelCut2index::calc_id(uint32_t index) const
|
|
{
|
|
assert(index < m_count);
|
|
ModelCutId result{0,0};
|
|
// find shape index
|
|
for (size_t model_index = 1; model_index < m_offsets.size(); ++model_index) {
|
|
if (m_offsets[model_index] > index) break;
|
|
result.model_index = model_index;
|
|
}
|
|
result.cut_index = index - m_offsets[result.model_index];
|
|
return result;
|
|
}
|
|
|
|
// cut_from_model help functions
|
|
namespace priv {
|
|
|
|
/// <summary>
|
|
/// Track source of intersection
|
|
/// Help for anotate inner and outer faces
|
|
/// </summary>
|
|
struct Visitor {
|
|
const CutMesh &object;
|
|
const CutMesh &shape;
|
|
|
|
// Properties of the shape mesh:
|
|
EdgeShapeMap edge_shape_map;
|
|
FaceShapeMap face_shape_map;
|
|
|
|
// Properties of the object mesh.
|
|
VertexShapeMap vert_shape_map;
|
|
|
|
// check for anomalities
|
|
bool* is_valid;
|
|
|
|
// keep source of intersection for each intersection
|
|
// used to copy data into vert_shape_map
|
|
std::vector<const IntersectingElement*> intersections;
|
|
|
|
/// <summary>
|
|
/// Called when a new intersection point is detected.
|
|
/// The intersection is detected using a face of tm_f and an edge of tm_e.
|
|
/// Intersecting an edge hh_edge from tm_f with a face h_e of tm_e.
|
|
/// https://doc.cgal.org/latest/Polygon_mesh_processing/classPMPCorefinementVisitor.html#a00ee0ca85db535a48726a92414acda7f
|
|
/// </summary>
|
|
/// <param name="i_id">The id of the intersection point, starting at 0. Ids are consecutive.</param>
|
|
/// <param name="sdim">Dimension of a simplex part of face(h_e) that is intersected by edge(h_f):
|
|
/// 0 for vertex: target(h_e)
|
|
/// 1 for edge: h_e
|
|
/// 2 for the interior of face: face(h_e) </param>
|
|
/// <param name="h_f">
|
|
/// A halfedge from tm_f indicating the simplex intersected:
|
|
/// if sdim==0 the target of h_f is the intersection point,
|
|
/// if sdim==1 the edge of h_f contains the intersection point in its interior,
|
|
/// if sdim==2 the face of h_f contains the intersection point in its interior.
|
|
/// @Vojta: Edge of tm_f, see is_target_coplanar & is_source_coplanar whether any vertex of h_f is coplanar with face(h_e).
|
|
/// </param>
|
|
/// <param name="h_e">A halfedge from tm_e
|
|
/// @Vojta: Vertex, halfedge or face of tm_e intersected by h_f, see comment at sdim.
|
|
/// </param>
|
|
/// <param name="tm_f">Mesh containing h_f</param>
|
|
/// <param name="tm_e">Mesh containing h_e</param>
|
|
/// <param name="is_target_coplanar">True if the target of h_e is the intersection point
|
|
/// @Vojta: source(h_f) is coplanar with face(made by h_e).</param>
|
|
/// <param name="is_source_coplanar">True if the source of h_e is the intersection point
|
|
/// @Vojta: target(h_f) is coplanar with face(h_e).</param>
|
|
void intersection_point_detected(std::size_t i_id,
|
|
int sdim,
|
|
HI h_f,
|
|
HI h_e,
|
|
const CutMesh &tm_f,
|
|
const CutMesh &tm_e,
|
|
bool is_target_coplanar,
|
|
bool is_source_coplanar);
|
|
|
|
/// <summary>
|
|
/// Called when a new vertex is added in tm (either an edge split or a vertex inserted in the interior of a face).
|
|
/// Fill vertex_shape_map by intersections
|
|
/// </summary>
|
|
/// <param name="i_id">Order number of intersection point</param>
|
|
/// <param name="v">New added vertex</param>
|
|
/// <param name="tm">Affected mesh</param>
|
|
void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm);
|
|
|
|
// Not used visitor functions
|
|
void before_subface_creations(FI /* f_old */, CutMesh &/* mesh */){}
|
|
void after_subface_created(FI /* f_new */, CutMesh &/* mesh */) {}
|
|
void after_subface_creations(CutMesh&) {}
|
|
void before_subface_created(CutMesh&) {}
|
|
void before_edge_split(HI /* h */, CutMesh& /* tm */) {}
|
|
void edge_split(HI /* hnew */, CutMesh& /* tm */) {}
|
|
void after_edge_split() {}
|
|
void add_retriangulation_edge(HI /* h */, CutMesh& /* tm */) {}
|
|
};
|
|
|
|
/// <summary>
|
|
/// Distiquish face type for half edge
|
|
/// </summary>
|
|
/// <param name="hi">Define face</param>
|
|
/// <param name="mesh">Mesh to process</param>
|
|
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
|
|
/// <param name="vertex_shape_map">Keep information about source of created vertex</param>
|
|
/// <param name="shape2index"></param>
|
|
/// <param name="shape2index">Convert index to shape point from ExPolygons</param>
|
|
/// <returns>Face type defined by hi</returns>
|
|
bool is_face_inside(HI hi,
|
|
const CutMesh &mesh,
|
|
const CutMesh &shape_mesh,
|
|
const VertexShapeMap &vertex_shape_map,
|
|
const ExPolygonsIndices &shape2index);
|
|
|
|
/// <summary>
|
|
/// Face with constrained edge are inside/outside by type of intersection
|
|
/// Other set to not_constrained(still it could be inside/outside)
|
|
/// </summary>
|
|
/// <param name="face_type_map">[Output] property map with type of faces</param>
|
|
/// <param name="mesh">Mesh to process</param>
|
|
/// <param name="vertex_shape_map">Keep information about source of created vertex</param>
|
|
/// <param name="ecm">Dynamic Edge Constrained Map of bool</param>
|
|
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
|
|
/// <param name="shape2index">Convert index to shape point from ExPolygons</param>
|
|
void set_face_type(FaceTypeMap &face_type_map,
|
|
const CutMesh &mesh,
|
|
const VertexShapeMap &vertex_shape_map,
|
|
const EdgeBoolMap &ecm,
|
|
const CutMesh &shape_mesh,
|
|
const ExPolygonsIndices &shape2index);
|
|
|
|
/// <summary>
|
|
/// Change FaceType from not_constrained to inside
|
|
/// For neighbor(or neighbor of neighbor of ...) of inside triangles.
|
|
/// Process only not_constrained triangles
|
|
/// </summary>
|
|
/// <param name="mesh">Corefined mesh</param>
|
|
/// <param name="face_type_map">In/Out map with faces type</param>
|
|
void flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map);
|
|
|
|
/// <summary>
|
|
/// Collect connected inside faces
|
|
/// Collect outline half edges
|
|
/// </summary>
|
|
/// <param name="process">Queue of face to process - find connected</param>
|
|
/// <param name="faces">[Output] collected Face indices from mesh</param>
|
|
/// <param name="outlines">[Output] collected Halfedge indices from mesh</param>
|
|
/// <param name="face_type_map">Use flag inside / outside
|
|
/// NOTE: Modify in function: inside -> inside_processed</param>
|
|
/// <param name="mesh">mesh to process</param>
|
|
void collect_surface_data(std::queue<FI> &process,
|
|
std::vector<FI> &faces,
|
|
std::vector<HI> &outlines,
|
|
FaceTypeMap &face_type_map,
|
|
const CutMesh &mesh);
|
|
|
|
/// <summary>
|
|
/// Create areas from mesh surface
|
|
/// </summary>
|
|
/// <param name="mesh">Model</param>
|
|
/// <param name="shapes">Cutted shapes</param>
|
|
/// <param name="face_type_map">Define Triangles of interest.
|
|
/// Edge between inside / outside.
|
|
/// NOTE: Not const because it need to flag proccessed faces</param>
|
|
/// <returns>Areas of interest from mesh</returns>
|
|
CutAOIs create_cut_area_of_interests(const CutMesh &mesh,
|
|
const ExPolygons &shapes,
|
|
FaceTypeMap &face_type_map);
|
|
|
|
} // namespace priv
|
|
|
|
void priv::Visitor::intersection_point_detected(std::size_t i_id,
|
|
int sdim,
|
|
HI h_f,
|
|
HI h_e,
|
|
const CutMesh &tm_f,
|
|
const CutMesh &tm_e,
|
|
bool is_target_coplanar,
|
|
bool is_source_coplanar)
|
|
{
|
|
if (i_id >= intersections.size()) {
|
|
size_t capacity = Slic3r::next_highest_power_of_2(i_id + 1);
|
|
intersections.reserve(capacity);
|
|
intersections.resize(capacity);
|
|
}
|
|
|
|
const IntersectingElement *intersection_ptr = nullptr;
|
|
if (&tm_e == &shape) {
|
|
assert(&tm_f == &object);
|
|
switch (sdim) {
|
|
case 1:
|
|
// edge x edge intersection
|
|
intersection_ptr = &edge_shape_map[shape.edge(h_e)];
|
|
break;
|
|
case 2:
|
|
// edge x face intersection
|
|
intersection_ptr = &face_shape_map[shape.face(h_e)];
|
|
break;
|
|
default: assert(false);
|
|
}
|
|
if (is_target_coplanar)
|
|
vert_shape_map[object.source(h_f)] = intersection_ptr;
|
|
if (is_source_coplanar)
|
|
vert_shape_map[object.target(h_f)] = intersection_ptr;
|
|
} else {
|
|
assert(&tm_f == &shape && &tm_e == &object);
|
|
assert(!is_target_coplanar);
|
|
assert(!is_source_coplanar);
|
|
if (is_target_coplanar || is_source_coplanar)
|
|
*is_valid = false;
|
|
intersection_ptr = &edge_shape_map[shape.edge(h_f)];
|
|
if (sdim == 0) vert_shape_map[object.target(h_e)] = intersection_ptr;
|
|
}
|
|
|
|
if (intersection_ptr->shape_point_index == std::numeric_limits<uint32_t>::max()) {
|
|
// there is unexpected intersection
|
|
// Top (or Bottom) shape contour edge (or vertex) intersection
|
|
// Suggest to change projection min/max limits
|
|
*is_valid = false;
|
|
}
|
|
intersections[i_id] = intersection_ptr;
|
|
}
|
|
|
|
void priv::Visitor::new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
|
|
{
|
|
assert(&tm == &object);
|
|
assert(i_id < intersections.size());
|
|
const IntersectingElement *intersection_ptr = intersections[i_id];
|
|
assert(intersection_ptr != nullptr);
|
|
// intersection was not filled in function intersection_point_detected
|
|
//assert(intersection_ptr->point_index != std::numeric_limits<uint32_t>::max());
|
|
vert_shape_map[v] = intersection_ptr;
|
|
}
|
|
|
|
bool priv::is_face_inside(HI hi,
|
|
const CutMesh &mesh,
|
|
const CutMesh &shape_mesh,
|
|
const VertexShapeMap &vertex_shape_map,
|
|
const ExPolygonsIndices &shape2index)
|
|
{
|
|
VI vi_from = mesh.source(hi);
|
|
VI vi_to = mesh.target(hi);
|
|
// This face has a constrained edge.
|
|
const IntersectingElement &shape_from = *vertex_shape_map[vi_from];
|
|
const IntersectingElement &shape_to = *vertex_shape_map[vi_to];
|
|
assert(shape_from.shape_point_index != std::numeric_limits<uint32_t>::max());
|
|
assert(shape_from.attr != (unsigned char) IntersectingElement::Type::undefined);
|
|
assert(shape_to.shape_point_index != std::numeric_limits<uint32_t>::max());
|
|
assert(shape_to.attr != (unsigned char) IntersectingElement::Type::undefined);
|
|
|
|
// index into contour
|
|
uint32_t i_from = shape_from.shape_point_index;
|
|
uint32_t i_to = shape_to.shape_point_index;
|
|
IntersectingElement::Type type_from = shape_from.get_type();
|
|
IntersectingElement::Type type_to = shape_to.get_type();
|
|
if (i_from == i_to && type_from == type_to) {
|
|
// intersecting element must be face
|
|
assert(type_from == IntersectingElement::Type::face_1 ||
|
|
type_from == IntersectingElement::Type::face_2);
|
|
|
|
// count of vertices is twice as count of point in the contour
|
|
uint32_t i = i_from * 2;
|
|
// j is next contour point in vertices
|
|
uint32_t j = i + 2;
|
|
if (shape_from.is_last()) {
|
|
ExPolygonsIndex point_id = shape2index.cvt(i_from);
|
|
point_id.point_index = 0;
|
|
j = shape2index.cvt(point_id)*2;
|
|
}
|
|
|
|
// opposit point(in triangle face) to edge
|
|
const P3 &p = mesh.point(mesh.target(mesh.next(hi)));
|
|
|
|
// abc is source triangle face
|
|
CGAL::Sign abcp = type_from == IntersectingElement::Type::face_1 ?
|
|
CGAL::orientation(shape_mesh.point(VI(i)),
|
|
shape_mesh.point(VI(i + 1)),
|
|
shape_mesh.point(VI(j)), p) :
|
|
// type_from == IntersectingElement::Type::face_2
|
|
CGAL::orientation(shape_mesh.point(VI(j)),
|
|
shape_mesh.point(VI(i + 1)),
|
|
shape_mesh.point(VI(j + 1)), p);
|
|
return abcp == CGAL::POSITIVE;
|
|
} else if (i_from < i_to || (i_from == i_to && type_from < type_to)) {
|
|
bool is_last = shape_to.is_last() && shape_from.is_first();
|
|
// check continuity of indicies
|
|
assert(i_from == i_to || is_last || (i_from + 1) == i_to);
|
|
return !is_last;
|
|
} else {
|
|
assert(i_from > i_to || (i_from == i_to && type_from > type_to));
|
|
bool is_last = shape_to.is_first() && shape_from.is_last();
|
|
// check continuity of indicies
|
|
assert(i_from == i_to || is_last || (i_to + 1) == i_from);
|
|
return is_last;
|
|
}
|
|
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
void priv::set_face_type(FaceTypeMap &face_type_map,
|
|
const CutMesh &mesh,
|
|
const VertexShapeMap &vertex_shape_map,
|
|
const EdgeBoolMap &ecm,
|
|
const CutMesh &shape_mesh,
|
|
const ExPolygonsIndices &shape2index)
|
|
{
|
|
for (EI ei : mesh.edges()) {
|
|
if (!ecm[ei]) continue;
|
|
HI hi = mesh.halfedge(ei);
|
|
FI fi = mesh.face(hi);
|
|
bool is_inside = is_face_inside(hi, mesh, shape_mesh, vertex_shape_map, shape2index);
|
|
face_type_map[fi] = is_inside ? FaceType::inside : FaceType::outside;
|
|
HI hi_op = mesh.opposite(hi);
|
|
assert(hi_op.is_valid());
|
|
if (!hi_op.is_valid()) continue;
|
|
FI fi_op = mesh.face(hi_op);
|
|
assert(fi_op.is_valid());
|
|
if (!fi_op.is_valid()) continue;
|
|
face_type_map[fi_op] = (!is_inside) ? FaceType::inside : FaceType::outside;
|
|
}
|
|
}
|
|
|
|
priv::CutAOIs priv::cut_from_model(CutMesh &cgal_model,
|
|
const ExPolygons &shapes,
|
|
CutMesh &cgal_shape,
|
|
float projection_ratio,
|
|
const ExPolygonsIndices &s2i)
|
|
{
|
|
// pointer to edge or face shape_map
|
|
VertexShapeMap vert_shape_map = cgal_model.add_property_map<VI, const IntersectingElement*>(vert_shape_map_name, nullptr).first;
|
|
|
|
// detect anomalities in visitor.
|
|
bool is_valid = true;
|
|
// NOTE: map are created when convert shapes to cgal model
|
|
const EdgeShapeMap& edge_shape_map = cgal_shape.property_map<EI, IntersectingElement>(edge_shape_map_name).first;
|
|
const FaceShapeMap& face_shape_map = cgal_shape.property_map<FI, IntersectingElement>(face_shape_map_name).first;
|
|
Visitor visitor{cgal_model, cgal_shape, edge_shape_map, face_shape_map, vert_shape_map, &is_valid};
|
|
|
|
// a property map containing the constrained-or-not status of each edge
|
|
EdgeBoolMap ecm = cgal_model.add_property_map<EI, bool>(is_constrained_edge_name, false).first;
|
|
const auto &p = CGAL::parameters::visitor(visitor)
|
|
.edge_is_constrained_map(ecm)
|
|
.throw_on_self_intersection(false);
|
|
const auto& q = CGAL::parameters::do_not_modify(true);
|
|
CGAL::Polygon_mesh_processing::corefine(cgal_model, cgal_shape, p, q);
|
|
|
|
if (!is_valid) return {};
|
|
|
|
FaceTypeMap face_type_map = cgal_model.add_property_map<FI, FaceType>(face_type_map_name, FaceType::not_constrained).first;
|
|
|
|
// Select inside and outside face in model
|
|
set_face_type(face_type_map, cgal_model, vert_shape_map, ecm, cgal_shape, s2i);
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
store(cgal_model, face_type_map, DEBUG_OUTPUT_DIR + "constrained/"); // only debug
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
// flood fill the other faces inside the region.
|
|
flood_fill_inner(cgal_model, face_type_map);
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
store(cgal_model, face_type_map, DEBUG_OUTPUT_DIR + "filled/", true); // only debug
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
// IMPROVE: AOIs area could be created during flood fill
|
|
return create_cut_area_of_interests(cgal_model, shapes, face_type_map);
|
|
}
|
|
|
|
void priv::flood_fill_inner(const CutMesh &mesh,
|
|
FaceTypeMap &face_type_map)
|
|
{
|
|
std::vector<FI> process;
|
|
// guess count of connected not constrained triangles
|
|
size_t guess_size = 128;
|
|
process.reserve(guess_size);
|
|
|
|
// check if neighbor(one of three in triangle) has type inside
|
|
auto has_inside_neighbor = [&mesh, &face_type_map](FI fi) {
|
|
HI hi = mesh.halfedge(fi);
|
|
HI hi_end = hi;
|
|
auto exist_next = [&hi, &hi_end, &mesh]() -> bool {
|
|
hi = mesh.next(hi);
|
|
return hi != hi_end;
|
|
};
|
|
// loop over 3 half edges of face
|
|
do {
|
|
HI hi_opposite = mesh.opposite(hi);
|
|
// open edge doesn't have opposit half edge
|
|
if (!hi_opposite.is_valid()) continue;
|
|
FI fi_opposite = mesh.face(hi_opposite);
|
|
if (!fi_opposite.is_valid()) continue;
|
|
if (face_type_map[fi_opposite] == FaceType::inside) return true;
|
|
} while (exist_next());
|
|
return false;
|
|
};
|
|
|
|
for (FI fi : mesh.faces()) {
|
|
FaceType type = face_type_map[fi];
|
|
if (type != FaceType::not_constrained) continue;
|
|
if (!has_inside_neighbor(fi)) continue;
|
|
assert(process.empty());
|
|
process.push_back(fi);
|
|
//store(mesh, face_type_map, DEBUG_OUTPUT_DIR + "progress.off");
|
|
|
|
while (!process.empty()) {
|
|
FI process_fi = process.back();
|
|
process.pop_back();
|
|
// Do not fill twice
|
|
FaceType& process_type = face_type_map[process_fi];
|
|
if (process_type == FaceType::inside) continue;
|
|
process_type = FaceType::inside;
|
|
|
|
// check neighbor triangle
|
|
HI hi = mesh.halfedge(process_fi);
|
|
HI hi_end = hi;
|
|
auto exist_next = [&hi, &hi_end, &mesh]() -> bool {
|
|
hi = mesh.next(hi);
|
|
return hi != hi_end;
|
|
};
|
|
do {
|
|
HI hi_opposite = mesh.opposite(hi);
|
|
// open edge doesn't have opposit half edge
|
|
if (!hi_opposite.is_valid()) continue;
|
|
FI fi_opposite = mesh.face(hi_opposite);
|
|
if (!fi_opposite.is_valid()) continue;
|
|
FaceType type_opposite = face_type_map[fi_opposite];
|
|
if (type_opposite == FaceType::not_constrained)
|
|
process.push_back(fi_opposite);
|
|
} while (exist_next());
|
|
}
|
|
}
|
|
}
|
|
|
|
void priv::collect_surface_data(std::queue<FI> &process,
|
|
std::vector<FI> &faces,
|
|
std::vector<HI> &outlines,
|
|
FaceTypeMap &face_type_map,
|
|
const CutMesh &mesh)
|
|
{
|
|
assert(!process.empty());
|
|
assert(faces.empty());
|
|
assert(outlines.empty());
|
|
while (!process.empty()) {
|
|
FI fi = process.front();
|
|
process.pop();
|
|
|
|
FaceType &fi_type = face_type_map[fi];
|
|
// Do not process twice
|
|
if (fi_type == FaceType::inside_processed) continue;
|
|
assert(fi_type == FaceType::inside);
|
|
// flag face as processed
|
|
fi_type = FaceType::inside_processed;
|
|
faces.push_back(fi);
|
|
|
|
// check neighbor triangle
|
|
HI hi = mesh.halfedge(fi);
|
|
HI hi_end = hi;
|
|
do {
|
|
HI hi_opposite = mesh.opposite(hi);
|
|
// open edge doesn't have opposit half edge
|
|
if (!hi_opposite.is_valid()) {
|
|
outlines.push_back(hi);
|
|
hi = mesh.next(hi);
|
|
continue;
|
|
}
|
|
FI fi_opposite = mesh.face(hi_opposite);
|
|
if (!fi_opposite.is_valid()) {
|
|
outlines.push_back(hi);
|
|
hi = mesh.next(hi);
|
|
continue;
|
|
}
|
|
FaceType side = face_type_map[fi_opposite];
|
|
if (side == FaceType::inside) {
|
|
process.emplace(fi_opposite);
|
|
} else if (side == FaceType::outside) {
|
|
// store outlines
|
|
outlines.push_back(hi);
|
|
}
|
|
hi = mesh.next(hi);
|
|
} while (hi != hi_end);
|
|
}
|
|
}
|
|
|
|
void priv::create_reduce_map(ReductionMap &reduction_map, const CutMesh &mesh)
|
|
{
|
|
const VertexShapeMap &vert_shape_map = mesh.property_map<VI, const IntersectingElement*>(vert_shape_map_name).first;
|
|
const EdgeBoolMap &ecm = mesh.property_map<EI, bool>(is_constrained_edge_name).first;
|
|
|
|
// check if vertex was made by edge_2 which is diagonal of quad
|
|
auto is_reducible_vertex = [&vert_shape_map](VI reduction_from) -> bool {
|
|
const IntersectingElement *ie = vert_shape_map[reduction_from];
|
|
if (ie == nullptr) return false;
|
|
IntersectingElement::Type type = ie->get_type();
|
|
return type == IntersectingElement::Type::edge_2;
|
|
};
|
|
|
|
/// <summary>
|
|
/// Append reduction or change existing one.
|
|
/// </summary>
|
|
/// <param name="hi">HalEdge between outside and inside face.
|
|
/// Target vertex will be reduced, source vertex left</param>
|
|
/// [[maybe_unused]] &face_type_map, &is_reducible_vertex are need only in debug
|
|
auto add_reduction = [&] //&reduction_map, &mesh, &face_type_map, &is_reducible_vertex
|
|
(HI hi) {
|
|
VI erase = mesh.target(hi);
|
|
VI left = mesh.source(hi);
|
|
assert(is_reducible_vertex(erase));
|
|
assert(!is_reducible_vertex(left));
|
|
VI &vi = reduction_map[erase];
|
|
// check if it is first add
|
|
if (!vi.is_valid())
|
|
reduction_map[erase] = left;
|
|
// I have no better rule than take the first
|
|
// for decide which reduction will be better
|
|
// But it could be use only one of them
|
|
};
|
|
|
|
for (EI ei : mesh.edges()) {
|
|
if (!ecm[ei]) continue;
|
|
HI hi = mesh.halfedge(ei);
|
|
VI vi = mesh.target(hi);
|
|
if (is_reducible_vertex(vi)) add_reduction(hi);
|
|
|
|
HI hi_op = mesh.opposite(hi);
|
|
VI vi_op = mesh.target(hi_op);
|
|
if (is_reducible_vertex(vi_op)) add_reduction(hi_op);
|
|
}
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
store(mesh, reduction_map, DEBUG_OUTPUT_DIR + "reduces/");
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
}
|
|
|
|
priv::CutAOIs priv::create_cut_area_of_interests(const CutMesh &mesh,
|
|
const ExPolygons &shapes,
|
|
FaceTypeMap &face_type_map)
|
|
{
|
|
// IMPROVE: Create better heuristic for count.
|
|
size_t faces_per_cut = mesh.faces().size() / shapes.size();
|
|
size_t outlines_per_cut = faces_per_cut / 2;
|
|
size_t cuts_per_model = shapes.size() * 2;
|
|
|
|
CutAOIs result;
|
|
result.reserve(cuts_per_model);
|
|
|
|
// It is faster to use one queue for all cuts
|
|
std::queue<FI> process;
|
|
for (FI fi : mesh.faces()) {
|
|
if (face_type_map[fi] != FaceType::inside) continue;
|
|
|
|
CutAOI cut;
|
|
std::vector<FI> &faces = cut.first;
|
|
std::vector<HI> &outlines = cut.second;
|
|
|
|
// faces for one surface cut
|
|
faces.reserve(faces_per_cut);
|
|
// outline for one surface cut
|
|
outlines.reserve(outlines_per_cut);
|
|
|
|
assert(process.empty());
|
|
// Process queue of faces to separate to surface_cut
|
|
process.push(fi);
|
|
collect_surface_data(process, faces, outlines, face_type_map, mesh);
|
|
assert(!faces.empty());
|
|
assert(!outlines.empty());
|
|
result.emplace_back(std::move(cut));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
namespace priv {
|
|
|
|
/// <summary>
|
|
/// Calculate projection distance of point [in mm]
|
|
/// </summary>
|
|
/// <param name="p">Point to calc distance</param>
|
|
/// <param name="pi">Index of point on contour</param>
|
|
/// <param name="shapes_mesh">Model of cutting shape</param>
|
|
/// <param name="projection_ratio">Ratio for best projection distance</param>
|
|
/// <returns>Distance of point from best projection</returns>
|
|
float calc_distance(const P3 &p,
|
|
uint32_t pi,
|
|
const CutMesh &shapes_mesh,
|
|
float projection_ratio);
|
|
|
|
}
|
|
|
|
float priv::calc_distance(const P3 &p,
|
|
uint32_t pi,
|
|
const CutMesh &shapes_mesh,
|
|
float projection_ratio)
|
|
{
|
|
// It is known because shapes_mesh is created inside of private space
|
|
VI vi_start(2 * pi);
|
|
VI vi_end(2 * pi + 1);
|
|
|
|
// Get range for intersection
|
|
const P3 &start = shapes_mesh.point(vi_start);
|
|
const P3 &end = shapes_mesh.point(vi_end);
|
|
|
|
// find index in vector with biggest difference
|
|
size_t max_i = 0;
|
|
float max_val = 0.f;
|
|
for (size_t i = 0; i < 3; i++) {
|
|
float val = start[i] - end[i];
|
|
// abs value
|
|
if (val < 0.f) val *= -1.f;
|
|
if (max_val < val) {
|
|
max_val = val;
|
|
max_i = i;
|
|
}
|
|
}
|
|
|
|
float from_start = p[max_i] - start[max_i];
|
|
float best_distance = projection_ratio * (end[max_i] - start[max_i]);
|
|
return from_start - best_distance;
|
|
}
|
|
|
|
priv::VDistances priv::calc_distances(const SurfacePatches &patches,
|
|
const CutMeshes &models,
|
|
const CutMesh &shapes_mesh,
|
|
size_t count_shapes_points,
|
|
float projection_ratio)
|
|
{
|
|
priv::VDistances result(count_shapes_points);
|
|
for (const SurfacePatch &patch : patches) {
|
|
// map is created during intersection by corefine visitor
|
|
const VertexShapeMap &vert_shape_map =
|
|
models[patch.model_id].property_map<VI, const IntersectingElement *>(vert_shape_map_name).first;
|
|
uint32_t patch_index = &patch - &patches.front();
|
|
// map is created during patch creation / dividing
|
|
const CvtVI2VI& cvt = patch.mesh.property_map<VI, VI>(patch_source_name).first;
|
|
// for each point on outline
|
|
for (const Loop &loop : patch.loops)
|
|
for (const VI &vi_patch : loop) {
|
|
VI vi_model = cvt[vi_patch];
|
|
if (!vi_model.is_valid()) continue;
|
|
const IntersectingElement *ie = vert_shape_map[vi_model];
|
|
if (ie == nullptr) continue;
|
|
assert(ie->shape_point_index != std::numeric_limits<uint32_t>::max());
|
|
assert(ie->attr != (unsigned char) IntersectingElement::Type::undefined);
|
|
uint32_t pi = ie->shape_point_index;
|
|
assert(pi <= count_shapes_points);
|
|
std::vector<ProjectionDistance> &pds = result[pi];
|
|
uint32_t model_index = patch.model_id;
|
|
uint32_t aoi_index = patch.aoi_id;
|
|
//uint32_t hi_index = &hi - &patch.outline.front();
|
|
const P3 &p = patch.mesh.point(vi_patch);
|
|
float distance = calc_distance(p, pi, shapes_mesh, projection_ratio);
|
|
pds.push_back({model_index, aoi_index, patch_index, distance});
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
#include "libslic3r/AABBTreeLines.hpp"
|
|
#include "libslic3r/Line.hpp"
|
|
// functions for choose_best_distance
|
|
namespace priv {
|
|
|
|
// euler square size of vector stored in Point
|
|
float calc_size_sq(const Point &p);
|
|
|
|
// structure to store index and distance together
|
|
struct ClosePoint
|
|
{
|
|
// index of closest point from another shape
|
|
uint32_t index = std::numeric_limits<uint32_t>::max();
|
|
// squere distance to index
|
|
float dist_sq = std::numeric_limits<float>::max();
|
|
};
|
|
|
|
struct SearchData{
|
|
// IMPROVE: float lines are enough
|
|
std::vector<Linef> lines;
|
|
// convert line index into Shape point index
|
|
std::vector<size_t> cvt;
|
|
// contain lines from prev point to Point index
|
|
AABBTreeIndirect::Tree<2, double> tree;
|
|
};
|
|
|
|
SearchData create_search_data(const ExPolygons &shapes, const std::vector<bool>& mask);
|
|
uint32_t get_closest_point_index(const SearchData &sd, size_t line_idx, const Vec2d &hit_point, const ExPolygons &shapes, const ExPolygonsIndices &s2i);
|
|
|
|
// use AABB Tree Lines to find closest point
|
|
uint32_t find_closest_point_index(const Point &p, const ExPolygons &shapes, const ExPolygonsIndices &s2i, const std::vector<bool> &mask);
|
|
|
|
std::pair<uint32_t, uint32_t> find_closest_point_pair(const ExPolygons &shapes, const std::vector<bool> &done_shapes, const ExPolygonsIndices &s2i, const std::vector<bool> &mask);
|
|
|
|
// Search for closest projection to wanted distance
|
|
const ProjectionDistance *get_closest_projection(const ProjectionDistances &distance, float wanted_distance);
|
|
|
|
// fill result around known index inside one polygon
|
|
void fill_polygon_distances(const ProjectionDistance &pd, uint32_t index, const ExPolygonsIndex &id, ProjectionDistances & result, const ExPolygon &shape, const VDistances &distances);
|
|
|
|
// search for closest projection for expolygon
|
|
// choose correct cut by source point
|
|
void fill_shape_distances(uint32_t start_index, const ProjectionDistance *start_pd, ProjectionDistances &result, const ExPolygonsIndices &s2i, const ExPolygon &shape, const VDistances &distances);
|
|
|
|
// find close points between finished and unfinished ExPolygons
|
|
ClosePoint find_close_point(const Point &p, ProjectionDistances &result, std::vector<bool>& finished_shapes,const ExPolygonsIndices &s2i, const ExPolygons &shapes);
|
|
|
|
}
|
|
|
|
float priv::calc_size_sq(const Point &p){
|
|
// NOTE: p.squaredNorm() can't be use due to overflow max int value
|
|
return (float) p.x() * p.x() + (float) p.y() * p.y();
|
|
}
|
|
|
|
priv::SearchData priv::create_search_data(const ExPolygons &shapes,
|
|
const std::vector<bool> &mask)
|
|
{
|
|
// IMPROVE: Use float precission (it is enough)
|
|
SearchData sd;
|
|
sd.lines.reserve(mask.size());
|
|
sd.cvt.reserve(mask.size());
|
|
size_t index = 0;
|
|
auto add_lines = [&sd, &index, &mask]
|
|
(const Polygon &poly) {
|
|
Vec2d prev = poly.back().cast<double>();
|
|
bool use_point = mask[index + poly.points.size() - 1];
|
|
for (const Point &p : poly.points) {
|
|
if (!use_point) {
|
|
use_point = mask[index];
|
|
if (use_point) prev = p.cast<double>();
|
|
} else if (!mask[index]) {
|
|
use_point = false;
|
|
} else {
|
|
Vec2d p_d = p.cast<double>();
|
|
sd.lines.emplace_back(prev, p_d);
|
|
sd.cvt.push_back(index);
|
|
prev = p_d;
|
|
}
|
|
++index;
|
|
}
|
|
};
|
|
|
|
for (const ExPolygon &shape : shapes) {
|
|
add_lines(shape.contour);
|
|
for (const Polygon &hole : shape.holes) add_lines(hole);
|
|
}
|
|
sd.tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(sd.lines);
|
|
return sd;
|
|
}
|
|
|
|
uint32_t priv::get_closest_point_index(const SearchData &sd,
|
|
size_t line_idx,
|
|
const Vec2d &hit_point,
|
|
const ExPolygons &shapes,
|
|
const ExPolygonsIndices &s2i)
|
|
{
|
|
const Linef &line = sd.lines[line_idx];
|
|
Vec2d dir = line.a - line.b;
|
|
Vec2d dir_abs = dir.cwiseAbs();
|
|
// use x coordinate
|
|
int i = (dir_abs.x() > dir_abs.y())? 0 :1;
|
|
|
|
bool use_index = abs(line.a[i] - hit_point[i]) >
|
|
abs(line.b[i] - hit_point[i]);
|
|
size_t point_index = sd.cvt[line_idx];
|
|
|
|
// Lambda used only for check result
|
|
[[maybe_unused]] auto is_same = [&s2i, &shapes]
|
|
(const Vec2d &p, size_t i) -> bool {
|
|
auto id = s2i.cvt(i);
|
|
const ExPolygon &shape = shapes[id.expolygons_index];
|
|
const Polygon &poly = (id.polygon_index == 0) ?
|
|
shape.contour :
|
|
shape.holes[id.polygon_index - 1];
|
|
Vec2i p_ = p.cast<int>();
|
|
return p_ == poly[id.point_index];
|
|
};
|
|
|
|
if (use_index) {
|
|
assert(is_same(line.b, point_index));
|
|
return point_index;
|
|
}
|
|
auto id = s2i.cvt(point_index);
|
|
if (id.point_index != 0) {
|
|
assert(is_same(line.a, point_index - 1));
|
|
return point_index - 1;
|
|
}
|
|
const ExPolygon &shape = shapes[id.expolygons_index];
|
|
size_t count_polygon_points = (id.polygon_index == 0) ?
|
|
shape.contour.size() :
|
|
shape.holes[id.polygon_index - 1].size();
|
|
size_t prev_point_index = point_index + (count_polygon_points - 1);
|
|
assert(is_same(line.a, prev_point_index));
|
|
// return previous point index
|
|
return prev_point_index;
|
|
}
|
|
|
|
// use AABB Tree Lines
|
|
uint32_t priv::find_closest_point_index(const Point &p,
|
|
const ExPolygons &shapes,
|
|
const ExPolygonsIndices &s2i,
|
|
const std::vector<bool> &mask)
|
|
{
|
|
SearchData sd = create_search_data(shapes, mask);
|
|
size_t line_idx = std::numeric_limits<size_t>::max();
|
|
Vec2d hit_point;
|
|
Vec2d p_d = p.cast<double>();
|
|
[[maybe_unused]] double distance_sq =
|
|
AABBTreeLines::squared_distance_to_indexed_lines(
|
|
sd.lines, sd.tree, p_d, line_idx, hit_point);
|
|
assert(distance_sq > 0);
|
|
|
|
// IMPROVE: one could use line ratio to find closest point
|
|
return get_closest_point_index(sd, line_idx, hit_point, shapes, s2i);
|
|
}
|
|
|
|
std::pair<uint32_t, uint32_t> priv::find_closest_point_pair(
|
|
const ExPolygons &shapes,
|
|
const std::vector<bool> &done_shapes,
|
|
const ExPolygonsIndices &s2i,
|
|
const std::vector<bool> &mask)
|
|
{
|
|
assert(mask.size() == s2i.get_count());
|
|
assert(done_shapes.size() == shapes.size());
|
|
std::vector<bool> unfinished_mask = mask; // copy
|
|
|
|
size_t index = 0;
|
|
for (size_t shape_index = 0; shape_index < shapes.size(); shape_index++) {
|
|
size_t count = count_points(shapes[shape_index]);
|
|
if (done_shapes[shape_index]) {
|
|
for (size_t i = 0; i < count; ++i, ++index)
|
|
unfinished_mask[index] = false;
|
|
} else {
|
|
index += count;
|
|
}
|
|
}
|
|
assert(index == s2i.get_count());
|
|
SearchData sd = create_search_data(shapes, unfinished_mask);
|
|
|
|
struct ClosestPair
|
|
{
|
|
size_t finish_idx = std::numeric_limits<size_t>::max();
|
|
size_t unfinished_line_idx = std::numeric_limits<size_t>::max();
|
|
Vec2d hit_point = Vec2d();
|
|
double distance_sq = std::numeric_limits<double>::max();
|
|
} cp;
|
|
|
|
index = 0;
|
|
for (size_t shape_index = 0; shape_index < shapes.size(); shape_index++) {
|
|
const ExPolygon shape = shapes[shape_index];
|
|
if (!done_shapes[shape_index]) {
|
|
index += count_points(shape);
|
|
continue;
|
|
}
|
|
|
|
auto search_in_polygon = [&index, &cp, &sd, &mask](const Polygon& polygon) {
|
|
for (size_t i = 0; i < polygon.size(); ++i, ++index) {
|
|
if (mask[index] == false) continue;
|
|
Vec2d p_d = polygon[i].cast<double>();
|
|
size_t line_idx = std::numeric_limits<size_t>::max();
|
|
Vec2d hit_point;
|
|
double distance_sq = AABBTreeLines::squared_distance_to_indexed_lines(
|
|
sd.lines, sd.tree, p_d, line_idx, hit_point, cp.distance_sq);
|
|
if (distance_sq < 0 ||
|
|
distance_sq >= cp.distance_sq) continue;
|
|
assert(line_idx < sd.lines.size());
|
|
cp.distance_sq = distance_sq;
|
|
cp.unfinished_line_idx = line_idx;
|
|
cp.hit_point = hit_point;
|
|
cp.finish_idx = index;
|
|
}
|
|
};
|
|
search_in_polygon(shape.contour);
|
|
for (const Polygon& hole: shape.holes)
|
|
search_in_polygon(hole);
|
|
}
|
|
assert(index == s2i.get_count());
|
|
// check that exists result
|
|
if (cp.finish_idx == std::numeric_limits<size_t>::max()) {
|
|
return std::make_pair(std::numeric_limits<size_t>::max(),
|
|
std::numeric_limits<size_t>::max());
|
|
}
|
|
|
|
size_t unfinished_idx = get_closest_point_index(sd, cp.unfinished_line_idx, cp.hit_point, shapes, s2i);
|
|
return std::make_pair(cp.finish_idx, unfinished_idx);
|
|
}
|
|
|
|
const priv::ProjectionDistance *priv::get_closest_projection(
|
|
const ProjectionDistances &distance, float wanted_distance)
|
|
{
|
|
// minimal distance
|
|
float min_d = std::numeric_limits<float>::max();
|
|
const ProjectionDistance *min_pd = nullptr;
|
|
for (const ProjectionDistance &pd : distance) {
|
|
float d = std::fabs(pd.distance - wanted_distance);
|
|
// There should be limit for maximal distance
|
|
if (min_d > d) {
|
|
min_d = d;
|
|
min_pd = &pd;
|
|
}
|
|
}
|
|
return min_pd;
|
|
}
|
|
|
|
void priv::fill_polygon_distances(const ProjectionDistance &pd,
|
|
uint32_t index,
|
|
const ExPolygonsIndex &id,
|
|
ProjectionDistances &result,
|
|
const ExPolygon &shape,
|
|
const VDistances &distances)
|
|
{
|
|
const Points& points = (id.polygon_index == 0) ?
|
|
shape.contour.points :
|
|
shape.holes[id.polygon_index - 1].points;
|
|
// border of indexes for Polygon
|
|
uint32_t first_index = index - id.point_index;
|
|
uint32_t last_index = first_index + points.size();
|
|
|
|
uint32_t act_index = index;
|
|
const ProjectionDistance* act_pd = &pd;
|
|
|
|
// Copy starting pd to result
|
|
result[act_index] = pd;
|
|
|
|
auto exist_next = [&distances, &act_index, &act_pd, &result]
|
|
(uint32_t nxt_index) {
|
|
const ProjectionDistance *nxt_pd = get_closest_projection(distances[nxt_index] ,act_pd->distance);
|
|
// exist next projection distance ?
|
|
if (nxt_pd == nullptr) return false;
|
|
|
|
// check no rewrite result
|
|
assert(result[nxt_index].aoi_index == std::numeric_limits<uint32_t>::max());
|
|
// copy founded projection to result
|
|
result[nxt_index] = *nxt_pd; // copy
|
|
|
|
// next
|
|
act_index = nxt_index;
|
|
act_pd = &result[nxt_index];
|
|
return true;
|
|
};
|
|
|
|
// last index in circle
|
|
uint32_t finish_index = (index == first_index) ? (last_index - 1) :
|
|
(index - 1);
|
|
// Positive iteration inside polygon
|
|
do {
|
|
uint32_t nxt_index = act_index + 1;
|
|
// close loop of indexes inside of contour
|
|
if (nxt_index == last_index) nxt_index = first_index;
|
|
// check that exist next
|
|
if (!exist_next(nxt_index)) break;
|
|
} while (act_index != finish_index);
|
|
|
|
// when all results for polygon are set no neccessary to iterate negative
|
|
if (act_index == finish_index) return;
|
|
|
|
act_index = index;
|
|
act_pd = &pd;
|
|
// Negative iteration inside polygon
|
|
do {
|
|
uint32_t nxt_index = (act_index == first_index) ?
|
|
(last_index-1) : (act_index - 1);
|
|
// When iterate negative it must be split to parts
|
|
// and can't iterate in circle
|
|
assert(nxt_index != index);
|
|
// check that exist next
|
|
if (!exist_next(nxt_index)) break;
|
|
} while (true);
|
|
}
|
|
|
|
// IMPROVE: when select distance fill in all distances from Patch
|
|
void priv::fill_shape_distances(uint32_t start_index,
|
|
const ProjectionDistance *start_pd,
|
|
ProjectionDistances &result,
|
|
const ExPolygonsIndices &s2i,
|
|
const ExPolygon &shape,
|
|
const VDistances &distances)
|
|
{
|
|
uint32_t expolygons_index = s2i.cvt(start_index).expolygons_index;
|
|
uint32_t first_shape_index = s2i.cvt({expolygons_index, 0, 0});
|
|
do {
|
|
fill_polygon_distances(*start_pd, start_index, s2i.cvt(start_index),result, shape, distances);
|
|
// seaching only inside shape, return index of closed finished point
|
|
auto find_close_finished_point = [&first_shape_index, &shape, &result]
|
|
(const Point &p) -> ClosePoint {
|
|
uint32_t index = first_shape_index;
|
|
ClosePoint cp;
|
|
auto check_finished_points = [&cp, &result, &index, &p]
|
|
(const Points& pts) {
|
|
for (const Point &p_ : pts) {
|
|
// finished point with some distances
|
|
if (result[index].aoi_index == std::numeric_limits<uint32_t>::max()) {
|
|
++index;
|
|
continue;
|
|
}
|
|
float distance = calc_size_sq(p_ - p);
|
|
if (cp.dist_sq > distance) {
|
|
cp.dist_sq = distance;
|
|
cp.index = index;
|
|
}
|
|
++index;
|
|
}
|
|
};
|
|
check_finished_points(shape.contour.points);
|
|
for (const Polygon &h : shape.holes)
|
|
check_finished_points(h.points);
|
|
return cp;
|
|
};
|
|
|
|
// find next closest pair of points
|
|
// (finished + unfinished) in ExPolygon
|
|
start_index = std::numeric_limits<uint32_t>::max(); // unfinished_index
|
|
uint32_t finished_index = std::numeric_limits<uint32_t>::max();
|
|
float dist_sq = std::numeric_limits<float>::max();
|
|
|
|
// first index in shape
|
|
uint32_t index = first_shape_index;
|
|
auto check_unfinished_points = [&index, &result, &distances, &find_close_finished_point, &dist_sq, &start_index, &finished_index]
|
|
(const Points& pts) {
|
|
for (const Point &p : pts) {
|
|
// try find unfinished
|
|
if (result[index].aoi_index !=
|
|
std::numeric_limits<uint32_t>::max() ||
|
|
distances[index].empty()) {
|
|
++index;
|
|
continue;
|
|
}
|
|
ClosePoint cp = find_close_finished_point(p);
|
|
if (dist_sq > cp.dist_sq) {
|
|
dist_sq = cp.dist_sq;
|
|
start_index = index;
|
|
finished_index = cp.index;
|
|
}
|
|
++index;
|
|
}
|
|
};
|
|
// for each unfinished points
|
|
check_unfinished_points(shape.contour.points);
|
|
for (const Polygon &h : shape.holes)
|
|
check_unfinished_points(h.points);
|
|
} while (start_index != std::numeric_limits<uint32_t>::max());
|
|
}
|
|
|
|
priv::ClosePoint priv::find_close_point(const Point &p,
|
|
ProjectionDistances &result,
|
|
std::vector<bool> &finished_shapes,
|
|
const ExPolygonsIndices &s2i,
|
|
const ExPolygons &shapes)
|
|
{
|
|
// result
|
|
ClosePoint cp;
|
|
// for all finished points
|
|
for (uint32_t shape_index = 0; shape_index < shapes.size(); ++shape_index) {
|
|
if (!finished_shapes[shape_index]) continue;
|
|
const ExPolygon &shape = shapes[shape_index];
|
|
uint32_t index = s2i.cvt({shape_index, 0, 0});
|
|
auto find_close_point_in_points = [&p, &cp, &index, &result]
|
|
(const Points &pts){
|
|
for (const Point &p_ : pts) {
|
|
// Exist result (is finished) ?
|
|
if (result[index].aoi_index ==
|
|
std::numeric_limits<uint32_t>::max()) {
|
|
++index;
|
|
continue;
|
|
}
|
|
float distance_sq = calc_size_sq(p - p_);
|
|
if (cp.dist_sq > distance_sq) {
|
|
cp.dist_sq = distance_sq;
|
|
cp.index = index;
|
|
}
|
|
++index;
|
|
}
|
|
};
|
|
find_close_point_in_points(shape.contour.points);
|
|
// shape could be inside of another shape's hole
|
|
for (const Polygon& h:shape.holes)
|
|
find_close_point_in_points(h.points);
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
// IMPROVE: when select distance fill in all distances from Patch
|
|
priv::ProjectionDistances priv::choose_best_distance(
|
|
const VDistances &distances, const ExPolygons &shapes, const Point &start, const ExPolygonsIndices &s2i, const SurfacePatches &patches)
|
|
{
|
|
assert(distances.size() == count_points(shapes));
|
|
|
|
// vector of patches for shape
|
|
std::vector<std::vector<uint32_t>> shapes_patches(shapes.size());
|
|
for (const SurfacePatch &patch : patches)
|
|
shapes_patches[patch.shape_id].push_back(&patch-&patches.front());
|
|
|
|
// collect one closest projection for each outline point
|
|
ProjectionDistances result(distances.size());
|
|
|
|
// store info about finished shapes
|
|
std::vector<bool> finished_shapes(shapes.size(), {false});
|
|
|
|
// wanted distance from ideal projection
|
|
// Distances are relative to projection distance
|
|
// so first wanted distance is the closest one (ZERO)
|
|
float wanted_distance = 0.f;
|
|
|
|
std::vector<bool> mask_distances(s2i.get_count(), {true});
|
|
for (const auto &d : distances)
|
|
if (d.empty()) mask_distances[&d - &distances.front()] = false;
|
|
|
|
// Select point from shapes(text contour) which is closest to center (all in 2d)
|
|
uint32_t unfinished_index = find_closest_point_index(start, shapes, s2i, mask_distances);
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
Connections connections;
|
|
connections.reserve(shapes.size());
|
|
connections.emplace_back(unfinished_index, unfinished_index);
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
do {
|
|
const ProjectionDistance* pd = get_closest_projection(distances[unfinished_index], wanted_distance);
|
|
// selection of closest_id should proove that pd has value
|
|
// (functions: get_closest_point_index and find_close_point_in_points)
|
|
assert(pd != nullptr);
|
|
uint32_t expolygons_index = s2i.cvt(unfinished_index).expolygons_index;
|
|
const ExPolygon &shape = shapes[expolygons_index];
|
|
std::vector<uint32_t> &shape_patches = shapes_patches[expolygons_index];
|
|
if (shape_patches.size() == 1){
|
|
// Speed up, only one patch so copy distance from patch
|
|
uint32_t first_shape_index = s2i.cvt({expolygons_index, 0, 0});
|
|
uint32_t laset_shape_index = first_shape_index + count_points(shape);
|
|
for (uint32_t i = first_shape_index; i < laset_shape_index; ++i) {
|
|
const ProjectionDistances &pds = distances[i];
|
|
if (pds.empty()) continue;
|
|
// check that index belongs to patch
|
|
assert(pds.front().patch_index == shape_patches.front());
|
|
result[i] = pds.front();
|
|
if (pds.size() == 1) continue;
|
|
|
|
float relative_distance = fabs(result[i].distance - pd->distance);
|
|
// patch could contain multiple value for one outline point
|
|
// so choose closest to start point
|
|
for (uint32_t pds_index = 1; pds_index < pds.size(); ++pds_index) {
|
|
// check that index still belongs to same patch
|
|
assert(pds[pds_index].patch_index == shape_patches.front());
|
|
float relative_distance2 = fabs(pds[pds_index].distance - pd->distance);
|
|
if (relative_distance > relative_distance2) {
|
|
relative_distance = relative_distance2;
|
|
result[i] = pds[pds_index];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// multiple patches for expolygon
|
|
// check that exist patch to fill shape
|
|
assert(!shape_patches.empty());
|
|
fill_shape_distances(unfinished_index, pd, result, s2i, shape, distances);
|
|
}
|
|
|
|
finished_shapes[expolygons_index] = true;
|
|
// The most close points between finished and unfinished shapes
|
|
auto [finished, unfinished] = find_closest_point_pair(
|
|
shapes, finished_shapes, s2i, mask_distances);
|
|
|
|
// detection of end (best doesn't have value)
|
|
if (finished == std::numeric_limits<uint32_t>::max()) break;
|
|
|
|
assert(unfinished != std::numeric_limits<uint32_t>::max());
|
|
const ProjectionDistance &closest_pd = result[finished];
|
|
// check that best_cp is finished and has result
|
|
assert(closest_pd.aoi_index != std::numeric_limits<uint32_t>::max());
|
|
wanted_distance = closest_pd.distance;
|
|
unfinished_index = unfinished;
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
connections.emplace_back(finished, unfinished);
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
} while (true); //(unfinished_index != std::numeric_limits<uint32_t>::max());
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
store(shapes, mask_distances, connections, DEBUG_OUTPUT_DIR + "closest_points.svg");
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
return result;
|
|
}
|
|
|
|
// functions to help 'diff_model'
|
|
namespace priv {
|
|
const VI default_vi(std::numeric_limits<uint32_t>::max());
|
|
|
|
// Keep info about intersection source
|
|
struct Source{ HI hi; int sdim=0;};
|
|
using Sources = std::vector<Source>;
|
|
const std::string vertex_source_map_name = "v:SourceIntersecting";
|
|
using VertexSourceMap = CutMesh::Property_map<VI, Source>;
|
|
|
|
/// <summary>
|
|
/// Corefine visitor
|
|
/// Store intersection source for vertices of constrained edge of tm1
|
|
/// Must be used with corefine flag no modification of tm2
|
|
/// </summary>
|
|
struct IntersectionSources
|
|
{
|
|
const CutMesh *patch; // patch
|
|
const CutMesh *model; // const model
|
|
|
|
VertexSourceMap vmap;
|
|
|
|
// keep sources from call intersection_point_detected
|
|
// until call new_vertex_added
|
|
Sources* sources;
|
|
|
|
// count intersections
|
|
void intersection_point_detected(std::size_t i_id,
|
|
int sdim,
|
|
HI h_f,
|
|
HI h_e,
|
|
const CutMesh &tm_f,
|
|
const CutMesh &tm_e,
|
|
bool is_target_coplanar,
|
|
bool is_source_coplanar)
|
|
{
|
|
Source source;
|
|
if (&tm_e == model) {
|
|
source = {h_e, sdim};
|
|
// check other CGAL model that is patch
|
|
assert(&tm_f == patch);
|
|
if (is_target_coplanar) {
|
|
assert(sdim == 0);
|
|
vmap[tm_f.source(h_f)] = source;
|
|
}
|
|
if (is_source_coplanar) {
|
|
assert(sdim == 0);
|
|
vmap[tm_f.target(h_f)] = source;
|
|
}
|
|
|
|
// clear source to be able check that this intersection source is
|
|
// not used any more
|
|
if (is_source_coplanar || is_target_coplanar) source = {};
|
|
} else {
|
|
source = {h_f, sdim};
|
|
assert(&tm_f == model && &tm_e == patch);
|
|
assert(!is_target_coplanar);
|
|
assert(!is_source_coplanar);
|
|
// if (is_target_coplanar) vmap[tm_e.source(h_e)] = source;
|
|
// if (is_source_coplanar) vmap[tm_e.target(h_e)] = source;
|
|
// if (sdim == 0)
|
|
// vmap[tm_e.target(h_e)] = source;
|
|
}
|
|
|
|
// By documentation i_id is consecutive.
|
|
// check id goes in a row, without skips
|
|
assert(sources->size() == i_id);
|
|
// add source of intersection
|
|
sources->push_back(source);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Store VI to intersections by i_id
|
|
/// </summary>
|
|
/// <param name="i_id">Order number of intersection point</param>
|
|
/// <param name="v">New added vertex</param>
|
|
/// <param name="tm">Affected mesh</param>
|
|
void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
|
|
{
|
|
// check that it is first insertation into item of vmap
|
|
assert(!vmap[v].hi.is_valid());
|
|
// check valid addresing into sources
|
|
assert(i_id < sources->size());
|
|
// check that source has value
|
|
assert(sources->at(i_id).hi.is_valid());
|
|
vmap[v] = sources->at(i_id);
|
|
}
|
|
|
|
// Not used visitor functions
|
|
void before_subface_creations(FI /* f_old */, CutMesh & /* mesh */) {}
|
|
void after_subface_created(FI /* f_new */, CutMesh & /* mesh */) {}
|
|
void after_subface_creations(CutMesh &) {}
|
|
void before_subface_created(CutMesh &) {}
|
|
void before_edge_split(HI /* h */, CutMesh & /* tm */) {}
|
|
void edge_split(HI /* hnew */, CutMesh & /* tm */) {}
|
|
void after_edge_split() {}
|
|
void add_retriangulation_edge(HI /* h */, CutMesh & /* tm */) {}
|
|
};
|
|
|
|
/// <summary>
|
|
/// Create map1 and map2
|
|
/// </summary>
|
|
/// <param name="map">Convert tm1.face to type</param>
|
|
/// <param name="tm1">Corefined mesh</param>
|
|
/// <param name="tm2">Source of intersection</param>
|
|
/// <param name="ecm1">Identify constrainde edge</param>
|
|
/// <param name="sources">Convert tm1.face to type</param>
|
|
void create_face_types(FaceTypeMap &map,
|
|
const CutMesh &tm1,
|
|
const CutMesh &tm2,
|
|
const EdgeBoolMap &ecm,
|
|
const VertexSourceMap &sources);
|
|
|
|
/// <summary>
|
|
/// Implement 'cut' Minus 'clipper', where clipper is reverse input Volume
|
|
/// NOTE: clipper will be modified (corefined by cut) !!!
|
|
/// </summary>
|
|
/// <param name="cut">differ from</param>
|
|
/// <param name="clipper">differ what</param>
|
|
/// <returns>True on succes, otherwise FALSE</returns>
|
|
bool clip_cut(SurfacePatch &cut, CutMesh clipper);
|
|
|
|
BoundingBoxf3 bounding_box(const CutAOI &cut, const CutMesh &mesh);
|
|
BoundingBoxf3 bounding_box(const CutMesh &mesh);
|
|
BoundingBoxf3 bounding_box(const SurfacePatch &ecut);
|
|
|
|
/// <summary>
|
|
/// Create patch
|
|
/// </summary>
|
|
/// <param name="fis">Define patch faces</param>
|
|
/// <param name="mesh">Source of fis
|
|
/// NOTE: Need temporary add property map for convert vertices</param>
|
|
/// <param name="rmap">Options to reduce vertices from fis.
|
|
/// NOTE: Used for skip vertices made by diagonal edge in rectangle of shape side</param>
|
|
/// <returns>Patch</returns>
|
|
SurfacePatch create_surface_patch(const std::vector<FI> &fis,
|
|
/*const*/ CutMesh &mesh,
|
|
const ReductionMap *rmap = nullptr);
|
|
|
|
} // namespace priv
|
|
|
|
void priv::create_face_types(FaceTypeMap &map,
|
|
const CutMesh &tm1,
|
|
const CutMesh &tm2,
|
|
const EdgeBoolMap &ecm,
|
|
const VertexSourceMap &sources)
|
|
{
|
|
auto get_intersection_source = [&tm2](const Source& s1, const Source& s2)->FI{
|
|
// when one of sources is face than return it
|
|
FI fi1 = tm2.face(s1.hi);
|
|
if (s1.sdim == 2) return fi1;
|
|
FI fi2 = tm2.face(s2.hi);
|
|
if (s2.sdim == 2) return fi2;
|
|
// both vertices are made by same source triangle
|
|
if (fi1 == fi2) return fi1;
|
|
|
|
// when one from sources is edge second one decide side of triangle triangle
|
|
HI hi1_opposit = tm2.opposite(s1.hi);
|
|
FI fi1_opposit;
|
|
if (hi1_opposit.is_valid())
|
|
fi1_opposit = tm2.face(hi1_opposit);
|
|
if (fi2 == fi1_opposit) return fi2;
|
|
|
|
HI hi2_opposit = tm2.opposite(s2.hi);
|
|
FI fi2_opposit;
|
|
if (hi2_opposit.is_valid())
|
|
fi2_opposit = tm2.face(hi2_opposit);
|
|
if (fi1 == fi2_opposit) return fi1;
|
|
if (fi1_opposit.is_valid() && fi1_opposit == fi2_opposit)
|
|
return fi1_opposit;
|
|
|
|
// when intersection is vertex need loop over neighbor
|
|
for (FI fi_around_hi1 : tm2.faces_around_target(s1.hi)) {
|
|
for (FI fi_around_hi2 : tm2.faces_around_target(s2.hi)) {
|
|
if (fi_around_hi1 == fi_around_hi2)
|
|
return fi_around_hi1;
|
|
}
|
|
}
|
|
|
|
// should never rich it
|
|
// Exist case when do not know source triangle for decide side of intersection
|
|
assert(false);
|
|
return FI();
|
|
};
|
|
|
|
for (FI fi : tm1.faces()) map[fi] = FaceType::not_constrained;
|
|
for (EI ei1 : tm1.edges()) {
|
|
if (!get(ecm, ei1)) continue;
|
|
|
|
// get faces from tm1 (f1a + f1b)
|
|
HI hi1 = tm1.halfedge(ei1);
|
|
assert(hi1.is_valid());
|
|
FI f1a = tm1.face(hi1);
|
|
assert(f1a.is_valid());
|
|
HI hi_op = tm1.opposite(hi1);
|
|
assert(hi_op.is_valid());
|
|
FI f1b = tm1.face(hi_op);
|
|
assert(f1b.is_valid());
|
|
|
|
// get faces from tm2 (f2a + f2b)
|
|
VI vi1_source = tm1.source(hi1);
|
|
assert(vi1_source.is_valid());
|
|
VI vi1_target = tm1.target(hi1);
|
|
assert(vi1_target.is_valid());
|
|
|
|
const Source &s_s = sources[vi1_source];
|
|
const Source &s_t = sources[vi1_target];
|
|
FI fi2 = get_intersection_source(s_s, s_t);
|
|
|
|
// in release solve situation that face was NOT deduced
|
|
if (!fi2.is_valid()) continue;
|
|
|
|
HI hi2 = tm2.halfedge(fi2);
|
|
std::array<const P3 *, 3> t;
|
|
size_t ti =0;
|
|
for (VI vi2 : tm2.vertices_around_face(hi2))
|
|
t[ti++] = &tm2.point(vi2);
|
|
|
|
// triangle tip from face f1a
|
|
VI vi1a_tip = tm1.target(tm1.next(hi1));
|
|
assert(vi1a_tip.is_valid());
|
|
const P3 &p = tm1.point(vi1a_tip);
|
|
|
|
// check if f1a is behinde f2a
|
|
// inside mean it will be used
|
|
// outside will be discarded
|
|
if (CGAL::orientation(*t[0], *t[1], *t[2], p) == CGAL::POSITIVE) {
|
|
map[f1a] = FaceType::inside;
|
|
map[f1b] = FaceType::outside;
|
|
} else {
|
|
map[f1a] = FaceType::outside;
|
|
map[f1b] = FaceType::inside;
|
|
}
|
|
}
|
|
}
|
|
|
|
#include <CGAL/Polygon_mesh_processing/clip.h>
|
|
#include <CGAL/Polygon_mesh_processing/corefinement.h>
|
|
bool priv::clip_cut(SurfacePatch &cut, CutMesh clipper)
|
|
{
|
|
CutMesh& tm = cut.mesh;
|
|
// create backup for case that there is no intersection
|
|
CutMesh backup_copy = tm;
|
|
|
|
class ExistIntersectionClipVisitor: public CGAL::Polygon_mesh_processing::Corefinement::Default_visitor<CutMesh>
|
|
{
|
|
bool* exist_intersection;
|
|
public:
|
|
ExistIntersectionClipVisitor(bool *exist_intersection): exist_intersection(exist_intersection){}
|
|
void intersection_point_detected(std::size_t, int , HI, HI, const CutMesh&, const CutMesh&, bool, bool)
|
|
{ *exist_intersection = true;}
|
|
};
|
|
bool exist_intersection = false;
|
|
ExistIntersectionClipVisitor visitor{&exist_intersection};
|
|
|
|
// namep parameters for model tm and function clip
|
|
const auto &np_tm = CGAL::parameters::visitor(visitor)
|
|
.throw_on_self_intersection(false);
|
|
|
|
// name parameters for model clipper and function clip
|
|
const auto &np_c = CGAL::parameters::throw_on_self_intersection(false);
|
|
// Can't use 'do_not_modify', when Ture than clipper has to be closed !!
|
|
// .do_not_modify(true);
|
|
// .throw_on_self_intersection(false); is set automaticaly by param 'do_not_modify'
|
|
// .clip_volume(false); is set automaticaly by param 'do_not_modify'
|
|
|
|
bool suc = CGAL::Polygon_mesh_processing::clip(tm, clipper, np_tm, np_c);
|
|
|
|
// true if the output surface mesh is manifold.
|
|
// If false is returned tm and clipper are only corefined.
|
|
assert(suc);
|
|
// decide what TODO when can't clip source object !?!
|
|
if (!exist_intersection || !suc) {
|
|
// TODO: test if cut is fully in or fully out!!
|
|
cut.mesh = backup_copy;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
BoundingBoxf3 priv::bounding_box(const CutAOI &cut, const CutMesh &mesh) {
|
|
const P3& p_from_cut = mesh.point(mesh.target(mesh.halfedge(cut.first.front())));
|
|
Vec3d min(p_from_cut.x(), p_from_cut.y(), p_from_cut.z());
|
|
Vec3d max = min;
|
|
for (FI fi : cut.first) {
|
|
for(VI vi: mesh.vertices_around_face(mesh.halfedge(fi))){
|
|
const P3& p = mesh.point(vi);
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
if (min[i] > p[i]) min[i] = p[i];
|
|
if (max[i] < p[i]) max[i] = p[i];
|
|
}
|
|
}
|
|
}
|
|
return BoundingBoxf3(min, max);
|
|
}
|
|
|
|
BoundingBoxf3 priv::bounding_box(const CutMesh &mesh)
|
|
{
|
|
const P3 &p_from_cut = *mesh.points().begin();
|
|
Vec3d min(p_from_cut.x(), p_from_cut.y(), p_from_cut.z());
|
|
Vec3d max = min;
|
|
for (VI vi : mesh.vertices()) {
|
|
const P3 &p = mesh.point(vi);
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
if (min[i] > p[i]) min[i] = p[i];
|
|
if (max[i] < p[i]) max[i] = p[i];
|
|
}
|
|
}
|
|
return BoundingBoxf3(min, max);
|
|
}
|
|
|
|
BoundingBoxf3 priv::bounding_box(const SurfacePatch &ecut) {
|
|
return bounding_box(ecut.mesh);
|
|
}
|
|
|
|
priv::SurfacePatch priv::create_surface_patch(const std::vector<FI> &fis,
|
|
/* const */ CutMesh &mesh,
|
|
const ReductionMap *rmap)
|
|
{
|
|
auto is_counted = mesh.add_property_map<VI, bool>("v:is_counted").first;
|
|
uint32_t count_vertices = 0;
|
|
if (rmap == nullptr) {
|
|
for (FI fi : fis)
|
|
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi)))
|
|
if (!is_counted[vi]) {
|
|
is_counted[vi] = true;
|
|
++count_vertices;
|
|
}
|
|
} else {
|
|
for (FI fi : fis)
|
|
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi))) {
|
|
// Will vertex be reduced?
|
|
if ((*rmap)[vi].is_valid()) continue;
|
|
if (!is_counted[vi]) {
|
|
is_counted[vi] = true;
|
|
++count_vertices;
|
|
}
|
|
}
|
|
}
|
|
mesh.remove_property_map(is_counted);
|
|
|
|
uint32_t count_faces = fis.size();
|
|
// IMPROVE: Value is greater than neccessary, count edges used twice
|
|
uint32_t count_edges = count_faces*3;
|
|
|
|
CutMesh cm;
|
|
cm.reserve(count_vertices, count_edges, count_faces);
|
|
|
|
// vertex conversion function from mesh VI to result VI
|
|
CvtVI2VI mesh2result = mesh.add_property_map<VI,VI>("v:mesh2result").first;
|
|
|
|
if (rmap == nullptr) {
|
|
for (FI fi : fis) {
|
|
std::array<VI, 3> t;
|
|
int index = 0;
|
|
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi))) {
|
|
VI &vi_cvt = mesh2result[vi];
|
|
if (!vi_cvt.is_valid()) {
|
|
vi_cvt = VI(cm.vertices().size());
|
|
cm.add_vertex(mesh.point(vi));
|
|
}
|
|
t[index++] = vi_cvt;
|
|
}
|
|
cm.add_face(t[0], t[1], t[2]);
|
|
}
|
|
} else {
|
|
for (FI fi :fis) {
|
|
std::array<VI, 3> t;
|
|
int index = 0;
|
|
bool exist_reduction = false;
|
|
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi))) {
|
|
VI vi_r = (*rmap)[vi];
|
|
if (vi_r.is_valid()) {
|
|
exist_reduction = true;
|
|
vi = vi_r;
|
|
}
|
|
VI &vi_cvt = mesh2result[vi];
|
|
if (!vi_cvt.is_valid()) {
|
|
vi_cvt = VI(cm.vertices().size());
|
|
cm.add_vertex(mesh.point(vi));
|
|
}
|
|
t[index++] = vi_cvt;
|
|
}
|
|
|
|
// prevent add reduced triangle
|
|
if (exist_reduction &&
|
|
(t[0] == t[1] ||
|
|
t[1] == t[2] ||
|
|
t[2] == t[0]))
|
|
continue;
|
|
|
|
cm.add_face(t[0], t[1], t[2]);
|
|
}
|
|
}
|
|
|
|
assert(count_vertices == cm.vertices().size());
|
|
assert((rmap == nullptr && count_faces == cm.faces().size()) ||
|
|
(rmap != nullptr && count_faces >= cm.faces().size()));
|
|
assert(count_edges >= cm.edges().size());
|
|
|
|
// convert VI from this patch to source VI, when exist
|
|
CvtVI2VI cvt = cm.add_property_map<VI, VI>(patch_source_name).first;
|
|
// vi_s .. VertexIndex into mesh (source)
|
|
// vi_d .. new VertexIndex in cm (destination)
|
|
for (VI vi_s : mesh.vertices()) {
|
|
VI vi_d = mesh2result[vi_s];
|
|
if (!vi_d.is_valid()) continue;
|
|
cvt[vi_d] = vi_s;
|
|
}
|
|
mesh.remove_property_map(mesh2result);
|
|
return {std::move(cm)};
|
|
}
|
|
|
|
// diff_models help functions
|
|
namespace priv {
|
|
|
|
struct SurfacePatchEx
|
|
{
|
|
SurfacePatch patch;
|
|
|
|
// flag that part will be deleted
|
|
bool full_inside = false;
|
|
// flag that Patch could contain more than one part
|
|
bool just_cliped = false;
|
|
};
|
|
using SurfacePatchesEx = std::vector<SurfacePatchEx>;
|
|
|
|
|
|
using BBS = std::vector<BoundingBoxf3>;
|
|
/// <summary>
|
|
/// Create bounding boxes for AOI
|
|
/// </summary>
|
|
/// <param name="cuts">Cutted AOI from models</param>
|
|
/// <param name="cut_models">Source points of cuts</param>
|
|
/// <returns>Bounding boxes</returns>
|
|
BBS create_bbs(const VCutAOIs &cuts, const CutMeshes &cut_models);
|
|
|
|
using Primitive = CGAL::AABB_face_graph_triangle_primitive<CutMesh>;
|
|
using Traits = CGAL::AABB_traits<EpicKernel, Primitive>;
|
|
using Ray = EpicKernel::Ray_3;
|
|
using Tree = CGAL::AABB_tree<Traits>;
|
|
using Trees = std::vector<Tree>;
|
|
/// <summary>
|
|
/// Create AABB trees for check when patch is whole inside of model
|
|
/// </summary>
|
|
/// <param name="models">Source for trees</param>
|
|
/// <returns>trees</returns>
|
|
Trees create_trees(const CutMeshes &models);
|
|
|
|
/// <summary>
|
|
/// Check whether bounding box has intersection with model
|
|
/// </summary>
|
|
/// <param name="bb">Bounding box to check</param>
|
|
/// <param name="model_index">Model to check with</param>
|
|
/// <param name="bbs">All bounding boxes from VCutAOIs</param>
|
|
/// <param name="m2i">Help index into VCutAOIs</param>
|
|
/// <returns>True when exist bounding boxes intersection</returns>
|
|
bool has_bb_intersection(const BoundingBoxf3 &bb,
|
|
size_t model_index,
|
|
const BBS &bbs,
|
|
const ModelCut2index &m2i);
|
|
|
|
/// <summary>
|
|
/// Only for model without intersection
|
|
/// Use ray (in projection direction) from a point from patch
|
|
/// and count intersections: pair .. outside | odd .. inside
|
|
/// </summary>
|
|
/// <param name="patch">Patch to check</param>
|
|
/// <param name="tree">Model converted to AABB tree</param>
|
|
/// <param name="projection">Define direction of projection</param>
|
|
/// <returns>True when patch point lay inside of model defined by tree,
|
|
/// otherwise FALSE</returns>
|
|
bool is_patch_inside_of_model(const SurfacePatch &patch,
|
|
const Tree &tree,
|
|
const Project3d &projection);
|
|
|
|
/// <summary>
|
|
/// Return some shape point index which identify shape
|
|
/// NOTE: Used to find expolygon index
|
|
/// </summary>
|
|
/// <param name="cut">Used to search source shapes poin</param>
|
|
/// <param name="model"></param>
|
|
/// <returns>shape point index</returns>
|
|
uint32_t get_shape_point_index(const CutAOI &cut, const CutMesh &model);
|
|
|
|
using PatchNumber = CutMesh::Property_map<FI, size_t>;
|
|
/// <summary>
|
|
/// Separate triangles singned with number n
|
|
/// </summary>
|
|
/// <param name="fis">Face indices owned by separate patch</param>
|
|
/// <param name="patch">Original patch
|
|
/// NOTE: Can't be const. For indexing vetices need temporary add property map</param>
|
|
/// <param name="cvt_from">conversion map</param>
|
|
/// <returns>Just separated patch</returns>
|
|
SurfacePatch separate_patch(const std::vector<FI> &fis,
|
|
/* const*/ SurfacePatch &patch,
|
|
const CvtVI2VI &cvt_from);
|
|
|
|
/// <summary>
|
|
/// Separate connected triangles into it's own patches
|
|
/// new patches are added to back of input patches
|
|
/// </summary>
|
|
/// <param name="i">index into patches</param>
|
|
/// <param name="patches">In/Out Patches</param>
|
|
void divide_patch(size_t i, SurfacePatchesEx &patches);
|
|
|
|
/// <summary>
|
|
/// Fill outline in patches by open edges
|
|
/// </summary>
|
|
/// <param name="patches">Input/Output meshes with open edges</param>
|
|
void collect_open_edges(SurfacePatches &patches);
|
|
|
|
} // namespace priv
|
|
|
|
std::vector<BoundingBoxf3> priv::create_bbs(const VCutAOIs &cuts,
|
|
const CutMeshes &cut_models)
|
|
{
|
|
size_t count = 0;
|
|
for (const CutAOIs &cut : cuts) count += cut.size();
|
|
|
|
std::vector<BoundingBoxf3> bbs;
|
|
bbs.reserve(count);
|
|
for (size_t model_index = 0; model_index < cut_models.size(); ++model_index) {
|
|
const CutMesh &cut_model = cut_models[model_index];
|
|
const CutAOIs &cutAOIs = cuts[model_index];
|
|
for (size_t cut_index = 0; cut_index < cutAOIs.size(); ++cut_index) {
|
|
const CutAOI &cut = cutAOIs[cut_index];
|
|
bbs.push_back(bounding_box(cut, cut_model));
|
|
}
|
|
}
|
|
return bbs;
|
|
}
|
|
|
|
|
|
priv::Trees priv::create_trees(const CutMeshes &models) {
|
|
Trees result;
|
|
result.reserve(models.size());
|
|
for (const CutMesh &model : models) {
|
|
Tree tree;
|
|
tree.insert(faces(model).first, faces(model).second, model);
|
|
tree.build();
|
|
result.emplace_back(std::move(tree));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool priv::has_bb_intersection(const BoundingBoxf3 &bb,
|
|
size_t model_index,
|
|
const BBS &bbs,
|
|
const ModelCut2index &m2i)
|
|
{
|
|
const auto&offsets = m2i.get_offsets();
|
|
// for cut index with model_index2
|
|
size_t start = offsets[model_index];
|
|
size_t next = model_index + 1;
|
|
size_t end = (next < offsets.size()) ? offsets[next] : m2i.get_count();
|
|
for (size_t bb_index = start; bb_index < end; bb_index++)
|
|
if (bb.intersects(bbs[bb_index])) return true;
|
|
return false;
|
|
}
|
|
|
|
bool priv::is_patch_inside_of_model(const SurfacePatch &patch,
|
|
const Tree &tree,
|
|
const Project3d &projection)
|
|
{
|
|
// TODO: Solve model with hole in projection direction !!!
|
|
const P3 &a = patch.mesh.point(VI(0));
|
|
Vec3d a_(a.x(), a.y(), a.z());
|
|
Vec3d b_ = projection.project(a_);
|
|
P3 b(b_.x(), b_.y(), b_.z());
|
|
|
|
Ray ray_query(a, b);
|
|
size_t count = tree.number_of_intersected_primitives(ray_query);
|
|
bool is_in = (count % 2) == 1;
|
|
|
|
// try opposit direction result should be same, otherwise open model is used
|
|
//Vec3f c_ = a_ - (b_ - a_); // opposit direction
|
|
//P3 c(c_.x(), c_.y(), c_.z());
|
|
//Ray ray_query2(a, b);
|
|
//size_t count2 = tree.number_of_intersected_primitives(ray_query2);
|
|
//bool is_in2 = (count2 % 2) == 1;
|
|
assert(((tree.number_of_intersected_primitives(
|
|
Ray(a, P3(2 * a.x() - b.x(),
|
|
2 * a.y() - b.y(),
|
|
2 * a.z() - b.z()))) %
|
|
2) == 1) == is_in);
|
|
return is_in;
|
|
}
|
|
|
|
uint32_t priv::get_shape_point_index(const CutAOI &cut, const CutMesh &model)
|
|
{
|
|
// map is created during intersection by corefine visitor
|
|
const VertexShapeMap &vert_shape_map = model.property_map<VI, const IntersectingElement *>(vert_shape_map_name).first;
|
|
// for each half edge of outline
|
|
for (HI hi : cut.second) {
|
|
VI vi = model.source(hi);
|
|
const IntersectingElement *ie = vert_shape_map[vi];
|
|
if (ie == nullptr) continue;
|
|
assert(ie->shape_point_index != std::numeric_limits<uint32_t>::max());
|
|
return ie->shape_point_index;
|
|
}
|
|
// can't found any intersecting element in cut
|
|
assert(false);
|
|
return 0;
|
|
}
|
|
|
|
priv::SurfacePatch priv::separate_patch(const std::vector<FI>& fis,
|
|
SurfacePatch &patch,
|
|
const CvtVI2VI &cvt_from)
|
|
{
|
|
assert(patch.mesh.is_valid());
|
|
SurfacePatch patch_new = create_surface_patch(fis, patch.mesh);
|
|
patch_new.bb = bounding_box(patch_new.mesh);
|
|
patch_new.aoi_id = patch.aoi_id;
|
|
patch_new.model_id = patch.model_id;
|
|
patch_new.shape_id = patch.shape_id;
|
|
// fix cvt
|
|
CvtVI2VI cvt = patch_new.mesh.property_map<VI, VI>(patch_source_name).first;
|
|
for (VI &vi : cvt) {
|
|
if (!vi.is_valid()) continue;
|
|
vi = cvt_from[vi];
|
|
}
|
|
return patch_new;
|
|
}
|
|
|
|
void priv::divide_patch(size_t i, SurfacePatchesEx &patches)
|
|
{
|
|
SurfacePatchEx &patch_ex = patches[i];
|
|
assert(patch_ex.just_cliped);
|
|
patch_ex.just_cliped = false;
|
|
|
|
SurfacePatch& patch = patch_ex.patch;
|
|
CutMesh& cm = patch.mesh;
|
|
assert(!cm.faces().empty());
|
|
std::string patch_number_name = "f:patch_number";
|
|
CutMesh::Property_map<FI,bool> is_processed = cm.add_property_map<FI, bool>(patch_number_name, false).first;
|
|
|
|
const CvtVI2VI& cvt_from = patch.mesh.property_map<VI, VI>(patch_source_name).first;
|
|
|
|
std::vector<FI> fis;
|
|
fis.reserve(cm.faces().size());
|
|
|
|
SurfacePatchesEx new_patches;
|
|
std::vector<FI> queue;
|
|
// IMPROVE: create groups around triangles and than connect groups
|
|
for (FI fi_cm : cm.faces()) {
|
|
if (is_processed[fi_cm]) continue;
|
|
assert(queue.empty());
|
|
queue.push_back(fi_cm);
|
|
if (!fis.empty()) {
|
|
// Be carefull after push to patches,
|
|
// all ref on patch contain non valid values
|
|
SurfacePatchEx patch_ex_n;
|
|
patch_ex_n.patch = separate_patch(fis, patch, cvt_from);
|
|
patch_ex_n.patch.is_whole_aoi = false;
|
|
new_patches.push_back(std::move(patch_ex_n));
|
|
fis.clear();
|
|
}
|
|
// flood fill from triangle fi_cm to surrounding
|
|
do {
|
|
FI fi_q = queue.back();
|
|
queue.pop_back();
|
|
if (is_processed[fi_q]) continue;
|
|
is_processed[fi_q] = true;
|
|
fis.push_back(fi_q);
|
|
HI hi = cm.halfedge(fi_q);
|
|
for (FI fi : cm.faces_around_face(hi)) {
|
|
// by documentation The face descriptor may be the null face, and it may be several times the same face descriptor.
|
|
if (!fi.is_valid()) continue;
|
|
if (!is_processed[fi]) queue.push_back(fi);
|
|
}
|
|
} while (!queue.empty());
|
|
}
|
|
cm.remove_property_map(is_processed);
|
|
assert(!fis.empty());
|
|
|
|
// speed up for only one patch - no dividing (the most common)
|
|
if (new_patches.empty()) {
|
|
patch.bb = bounding_box(cm);
|
|
patch.is_whole_aoi = false;
|
|
} else {
|
|
patch = separate_patch(fis, patch, cvt_from);
|
|
patches.insert(patches.end(), new_patches.begin(), new_patches.end());
|
|
}
|
|
}
|
|
|
|
void priv::collect_open_edges(SurfacePatches &patches) {
|
|
std::vector<HI> open_half_edges;
|
|
for (SurfacePatch &patch : patches) {
|
|
open_half_edges.clear();
|
|
const CutMesh &mesh = patch.mesh;
|
|
for (FI fi : mesh.faces()) {
|
|
HI hi1 = mesh.halfedge(fi);
|
|
assert(hi1.is_valid());
|
|
HI hi2 = mesh.next(hi1);
|
|
assert(hi2.is_valid());
|
|
HI hi3 = mesh.next(hi2);
|
|
assert(hi3.is_valid());
|
|
// Is fi triangle?
|
|
assert(mesh.next(hi3) == hi1);
|
|
for (HI hi : {hi1, hi2, hi3}) {
|
|
HI hi_op = mesh.opposite(hi);
|
|
FI fi_op = mesh.face(hi_op);
|
|
if (!fi_op.is_valid())
|
|
open_half_edges.push_back(hi);
|
|
}
|
|
}
|
|
patch.loops = create_loops(open_half_edges, mesh);
|
|
}
|
|
}
|
|
|
|
priv::SurfacePatches priv::diff_models(VCutAOIs &cuts,
|
|
/*const*/ CutMeshes &cut_models,
|
|
/*const*/ CutMeshes &models,
|
|
const Project3d &projection)
|
|
{
|
|
// IMPROVE: when models contain ONE mesh. It is only about convert cuts to patches
|
|
// and reduce unneccessary triangles on contour
|
|
|
|
//Convert model_index and cut_index into one index
|
|
priv::ModelCut2index m2i(cuts);
|
|
|
|
// create bounding boxes for cuts
|
|
std::vector<BoundingBoxf3> bbs = create_bbs(cuts, cut_models);
|
|
Trees trees(models.size());
|
|
|
|
SurfacePatches patches;
|
|
|
|
// queue of patches for one AOI (permanent with respect to for loop)
|
|
SurfacePatchesEx aoi_patches;
|
|
|
|
//SurfacePatches aoi_patches;
|
|
patches.reserve(m2i.get_count()); // only approximation of count
|
|
size_t index = 0;
|
|
for (size_t model_index = 0; model_index < models.size(); ++model_index) {
|
|
CutAOIs &model_cuts = cuts[model_index];
|
|
CutMesh &cut_model_ = cut_models[model_index];
|
|
const CutMesh &cut_model = cut_model_;
|
|
ReductionMap vertex_reduction_map = cut_model_.add_property_map<VI, VI>(vertex_reduction_map_name).first;
|
|
create_reduce_map(vertex_reduction_map, cut_model);
|
|
|
|
for (size_t cut_index = 0; cut_index < model_cuts.size(); ++cut_index, ++index) {
|
|
const CutAOI &cut = model_cuts[cut_index];
|
|
SurfacePatchEx patch_ex;
|
|
SurfacePatch &patch = patch_ex.patch;
|
|
patch = create_surface_patch(cut.first, cut_model_, &vertex_reduction_map);
|
|
patch.bb = bbs[index];
|
|
patch.aoi_id = cut_index;
|
|
patch.model_id = model_index;
|
|
patch.shape_id = get_shape_point_index(cut, cut_model);
|
|
patch.is_whole_aoi = true;
|
|
|
|
aoi_patches.clear();
|
|
aoi_patches.push_back(patch_ex);
|
|
for (size_t model_index2 = 0; model_index2 < models.size(); ++model_index2) {
|
|
// do not clip source model itself
|
|
if (model_index == model_index2) continue;
|
|
for (SurfacePatchEx &patch_ex : aoi_patches) {
|
|
SurfacePatch &patch = patch_ex.patch;
|
|
if (has_bb_intersection(patch.bb, model_index2, bbs, m2i) &&
|
|
clip_cut(patch, models[model_index2])){
|
|
patch_ex.just_cliped = true;
|
|
} else {
|
|
// build tree on demand
|
|
// NOTE: it is possible not neccessary: e.g. one model
|
|
Tree &tree = trees[model_index2];
|
|
if (tree.empty()) {
|
|
const CutMesh &model = models[model_index2];
|
|
auto f_range = faces(model);
|
|
tree.insert(f_range.first, f_range.second, model);
|
|
tree.build();
|
|
}
|
|
if (is_patch_inside_of_model(patch, tree, projection))
|
|
patch_ex.full_inside = true;
|
|
}
|
|
}
|
|
// erase full inside
|
|
for (size_t i = aoi_patches.size(); i != 0; --i) {
|
|
auto it = aoi_patches.begin() + (i - 1);
|
|
if (it->full_inside) aoi_patches.erase(it);
|
|
}
|
|
|
|
// detection of full AOI inside of model
|
|
if (aoi_patches.empty()) break;
|
|
|
|
// divide cliped into parts
|
|
size_t end = aoi_patches.size();
|
|
for (size_t i = 0; i < end; ++i)
|
|
if (aoi_patches[i].just_cliped)
|
|
divide_patch(i, aoi_patches);
|
|
}
|
|
|
|
if (!aoi_patches.empty()) {
|
|
patches.reserve(patches.size() + aoi_patches.size());
|
|
for (SurfacePatchEx &patch : aoi_patches)
|
|
patches.push_back(std::move(patch.patch));
|
|
|
|
}
|
|
}
|
|
cut_model_.remove_property_map(vertex_reduction_map);
|
|
}
|
|
|
|
// Also use outline inside of patches(made by non manifold models)
|
|
// IMPROVE: trace outline from AOIs
|
|
collect_open_edges(patches);
|
|
return patches;
|
|
}
|
|
|
|
bool priv::is_over_whole_expoly(const SurfacePatch &patch,
|
|
const ExPolygons &shapes,
|
|
const VCutAOIs &cutAOIs,
|
|
const CutMeshes &meshes)
|
|
{
|
|
if (!patch.is_whole_aoi) return false;
|
|
return is_over_whole_expoly(cutAOIs[patch.model_id][patch.aoi_id],
|
|
shapes[patch.shape_id],
|
|
meshes[patch.model_id]);
|
|
}
|
|
|
|
bool priv::is_over_whole_expoly(const CutAOI &cutAOI,
|
|
const ExPolygon &shape,
|
|
const CutMesh &mesh)
|
|
{
|
|
// NonInterupted contour is without other point and contain all from shape
|
|
const VertexShapeMap &vert_shape_map = mesh.property_map<VI, const IntersectingElement*>(vert_shape_map_name).first;
|
|
for (HI hi : cutAOI.second) {
|
|
const IntersectingElement *ie_s = vert_shape_map[mesh.source(hi)];
|
|
const IntersectingElement *ie_t = vert_shape_map[mesh.target(hi)];
|
|
if (ie_s == nullptr || ie_t == nullptr)
|
|
return false;
|
|
|
|
assert(ie_s->attr != (unsigned char) IntersectingElement::Type::undefined);
|
|
assert(ie_t->attr != (unsigned char) IntersectingElement::Type::undefined);
|
|
|
|
// check if it is neighbor indices
|
|
uint32_t i_s = ie_s->shape_point_index;
|
|
uint32_t i_t = ie_t->shape_point_index;
|
|
assert(i_s != std::numeric_limits<uint32_t>::max());
|
|
assert(i_t != std::numeric_limits<uint32_t>::max());
|
|
if (i_s == std::numeric_limits<uint32_t>::max() ||
|
|
i_t == std::numeric_limits<uint32_t>::max())
|
|
return false;
|
|
|
|
// made by same index
|
|
if (i_s == i_t) continue;
|
|
|
|
// order from source to target
|
|
if (i_s > i_t) {
|
|
std::swap(i_s, i_t);
|
|
std::swap(ie_s, ie_t);
|
|
}
|
|
// Must be after fix order !!
|
|
bool is_last_polygon_segment = ie_s->is_first() && ie_t->is_last();
|
|
if (is_last_polygon_segment) {
|
|
std::swap(i_s, i_t);
|
|
std::swap(ie_s, ie_t);
|
|
}
|
|
|
|
// Is continous indices
|
|
if (!is_last_polygon_segment &&
|
|
(ie_s->is_last() || (i_s + 1) != i_t))
|
|
return false;
|
|
|
|
IntersectingElement::Type t_s = ie_s->get_type();
|
|
IntersectingElement::Type t_t = ie_t->get_type();
|
|
if (t_s == IntersectingElement::Type::undefined ||
|
|
t_t == IntersectingElement::Type::undefined)
|
|
return false;
|
|
|
|
// next segment must start with edge intersection
|
|
if (t_t != IntersectingElement::Type::edge_1)
|
|
return false;
|
|
|
|
// After face1 must be edge2 or face2
|
|
if (t_s == IntersectingElement::Type::face_1)
|
|
return false;
|
|
}
|
|
|
|
// When all open edges are on contour than there is NO holes is shape
|
|
auto is_open = [&mesh](HI hi)->bool {
|
|
HI opposite = mesh.opposite(hi);
|
|
return !mesh.face(opposite).is_valid();
|
|
};
|
|
|
|
std::vector<HI> opens; // copy
|
|
opens.reserve(cutAOI.second.size());
|
|
for (HI hi : cutAOI.second) // from lower to bigger
|
|
if (is_open(hi)) opens.push_back(hi);
|
|
std::sort(opens.begin(), opens.end());
|
|
|
|
for (FI fi: cutAOI.first) {
|
|
HI face_hi = mesh.halfedge(fi);
|
|
for (HI hi : mesh.halfedges_around_face(face_hi)) {
|
|
if (!is_open(hi)) continue;
|
|
// open edge
|
|
auto lb = std::lower_bound(opens.begin(), opens.end(), hi);
|
|
if (lb == opens.end() || *lb != hi)
|
|
return false; // not in contour
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::vector<bool> priv::select_patches(const ProjectionDistances &best_distances,
|
|
const SurfacePatches &patches,
|
|
|
|
const ExPolygons &shapes,
|
|
const ExPolygonsIndices &s2i,
|
|
const VCutAOIs &cutAOIs,
|
|
const CutMeshes &meshes,
|
|
const Project &projection)
|
|
{
|
|
// extension to cover numerical mistake made by back projection patch from 3d to 2d
|
|
const float extend_delta = 5.f / Emboss::SHAPE_SCALE; // [Font points scaled by Emboss::SHAPE_SCALE]
|
|
|
|
// vector of patches for shape
|
|
std::vector<std::vector<uint32_t>> used_shapes_patches(shapes.size());
|
|
std::vector<bool> in_distances(patches.size(), {false});
|
|
for (const ProjectionDistance &d : best_distances) {
|
|
// exist valid projection for shape point?
|
|
if (d.patch_index == std::numeric_limits<uint32_t>::max()) continue;
|
|
if (in_distances[d.patch_index]) continue;
|
|
in_distances[d.patch_index] = true;
|
|
|
|
ExPolygonsIndex id = s2i.cvt(&d - &best_distances.front());
|
|
used_shapes_patches[id.expolygons_index].push_back(d.patch_index);
|
|
}
|
|
|
|
// vector of patches for shape
|
|
std::vector<std::vector<uint32_t>> shapes_patches(shapes.size());
|
|
for (const SurfacePatch &patch : patches)
|
|
shapes_patches[patch.shape_id].push_back(&patch - &patches.front());
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
std::string store_dir = DEBUG_OUTPUT_DIR + "select_patches/";
|
|
prepare_dir(store_dir);
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
for (size_t shape_index = 0; shape_index < shapes.size(); shape_index++) {
|
|
const ExPolygon &shape = shapes[shape_index];
|
|
std::vector<uint32_t> &used_shape_patches = used_shapes_patches[shape_index];
|
|
if (used_shape_patches.empty()) continue;
|
|
// is used all exist patches?
|
|
if (used_shapes_patches.size() == shapes_patches[shape_index].size()) continue;
|
|
if (used_shape_patches.size() == 1) {
|
|
uint32_t patch_index = used_shape_patches.front();
|
|
const SurfacePatch &patch = patches[patch_index];
|
|
if (is_over_whole_expoly(patch, shapes, cutAOIs, meshes)) continue;
|
|
}
|
|
|
|
// only shapes containing multiple patches
|
|
// or not full filled are back projected (hard processed)
|
|
|
|
// intersection of converted patches to 2d
|
|
ExPolygons fill;
|
|
fill.reserve(used_shape_patches.size());
|
|
|
|
// Heuristics to predict which patch to be used need average patch depth
|
|
Vec2d used_patches_depth(std::numeric_limits<double>::max(), std::numeric_limits<double>::min());
|
|
for (uint32_t patch_index : used_shape_patches) {
|
|
ExPolygon patch_area = to_expoly(patches[patch_index], projection, used_patches_depth);
|
|
//*/
|
|
ExPolygons patch_areas = offset_ex(patch_area, extend_delta);
|
|
fill.insert(fill.end(), patch_areas.begin(), patch_areas.end());
|
|
/*/
|
|
// without save extension
|
|
fill.push_back(patch_area);
|
|
//*/
|
|
}
|
|
fill = union_ex(fill);
|
|
|
|
// not cutted area of expolygon
|
|
ExPolygons rest = diff_ex(ExPolygons{shape}, fill, ApplySafetyOffset::Yes);
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
BoundingBox shape_bb = get_extents(shape);
|
|
SVG svg(store_dir + "shape_" + std::to_string(shape_index) + ".svg", shape_bb);
|
|
svg.draw(fill, "darkgreen");
|
|
svg.draw(rest, "green");
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
// already filled by multiple patches
|
|
if (rest.empty()) continue;
|
|
|
|
// find patches overlaped rest area
|
|
struct PatchShape{
|
|
uint32_t patch_index;
|
|
ExPolygon shape;
|
|
ExPolygons intersection;
|
|
double depth_range_center_distance; // always positive
|
|
};
|
|
using PatchShapes = std::vector<PatchShape>;
|
|
PatchShapes patch_shapes;
|
|
|
|
double used_patches_depth_center = (used_patches_depth[0] + used_patches_depth[1]) / 2;
|
|
|
|
// sort used_patches for faster search
|
|
std::sort(used_shape_patches.begin(), used_shape_patches.end());
|
|
for (uint32_t patch_index : shapes_patches[shape_index]) {
|
|
// check is patch already used
|
|
auto it = std::lower_bound(used_shape_patches.begin(), used_shape_patches.end(), patch_index);
|
|
if (it != used_shape_patches.end() && *it == patch_index) continue;
|
|
|
|
// Heuristics to predict which patch to be used need average patch depth
|
|
Vec2d patche_depth_range(std::numeric_limits<double>::max(), std::numeric_limits<double>::min());
|
|
ExPolygon patch_shape = to_expoly(patches[patch_index], projection, patche_depth_range);
|
|
double depth_center = (patche_depth_range[0] + patche_depth_range[1]) / 2;
|
|
double depth_range_center_distance = std::fabs(used_patches_depth_center - depth_center);
|
|
|
|
ExPolygons patch_intersection = intersection_ex(ExPolygons{patch_shape}, rest);
|
|
if (patch_intersection.empty()) continue;
|
|
|
|
patch_shapes.push_back({patch_index, patch_shape, patch_intersection, depth_range_center_distance});
|
|
}
|
|
|
|
// nothing to add
|
|
if (patch_shapes.empty()) continue;
|
|
// only one solution to add
|
|
if (patch_shapes.size() == 1) {
|
|
used_shape_patches.push_back(patch_shapes.front().patch_index);
|
|
continue;
|
|
}
|
|
|
|
// Idea: Get depth range of used patches and add patches in order by distance to used depth center
|
|
std::sort(patch_shapes.begin(), patch_shapes.end(), [](const PatchShape &a, const PatchShape &b)
|
|
{ return a.depth_range_center_distance < b.depth_range_center_distance; });
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
for (size_t i = patch_shapes.size(); i > 0; --i) {
|
|
const PatchShape &p = patch_shapes[i - 1];
|
|
int gray_level = (i * 200) / patch_shapes.size();
|
|
std::stringstream color;
|
|
color << "#" << std::hex << std::setfill('0') << std::setw(2) << gray_level << gray_level << gray_level;
|
|
svg.draw(p.shape, color.str());
|
|
Point text_pos = get_extents(p.shape).center().cast<int>();
|
|
svg.draw_text(text_pos, std::to_string(i-1).c_str(), "orange", std::ceil(shape_bb.size().x() / 20 * 0.000001));
|
|
//svg.draw(p.intersection, color.str());
|
|
}
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
for (const PatchShape &patch : patch_shapes) {
|
|
// Check when exist some place to fill
|
|
ExPolygons patch_intersection = intersection_ex(patch.intersection, rest);
|
|
if (patch_intersection.empty()) continue;
|
|
|
|
// Extend for sure
|
|
ExPolygons intersection = offset_ex(patch.intersection, extend_delta);
|
|
rest = diff_ex(rest, intersection, ApplySafetyOffset::Yes);
|
|
|
|
used_shape_patches.push_back(patch.patch_index);
|
|
if (rest.empty()) break;
|
|
}
|
|
|
|
// QUESTION: How to select which patch to use? How to sort them?
|
|
// Now is used back projection distance from used patches
|
|
//
|
|
// Idealy by outline depth: (need ray cast into patches)
|
|
// how to calc wanted depth - idealy by depth of outline help to overlap
|
|
// how to calc patch depth - depth in place of outline position
|
|
// Which outline to use between
|
|
|
|
}
|
|
|
|
std::vector<bool> result(patches.size(), {false});
|
|
for (const std::vector<uint32_t> &patches: used_shapes_patches)
|
|
for (uint32_t patch_index : patches) {
|
|
assert(patch_index < result.size());
|
|
// check only onece insertation of patch
|
|
assert(!result[patch_index]);
|
|
result[patch_index] = true;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
priv::Loops priv::create_loops(const std::vector<HI> &outlines, const CutMesh& mesh)
|
|
{
|
|
Loops loops;
|
|
Loops unclosed;
|
|
for (HI hi : outlines) {
|
|
VI vi_s = mesh.source(hi);
|
|
VI vi_t = mesh.target(hi);
|
|
Loop *loop_move = nullptr;
|
|
Loop *loop_connect = nullptr;
|
|
for (std::vector<VI> &cut : unclosed) {
|
|
if (cut.back() != vi_s) continue;
|
|
if (cut.front() == vi_t) {
|
|
// cut closing
|
|
loop_move = &cut;
|
|
} else {
|
|
loop_connect = &cut;
|
|
}
|
|
break;
|
|
}
|
|
if (loop_move != nullptr) {
|
|
// index of closed cut
|
|
size_t index = loop_move - &unclosed.front();
|
|
// move cut to result
|
|
loops.emplace_back(std::move(*loop_move));
|
|
// remove it from unclosed cut
|
|
unclosed.erase(unclosed.begin() + index);
|
|
} else if (loop_connect != nullptr) {
|
|
// try find tail to connect cut
|
|
Loop *loop_tail = nullptr;
|
|
for (Loop &cut : unclosed) {
|
|
if (cut.front() != vi_t) continue;
|
|
loop_tail = &cut;
|
|
break;
|
|
}
|
|
if (loop_tail != nullptr) {
|
|
// index of tail
|
|
size_t index = loop_tail - &unclosed.front();
|
|
// move to connect vector
|
|
loop_connect->insert(loop_connect->end(),
|
|
make_move_iterator(loop_tail->begin()),
|
|
make_move_iterator(loop_tail->end()));
|
|
// remove tail from unclosed cut
|
|
unclosed.erase(unclosed.begin() + index);
|
|
} else {
|
|
loop_connect->push_back(vi_t);
|
|
}
|
|
} else { // not found
|
|
bool create_cut = true;
|
|
// try to insert to front of cut
|
|
for (Loop &cut : unclosed) {
|
|
if (cut.front() != vi_t) continue;
|
|
cut.insert(cut.begin(), vi_s);
|
|
create_cut = false;
|
|
break;
|
|
}
|
|
if (create_cut)
|
|
unclosed.emplace_back(std::vector{vi_s, vi_t});
|
|
}
|
|
}
|
|
assert(unclosed.empty());
|
|
return loops;
|
|
}
|
|
|
|
Polygons priv::unproject_loops(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range)
|
|
{
|
|
assert(!patch.loops.empty());
|
|
if (patch.loops.empty()) return {};
|
|
|
|
// NOTE: this method is working only when patch did not contain outward faces
|
|
Polygons polys;
|
|
polys.reserve(patch.loops.size());
|
|
// project conture into 2d space to fillconvert outlines to
|
|
|
|
size_t count = 0;
|
|
for (const Loop &l : patch.loops) count += l.size();
|
|
std::vector<float> depths;
|
|
depths.reserve(count);
|
|
|
|
Points pts;
|
|
for (const Loop &l : patch.loops) {
|
|
pts.clear();
|
|
pts.reserve(l.size());
|
|
for (VI vi : l) {
|
|
const P3 &p3 = patch.mesh.point(vi);
|
|
Vec3d p(p3.x(), p3.y(), p3.z());
|
|
double depth;
|
|
std::optional<Vec2d> p2_opt = projection.unproject(p, &depth);
|
|
if (depth_range[0] > depth) depth_range[0] = depth; // min
|
|
if (depth_range[1] < depth) depth_range[1] = depth; // max
|
|
// Check when appear that skip is enough for poit which can't be unprojected
|
|
// - it could break contour
|
|
assert(p2_opt.has_value());
|
|
if (!p2_opt.has_value()) continue;
|
|
|
|
pts.push_back(p2_opt->cast<Point::coord_type>());
|
|
depths.push_back(static_cast<float>(depth));
|
|
}
|
|
// minimal is triangle
|
|
assert(pts.size() >= 3);
|
|
if (pts.size() < 3) continue;
|
|
|
|
polys.emplace_back(pts);
|
|
}
|
|
|
|
assert(!polys.empty());
|
|
return polys;
|
|
}
|
|
|
|
ExPolygon priv::to_expoly(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range)
|
|
{
|
|
Polygons polys = unproject_loops(patch, projection, depth_range);
|
|
// should not be used when no opposit triangle are counted so should not create overlaps
|
|
ClipperLib::PolyFillType fill_type = ClipperLib::PolyFillType::pftEvenOdd;
|
|
ExPolygons expolys = Slic3r::union_ex(polys, fill_type);
|
|
assert(expolys.size() == 1);
|
|
if (expolys.empty()) return {};
|
|
return expolys.front();
|
|
}
|
|
|
|
SurfaceCut priv::patch2cut(SurfacePatch &patch)
|
|
{
|
|
CutMesh &mesh = patch.mesh;
|
|
|
|
std::string convert_map_name = "v:convert";
|
|
CutMesh::Property_map<VI, SurfaceCut::Index> convert_map =
|
|
mesh.add_property_map<VI, SurfaceCut::Index>(convert_map_name).first;
|
|
|
|
size_t indices_size = mesh.faces().size();
|
|
size_t vertices_size = mesh.vertices().size();
|
|
|
|
SurfaceCut sc;
|
|
sc.indices.reserve(indices_size);
|
|
sc.vertices.reserve(vertices_size);
|
|
for (VI vi : mesh.vertices()) {
|
|
// vi order is is not sorted
|
|
// assert(vi.idx() == sc.vertices.size());
|
|
// vi is not continous
|
|
// assert(vi.idx() < vertices_size);
|
|
convert_map[vi] = sc.vertices.size();
|
|
const P3 &p = mesh.point(vi);
|
|
sc.vertices.emplace_back(p.x(), p.y(), p.z());
|
|
}
|
|
|
|
for (FI fi : mesh.faces()) {
|
|
HI hi = mesh.halfedge(fi);
|
|
assert(mesh.next(hi).is_valid());
|
|
assert(mesh.next(mesh.next(hi)).is_valid());
|
|
// Is fi triangle?
|
|
assert(mesh.next(mesh.next(mesh.next(hi))) == hi);
|
|
|
|
// triangle indicies
|
|
Vec3i ti;
|
|
size_t i = 0;
|
|
for (VI vi : { mesh.source(hi),
|
|
mesh.target(hi),
|
|
mesh.target(mesh.next(hi))})
|
|
ti[i++] = convert_map[vi];
|
|
sc.indices.push_back(ti);
|
|
}
|
|
|
|
sc.contours.reserve(patch.loops.size());
|
|
for (const Loop &loop : patch.loops) {
|
|
sc.contours.push_back({});
|
|
std::vector<SurfaceCut::Index> &contour = sc.contours.back();
|
|
contour.reserve(loop.size());
|
|
for (VI vi : loop) contour.push_back(convert_map[vi]);
|
|
}
|
|
|
|
// Not neccessary, clean and free memory
|
|
mesh.remove_property_map(convert_map);
|
|
return sc;
|
|
}
|
|
|
|
void priv::append(SurfaceCut &sc, SurfaceCut &&sc_add)
|
|
{
|
|
if (sc.empty()) {
|
|
sc = std::move(sc_add);
|
|
return;
|
|
}
|
|
|
|
if (!sc_add.contours.empty()) {
|
|
SurfaceCut::Index offset = static_cast<SurfaceCut::Index>(
|
|
sc.vertices.size());
|
|
size_t require = sc.contours.size() + sc_add.contours.size();
|
|
if (sc.contours.capacity() < require) sc.contours.reserve(require);
|
|
for (std::vector<SurfaceCut::Index> &cut : sc_add.contours)
|
|
for (SurfaceCut::Index &i : cut) i += offset;
|
|
Slic3r::append(sc.contours, std::move(sc_add.contours));
|
|
}
|
|
its_merge(sc, std::move(sc_add));
|
|
}
|
|
|
|
SurfaceCut priv::merge_patches(SurfacePatches &patches, const std::vector<bool>& mask)
|
|
{
|
|
SurfaceCut result;
|
|
for (SurfacePatch &patch : patches) {
|
|
size_t index = &patch - &patches.front();
|
|
if (!mask[index]) continue;
|
|
append(result, patch2cut(patch));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#ifdef DEBUG_OUTPUT_DIR
|
|
void priv::prepare_dir(const std::string &dir){
|
|
namespace fs = std::filesystem;
|
|
if (fs::exists(dir)) {
|
|
for (auto &path : fs::directory_iterator(dir)) fs::remove_all(path);
|
|
} else {
|
|
fs::create_directories(dir);
|
|
}
|
|
}
|
|
|
|
namespace priv{
|
|
int reduction_order = 0;
|
|
int filled_order = 0;
|
|
int constrained_order = 0;
|
|
int diff_patch_order = 0;
|
|
|
|
} // namespace priv
|
|
|
|
void priv::initialize_store(const std::string& dir)
|
|
{
|
|
// clear previous output
|
|
prepare_dir(dir);
|
|
reduction_order = 0;
|
|
filled_order = 0;
|
|
constrained_order = 0;
|
|
diff_patch_order = 0;
|
|
}
|
|
|
|
void priv::store(const Vec3f &vertex,
|
|
const Vec3f &normal,
|
|
const std::string &file,
|
|
float size)
|
|
{
|
|
int flatten = 20;
|
|
size_t min_i = 0;
|
|
for (size_t i = 1; i < 3; i++)
|
|
if (normal[min_i] > normal[i]) min_i = i;
|
|
Vec3f up_ = Vec3f::Zero();
|
|
up_[min_i] = 1.f;
|
|
Vec3f side = normal.cross(up_).normalized() * size;
|
|
Vec3f up = side.cross(normal).normalized() * size;
|
|
|
|
indexed_triangle_set its;
|
|
its.vertices.reserve(flatten + 1);
|
|
its.indices.reserve(flatten);
|
|
|
|
its.vertices.push_back(vertex);
|
|
its.vertices.push_back(vertex + up);
|
|
size_t max_i = static_cast<size_t>(flatten);
|
|
for (size_t i = 1; i < max_i; i++) {
|
|
float angle = i * 2 * M_PI / flatten;
|
|
Vec3f v = vertex + sin(angle) * side + cos(angle) * up;
|
|
its.vertices.push_back(v);
|
|
its.indices.emplace_back(0, i, i + 1);
|
|
}
|
|
its.indices.emplace_back(0, flatten, 1);
|
|
its_write_obj(its, file.c_str());
|
|
}
|
|
|
|
void priv::store(const CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string& dir, bool is_filled)
|
|
{
|
|
std::string off_file;
|
|
if (is_filled) {
|
|
if (filled_order == 0) prepare_dir(dir);
|
|
off_file = dir + "model" + std::to_string(filled_order++) + ".off";
|
|
}else{
|
|
if (constrained_order == 0) prepare_dir(dir);
|
|
off_file = dir + "model" + std::to_string(constrained_order++) + ".off";
|
|
}
|
|
|
|
CutMesh &mesh_ = const_cast<CutMesh &>(mesh);
|
|
auto face_colors = mesh_.add_property_map<priv::FI, CGAL::Color>("f:color").first;
|
|
for (FI fi : mesh.faces()) {
|
|
auto &color = face_colors[fi];
|
|
switch (face_type_map[fi]) {
|
|
case FaceType::inside: color = CGAL::Color{100, 250, 100}; break; // light green
|
|
case FaceType::inside_processed: color = CGAL::Color{170, 0, 0}; break; // dark red
|
|
case FaceType::outside: color = CGAL::Color{100, 0, 100}; break; // purple
|
|
case FaceType::not_constrained: color = CGAL::Color{127, 127, 127}; break; // gray
|
|
default: color = CGAL::Color{0, 0, 255}; // blue
|
|
}
|
|
}
|
|
CGAL::IO::write_OFF(off_file, mesh);
|
|
mesh_.remove_property_map(face_colors);
|
|
}
|
|
|
|
void priv::store(const ExPolygons &shapes, const std::string &svg_file) {
|
|
SVG svg(svg_file);
|
|
svg.draw(shapes);
|
|
}
|
|
|
|
void priv::store(const CutMesh &mesh, const ReductionMap &reduction_map, const std::string& dir)
|
|
{
|
|
if (reduction_order == 0) prepare_dir(dir);
|
|
std::string off_file = dir + "model" + std::to_string(reduction_order++) + ".off";
|
|
|
|
CutMesh &mesh_ = const_cast<CutMesh &>(mesh);
|
|
auto vertex_colors = mesh_.add_property_map<priv::VI, CGAL::Color>("v:color").first;
|
|
// initialize to gray color
|
|
for (VI vi: mesh.vertices())
|
|
vertex_colors[vi] = CGAL::Color{127, 127, 127};
|
|
|
|
for (VI reduction_from : mesh.vertices()) {
|
|
VI reduction_to = reduction_map[reduction_from];
|
|
if (!reduction_to.is_valid()) continue;
|
|
vertex_colors[reduction_from] = CGAL::Color{255, 0, 0};
|
|
vertex_colors[reduction_to] = CGAL::Color{0, 0, 255};
|
|
}
|
|
|
|
CGAL::IO::write_OFF(off_file, mesh);
|
|
mesh_.remove_property_map(vertex_colors);
|
|
}
|
|
|
|
namespace priv {
|
|
indexed_triangle_set create_indexed_triangle_set(const std::vector<FI> &faces,
|
|
const CutMesh &mesh);
|
|
} // namespace priv
|
|
|
|
indexed_triangle_set priv::create_indexed_triangle_set(
|
|
const std::vector<FI> &faces, const CutMesh &mesh)
|
|
{
|
|
std::vector<VI> vertices;
|
|
vertices.reserve(faces.size() * 2);
|
|
|
|
indexed_triangle_set its;
|
|
its.indices.reserve(faces.size());
|
|
for (FI fi : faces) {
|
|
HI hi = mesh.halfedge(fi);
|
|
HI hi_end = hi;
|
|
|
|
int ti = 0;
|
|
Vec3i t;
|
|
|
|
do {
|
|
VI vi = mesh.source(hi);
|
|
auto res = std::find(vertices.begin(), vertices.end(), vi);
|
|
t[ti++] = res - vertices.begin();
|
|
if (res == vertices.end()) vertices.push_back(vi);
|
|
hi = mesh.next(hi);
|
|
} while (hi != hi_end);
|
|
|
|
its.indices.push_back(t);
|
|
}
|
|
|
|
its.vertices.reserve(vertices.size());
|
|
for (VI vi : vertices) {
|
|
const auto &p = mesh.point(vi);
|
|
its.vertices.emplace_back(p.x(), p.y(), p.z());
|
|
}
|
|
return its;
|
|
}
|
|
|
|
void priv::store(const CutAOIs &aois, const CutMesh &mesh, const std::string &dir) {
|
|
auto create_outline_its =
|
|
[&mesh](const std::vector<HI> &outlines) -> indexed_triangle_set {
|
|
static const float line_width = 0.1f;
|
|
indexed_triangle_set its;
|
|
its.indices.reserve(2*outlines.size());
|
|
its.vertices.reserve(outlines.size()*4);
|
|
for (HI hi : outlines) {
|
|
//FI fi = mesh.face(hi);
|
|
VI vi_a = mesh.source(hi);
|
|
VI vi_b = mesh.target(hi);
|
|
VI vi_c = mesh.target(mesh.next(hi));
|
|
P3 p3_a = mesh.point(vi_a);
|
|
P3 p3_b = mesh.point(vi_b);
|
|
P3 p3_c = mesh.point(vi_c);
|
|
|
|
Vec3f a(p3_a.x(), p3_a.y(), p3_a.z());
|
|
Vec3f b(p3_b.x(), p3_b.y(), p3_b.z());
|
|
Vec3f c(p3_c.x(), p3_c.y(), p3_c.z());
|
|
|
|
Vec3f v1 = b - a; // from a to b
|
|
v1.normalize();
|
|
Vec3f v2 = c - a; // from a to c
|
|
v2.normalize();
|
|
Vec3f norm = v1.cross(v2);
|
|
norm.normalize();
|
|
Vec3f perp_to_edge = norm.cross(v1);
|
|
perp_to_edge.normalize();
|
|
Vec3f dir = -perp_to_edge * line_width;
|
|
|
|
size_t ai = its.vertices.size();
|
|
its.vertices.push_back(a);
|
|
size_t bi = its.vertices.size();
|
|
its.vertices.push_back(b);
|
|
size_t ai2 = its.vertices.size();
|
|
its.vertices.push_back(a + dir);
|
|
size_t bi2 = its.vertices.size();
|
|
its.vertices.push_back(b + dir);
|
|
|
|
its.indices.push_back(Vec3i(ai, ai2, bi));
|
|
its.indices.push_back(Vec3i(ai2, bi2, bi));
|
|
}
|
|
return its;
|
|
};
|
|
|
|
prepare_dir(dir);
|
|
for (const auto &aoi : aois) {
|
|
size_t index = &aoi - &aois.front();
|
|
std::string file = dir + "aoi" + std::to_string(index) + ".obj";
|
|
indexed_triangle_set its = create_indexed_triangle_set(aoi.first, mesh);
|
|
its_write_obj(its, file.c_str());
|
|
|
|
// exist some outline?
|
|
if (aoi.second.empty()) continue;
|
|
std::string file_outline = dir + "outline" + std::to_string(index) + ".obj";
|
|
indexed_triangle_set outline = create_outline_its(aoi.second);
|
|
its_write_obj(outline, file_outline.c_str());
|
|
}
|
|
}
|
|
|
|
void priv::store(const SurfacePatches &patches, const std::string &dir) {
|
|
prepare_dir(dir);
|
|
for (const priv::SurfacePatch &patch : patches) {
|
|
size_t index = &patch - &patches.front();
|
|
if (patch.mesh.faces().empty()) continue;
|
|
CGAL::IO::write_OFF(dir + "patch" + std::to_string(index) + ".off", patch.mesh);
|
|
}
|
|
}
|
|
//
|
|
//void priv::store(const ProjectionDistances &pds,
|
|
// const VCutAOIs &aois,
|
|
// const CutMeshes &meshes,
|
|
// const std::string &file,
|
|
// float width)
|
|
//{
|
|
// // create rectangle for each half edge from projection distances
|
|
// indexed_triangle_set its;
|
|
// its.vertices.reserve(4 * pds.size());
|
|
// its.indices.reserve(2 * pds.size());
|
|
// for (const ProjectionDistance &pd : pds) {
|
|
// if (pd.aoi_index == std::numeric_limits<uint32_t>::max()) continue;
|
|
// HI hi = aois[pd.model_index][pd.aoi_index].second[pd.hi_index];
|
|
// const CutMesh &mesh = meshes[pd.model_index];
|
|
// VI vi1 = mesh.source(hi);
|
|
// VI vi2 = mesh.target(hi);
|
|
// VI vi3 = mesh.target(mesh.next(hi));
|
|
// const P3 &p1 = mesh.point(vi1);
|
|
// const P3 &p2 = mesh.point(vi2);
|
|
// const P3 &p3 = mesh.point(vi3);
|
|
// Vec3f v1(p1.x(), p1.y(), p1.z());
|
|
// Vec3f v2(p2.x(), p2.y(), p2.z());
|
|
// Vec3f v3(p3.x(), p3.y(), p3.z());
|
|
//
|
|
// Vec3f v12 = v2 - v1;
|
|
// v12.normalize();
|
|
// Vec3f v13 = v3 - v1;
|
|
// v13.normalize();
|
|
// Vec3f n = v12.cross(v13);
|
|
// n.normalize();
|
|
// Vec3f side = n.cross(v12);
|
|
// side.normalize();
|
|
// side *= -width;
|
|
//
|
|
// uint32_t i = its.vertices.size();
|
|
// its.vertices.push_back(v1);
|
|
// its.vertices.push_back(v1+side);
|
|
// its.vertices.push_back(v2);
|
|
// its.vertices.push_back(v2+side);
|
|
//
|
|
// its.indices.emplace_back(i, i + 1, i + 2);
|
|
// its.indices.emplace_back(i + 2, i + 1, i + 3);
|
|
// }
|
|
// its_write_obj(its, file.c_str());
|
|
//}
|
|
|
|
void priv::store(const ExPolygons &shapes, const std::vector<bool> &mask, const Connections &connections, const std::string &file_svg)
|
|
{
|
|
auto bb = get_extents(shapes);
|
|
int width = get_extents(shapes.front()).size().x() / 70;
|
|
|
|
SVG svg(file_svg, bb);
|
|
svg.draw(shapes);
|
|
|
|
ExPolygonsIndices s2i(shapes);
|
|
auto get_point = [&shapes, &s2i](size_t i)->Point {
|
|
auto id = s2i.cvt(i);
|
|
const ExPolygon &s = shapes[id.expolygons_index];
|
|
const Polygon &p = (id.polygon_index == 0) ?
|
|
s.contour :
|
|
s.holes[id.polygon_index - 1];
|
|
return p[id.point_index];
|
|
};
|
|
|
|
bool is_first = true;
|
|
for (const Connection &c : connections) {
|
|
if (is_first) {
|
|
is_first = false;
|
|
Point p = get_point(c.first);
|
|
svg.draw(p, "purple", 4 * width);
|
|
continue;
|
|
}
|
|
Point p1 = get_point(c.first);
|
|
Point p2 = get_point(c.second);
|
|
svg.draw(Line(p1, p2), "red", width);
|
|
}
|
|
|
|
for (size_t i = 0; i < s2i.get_count(); i++) {
|
|
Point p = get_point(i);
|
|
svg.draw(p, "black", 2*width);
|
|
if (!mask[i])
|
|
svg.draw(p, "white", width);
|
|
}
|
|
svg.Close();
|
|
}
|
|
|
|
namespace priv {
|
|
/// <summary>
|
|
/// Create model consist of rectangles for each contour edge
|
|
/// </summary>
|
|
/// <param name="its"></param>
|
|
/// <param name="contour"></param>
|
|
/// <returns></returns>
|
|
indexed_triangle_set create_contour_its(const indexed_triangle_set& its, const std::vector<unsigned int> &contour);
|
|
|
|
/// <summary>
|
|
/// Getter on triangle tip (third vertex of face)
|
|
/// </summary>
|
|
/// <param name="vi1">First vertex index</param>
|
|
/// <param name="vi2">Second vertex index</param>
|
|
/// <param name="its">Source model</param>
|
|
/// <returns>Tip Vertex index</returns>
|
|
unsigned int get_triangle_tip(unsigned int vi1,
|
|
unsigned int vi2,
|
|
const indexed_triangle_set &its);
|
|
}
|
|
|
|
|
|
unsigned int priv::get_triangle_tip(unsigned int vi1,
|
|
unsigned int vi2,
|
|
const indexed_triangle_set &its)
|
|
{
|
|
assert(vi1 < its.vertices.size());
|
|
assert(vi2 < its.vertices.size());
|
|
for (const auto &t : its.indices) {
|
|
unsigned int tvi = std::numeric_limits<unsigned int>::max();
|
|
for (const auto &vi : t) {
|
|
unsigned int vi_ = static_cast<unsigned int>(vi);
|
|
if (vi_ == vi1) continue;
|
|
if (vi_ == vi2) continue;
|
|
if (tvi == std::numeric_limits<unsigned int>::max()) {
|
|
tvi = vi_;
|
|
} else {
|
|
tvi = std::numeric_limits<unsigned int>::max();
|
|
break;
|
|
}
|
|
}
|
|
if (tvi != std::numeric_limits<unsigned int>::max())
|
|
return tvi;
|
|
}
|
|
// triangle with indices vi1 and vi2 doesnt exist
|
|
assert(false);
|
|
return std::numeric_limits<unsigned int>::max();
|
|
}
|
|
|
|
indexed_triangle_set priv::create_contour_its(
|
|
const indexed_triangle_set &its, const std::vector<unsigned int> &contour)
|
|
{
|
|
static const float line_width = 0.1f;
|
|
indexed_triangle_set result;
|
|
result.vertices.reserve((contour.size() + 1) * 4);
|
|
result.indices.reserve((contour.size() + 1) * 2);
|
|
unsigned int prev_vi = contour.back();
|
|
for (unsigned int vi : contour) {
|
|
const Vec3f &a = its.vertices[vi];
|
|
const Vec3f &b = its.vertices[prev_vi];
|
|
const Vec3f &c = its.vertices[get_triangle_tip(vi, prev_vi, its)];
|
|
|
|
Vec3f v1 = b - a; // from a to b
|
|
v1.normalize();
|
|
Vec3f v2 = c - a; // from a to c
|
|
v2.normalize();
|
|
// triangle normal
|
|
Vec3f norm = v1.cross(v2);
|
|
norm.normalize();
|
|
// perpendiculat to edge lay on triangle
|
|
Vec3f perp_to_edge = norm.cross(v1);
|
|
perp_to_edge.normalize();
|
|
|
|
Vec3f dir = -perp_to_edge * line_width;
|
|
|
|
size_t ai = result.vertices.size();
|
|
result.vertices.push_back(a);
|
|
size_t bi = result.vertices.size();
|
|
result.vertices.push_back(b);
|
|
size_t ai2 = result.vertices.size();
|
|
result.vertices.push_back(a + dir);
|
|
size_t bi2 = result.vertices.size();
|
|
result.vertices.push_back(b + dir);
|
|
|
|
result.indices.push_back(Vec3i(ai, bi, ai2));
|
|
result.indices.push_back(Vec3i(ai2, bi, bi2));
|
|
prev_vi = vi;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
//void priv::store(const SurfaceCuts &cut, const std::string &dir) {
|
|
// prepare_dir(dir);
|
|
// for (const auto &c : cut) {
|
|
// size_t index = &c - &cut.front();
|
|
// std::string file = dir + "cut" + std::to_string(index) + ".obj";
|
|
// its_write_obj(c, file.c_str());
|
|
// for (const auto& contour : c.contours) {
|
|
// size_t c_index = &contour - &c.contours.front();
|
|
// std::string c_file = dir + "cut" + std::to_string(index) +
|
|
// "contour" + std::to_string(c_index) + ".obj";
|
|
// indexed_triangle_set c_its = create_contour_its(c, contour);
|
|
// its_write_obj(c_its, c_file.c_str());
|
|
// }
|
|
// }
|
|
//}
|
|
|
|
void priv::store(const SurfaceCut &cut, const std::string &file, const std::string &contour_dir) {
|
|
prepare_dir(contour_dir);
|
|
its_write_obj(cut, file.c_str());
|
|
for (const auto& contour : cut.contours) {
|
|
size_t c_index = &contour - &cut.contours.front();
|
|
std::string c_file = contour_dir + std::to_string(c_index) + ".obj";
|
|
indexed_triangle_set c_its = create_contour_its(cut, contour);
|
|
its_write_obj(c_its, c_file.c_str());
|
|
}
|
|
}
|
|
|
|
void priv::store(const std::vector<indexed_triangle_set> &models,
|
|
const std::string &obj_filename)
|
|
{
|
|
indexed_triangle_set merged_model;
|
|
for (const indexed_triangle_set &model : models)
|
|
its_merge(merged_model, model);
|
|
its_write_obj(merged_model, obj_filename.c_str());
|
|
}
|
|
|
|
void priv::store(const std::vector<priv::CutMesh> &models,
|
|
const std::string &dir)
|
|
{
|
|
prepare_dir(dir);
|
|
if (models.empty()) return;
|
|
if (models.size() == 1) {
|
|
CGAL::IO::write_OFF(dir + "model.off", models.front());
|
|
return;
|
|
}
|
|
size_t model_index = 0;
|
|
for (const priv::CutMesh& model : models) {
|
|
std::string filename = dir + "model" + std::to_string(model_index++) + ".off";
|
|
CGAL::IO::write_OFF(filename, model);
|
|
}
|
|
}
|
|
|
|
// store projection center
|
|
void priv::store(const Emboss::IProjection &projection,
|
|
const Point &point_to_project,
|
|
float projection_ratio,
|
|
const std::string &obj_filename)
|
|
{
|
|
auto [front, back] = projection.create_front_back(point_to_project);
|
|
Vec3d diff = back - front;
|
|
Vec3d pos = front + diff * projection_ratio;
|
|
priv::store(pos.cast<float>(), diff.normalized().cast<float>(),
|
|
DEBUG_OUTPUT_DIR + "projection_center.obj"); // only debug
|
|
}
|
|
|
|
#endif // DEBUG_OUTPUT_DIR
|
|
|
|
bool Slic3r::corefine_test(const std::string &model_path, const std::string &shape_path) {
|
|
priv::CutMesh model, shape;
|
|
if (!CGAL::IO::read_OFF(model_path, model)) return false;
|
|
if (!CGAL::IO::read_OFF(shape_path, shape)) return false;
|
|
|
|
CGAL::Polygon_mesh_processing::corefine(model, shape);
|
|
return true;
|
|
}
|