PrusaSlicer-NonPlainar/src/libslic3r/CutSurface.cpp
Filip Sykala - NTB T15p ee6e947312 Clean after 9fef0cd091
2022-10-20 10:15:08 +02:00

3991 lines
154 KiB
C++

#include "CutSurface.hpp"
/// models_input.obj - Check transormation of model to each others
/// projection_center.obj - circle representing center of projection with correct distance
/// {M} .. model index
/// model/model{M}.off - CGAL model created from index_triangle_set
/// model_neg/model{M}.off - CGAL model created for differenciate (multi volume object)
/// shape.off - CGAL model created from shapes
/// constrained/model{M}.off - Visualization of inside and outside triangles
/// Green - not along constrained edge
/// Red - sure that are inside
/// Purple - sure that are outside
/// (only along constrained edge)
/// filled/model{M}.off - flood fill green triangles inside of red area
/// - Same meaning of color as constrained
/// {N} .. Order of cutted Area of Interestmodel from model surface
/// model_AOIs/{M}/cutAOI{N}.obj - Extracted Area of interest from corefined model
/// model_AOIs/{M}/outline{N}.obj - Outline of Cutted Area
/// {O} .. Order number of patch
/// patches/patch{O}.off
/// result.obj - Merged result its
/// result_contours/{O}.obj - visualization of contours for result patches
//#define DEBUG_OUTPUT_DIR std::string("C:/data/temp/cutSurface/")
using namespace Slic3r;
#include "ExPolygonsIndex.hpp"
#include <CGAL/Polygon_mesh_processing/corefinement.h>
#include <CGAL/Exact_integer.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/Cartesian_converter.h>
#include <tbb/parallel_for.h>
// libslic3r
#include "TriangleMesh.hpp" // its_merge
#include "Utils.hpp" // next_highest_power_of_2
#include "ClipperUtils.hpp" // union_ex + offset_ex
namespace priv {
using Project = Emboss::IProjection;
using Project3d = Emboss::IProject3d;
/// <summary>
/// Set true for indices out of area of interest
/// </summary>
/// <param name="skip_indicies">Flag to convert triangle to cgal</param>
/// <param name="its">model</param>
/// <param name="projection">Convert 2d point to pair of 3d points</param>
/// <param name="shapes_bb">2d bounding box define AOI</param>
void set_skip_for_out_of_aoi(std::vector<bool> &skip_indicies,
const indexed_triangle_set &its,
const Project &projection,
const BoundingBox &shapes_bb);
/// <summary>
/// Set true for indicies outward and almost parallel together.
/// Note: internally calculate normals
/// </summary>
/// <param name="skip_indicies">Flag to convert triangle to cgal</param>
/// <param name="its">model</param>
/// <param name="projection">Direction to measure angle</param>
/// <param name="max_angle">Maximal allowed angle between opposit normal and
/// projection direction [in DEG]</param>
void set_skip_by_angle(std::vector<bool> &skip_indicies,
const indexed_triangle_set &its,
const Project3d &projection,
double max_angle = 89.);
using EpicKernel = CGAL::Exact_predicates_inexact_constructions_kernel;
using CutMesh = CGAL::Surface_mesh<EpicKernel::Point_3>;
using CutMeshes = std::vector<CutMesh>;
using VI = CGAL::SM_Vertex_index;
using HI = CGAL::SM_Halfedge_index;
using EI = CGAL::SM_Edge_index;
using FI = CGAL::SM_Face_index;
using P3 = CGAL::Epick::Point_3;
/// <summary>
/// Convert triangle mesh model to CGAL Surface_mesh
/// Filtrate out opposite triangles
/// Add property map for source face index
/// </summary>
/// <param name="its">Model</param>
/// <param name="skip_indicies">Flags that triangle should be skiped</param>
/// <param name="flip">When true triangle will flip normal</param>
/// <returns>CGAL mesh - half edge mesh</returns>
CutMesh to_cgal(const indexed_triangle_set &its,
const std::vector<bool> &skip_indicies,
bool flip = false);
/// <summary>
/// Covert 2d shape (e.g. Glyph) to CGAL model
/// NOTE: internaly create
/// edge_shape_map .. Property map to store conversion from edge to contour
/// face_shape_map .. Property map to store conversion from face to contour
/// </summary>
/// <param name="shapes">2d shapes to project</param>
/// <param name="projection">Define transformation 2d point into 3d</param>
/// <returns>CGAL model of extruded shape</returns>
CutMesh to_cgal(const ExPolygons &shapes, const Project &projection);
// function to check result of projection. 2d int32_t -> 3d double
bool exist_duplicit_vertex(const CutMesh& mesh);
/// <summary>
/// IntersectingElement
///
/// Adress polygon inside of ExPolygon
/// Keep information about source of vertex:
/// - from face (one of 2 possible)
/// - from edge (one of 2 possible)
///
/// V1~~~~~V2
/// | f1 /:
/// | / :
/// e1| /e2:
/// | / :
/// |/ f2 :
/// V1'~~~~V2'
///
/// | .. edge
/// / .. edge
/// : .. foreign edge - neighbor
/// ~ .. no care edge - idealy should not cross model
/// V1,V1' .. projected 2d point to 3d
/// V2,V2' .. projected 2d point to 3d
///
/// Vertex indexing
/// V1 .. i (vertex_base + 2x index of point in polygon)
/// V1' .. i + 1
/// V2 .. j = i + 2 || 0 (for last i in polygon)
/// V2' .. j + 1
///
/// f1 .. text_face_1 (triangle face made by side of shape contour)
/// f2 .. text_face_2
/// e1 .. text_edge_1 (edge on side of face made by side of shape contour)
/// e2 .. text_edge_2
///
/// </summary>
struct IntersectingElement
{
// identify source point in shapes
uint32_t shape_point_index{std::numeric_limits<uint32_t>::max()};
// store together type, is_first, is_last
unsigned char attr{std::numeric_limits<unsigned char>::max()};
// vertex or edge ID, where edge ID is the index of the source point.
// There are 4 consecutive indices generated for a single contour edge:
// 0th - 1st text edge (straight)
// 1th - 1st text face
// 2nd - 2nd text edge (diagonal)
// 3th - 2nd text face
// Type of intersecting element from extruded shape( 3d )
// NOTE: type must be storable to 3bit -> max value is 7
enum class Type: unsigned char {
edge_1 = 0,
face_1 = 1,
edge_2 = 2,
face_2 = 3,
undefined = 4
};
IntersectingElement &set_type(Type t)
{
attr = static_cast<unsigned char>(
attr + (int) t - (int) get_type());
return *this;
}
void set_is_first(){ attr += 8; }
void set_is_last(){ attr += 16; }
Type get_type() const { return static_cast<Type>(attr % 8);}
bool is_first() const { return 8 <= attr && attr < 16; }
bool is_last() const { return attr >= 16; }
};
// stored in model made by shape
using EdgeShapeMap = CutMesh::Property_map<EI, IntersectingElement>;
using FaceShapeMap = CutMesh::Property_map<FI, IntersectingElement>;
// stored in surface source - pointer to EdgeShapeMap | FaceShapeMap
using VertexShapeMap = CutMesh::Property_map<VI, const IntersectingElement *>;
// stored in model made by shape
const std::string edge_shape_map_name = "e:IntersectingElement";
const std::string face_shape_map_name = "f:IntersectingElement";
// stored in surface source
const std::string vert_shape_map_name = "v:IntersectingElement";
/// <summary>
/// Flag for faces in CGAL mesh
/// </summary>
enum class FaceType {
// face inside of the cutted shape
inside,
// face outside of the cutted shape
outside,
// face without constrained edge (In or Out)
not_constrained,
// Helper flag that inside was processed
inside_processed
};
using FaceTypeMap = CutMesh::Property_map<FI, FaceType>;
const std::string face_type_map_name = "f:side";
// Conversion one vertex index to another
using CvtVI2VI = CutMesh::Property_map<VI, VI>;
// Each Patch track outline vertex conversion to tource model
const std::string patch_source_name = "v:patch_source";
// For VI that should be reduced, contain VI to use instead of reduced
// Other VI are invalid
using ReductionMap = CvtVI2VI;
const std::string vertex_reduction_map_name = "v:reduction";
// A property map containing the constrained-or-not status of each edge
using EdgeBoolMap = CutMesh::Property_map<EI, bool>;
const std::string is_constrained_edge_name = "e:is_constrained";
/// <summary>
/// Create map to reduce unnecesary triangles,
/// Triangles are made by divided quad to two triangles
/// on side of cutting shape mesh
/// Note: also use from mesh (have to be created)
/// face_type_map .. Type of shape inside / outside
/// vert_shape_map .. Source of outline vertex
/// </summary>
/// <param name="reduction_map">Reduction map from vertex to vertex,
/// when key == value than no reduction</param>
/// <param name="faces">Faces of one </param>
/// <param name="mesh">Input object</param>
void create_reduce_map(ReductionMap &reduction_map, const CutMesh &meshes);
// Patch made by Cut area of interest from model
// connected faces(triangles) and outlines(halfEdges) for one surface cut
using CutAOI = std::pair<std::vector<FI>, std::vector<HI>>;
// vector of Cutted Area of interest cutted from one CGAL model
using CutAOIs = std::vector<CutAOI>;
// vector of CutAOIs for each model
using VCutAOIs = std::vector<CutAOIs>;
/// <summary>
/// Create AOIs(area of interest) on model surface
/// </summary>
/// <param name="cgal_model">Input model converted to CGAL
/// NOTE: will be extended by corefine edge </param>
/// <param name="shapes">2d contours</param>
/// <param name="cgal_shape">[const]Model made by shapes
/// NOTE: Can't be definde as const because of corefine function input definition,
/// but it is.</param>
/// <param name="projection_ratio">Wanted projection distance</param>
/// <param name="s2i">Convert index to shape point from ExPolygons</param>
/// <returns>Patches from model surface</returns>
CutAOIs cut_from_model(CutMesh &cgal_model,
const ExPolygons &shapes,
/*const*/ CutMesh &cgal_shape,
float projection_ratio,
const ExPolygonsIndices &s2i);
using Loop = std::vector<VI>;
using Loops = std::vector<Loop>;
/// <summary>
/// Create closed loops of contour vertices created from open half edges
/// </summary>
/// <param name="outlines">Unsorted half edges</param>
/// <param name="mesh">Source mesh for half edges</param>
/// <returns>Closed loops</returns>
Loops create_loops(const std::vector<HI> &outlines, const CutMesh &mesh);
// To track during diff_models,
// what was cutted off, from CutAOI
struct SurfacePatch
{
// converted cut to CGAL mesh
// Mesh is reduced.
// (do not contain divided triangles on contour - created by side Quad)
CutMesh mesh;
// CvtVI2VI cvt = mesh.property_map<VI, VI>(patch_source_name);
// Conversion VI from this patch to source VI(model) is stored in mesh property
// Outlines - converted CutAOI.second (half edges)
// to loops (vertex indicies) by function create_loops
Loops loops;
// bounding box of mesh
BoundingBoxf3 bb;
//// Data needed to find best projection distances
// index of source model in models
size_t model_id;
// index of source CutAOI
size_t aoi_id;
// index of shape from ExPolygons
size_t shape_id = 0;
// flag that this patch contain whole CutAOI
bool is_whole_aoi = true;
};
using SurfacePatches = std::vector<SurfacePatch>;
struct ModelCutId
{
// index of model
uint32_t model_index;
// index of cut inside model
uint32_t cut_index;
};
/// <summary>
/// Keep conversion from VCutAOIs to Index and vice versa
/// Model_index .. contour(or hole) poin from ExPolygons
/// Index .. continous number
/// </summary>
class ModelCut2index
{
std::vector<uint32_t> m_offsets;
// for check range of index
uint32_t m_count;
public:
ModelCut2index(const VCutAOIs &cuts);
uint32_t calc_index(const ModelCutId &id) const;
ModelCutId calc_id(uint32_t index) const;
uint32_t get_count() const { return m_count; };
const std::vector<uint32_t> &get_offsets() const { return m_offsets; }
};
/// <summary>
/// Differenciate other models
/// </summary>
/// <param name="cuts">Patches from meshes</param>
/// <param name="cut_models">Source points for Cutted AOIs
/// NOTE: Create Reduction map as mesh property - clean on end</param>
/// <param name="models">Original models without cut modifications
/// used for differenciation
/// NOTE: Clip function modify Mesh</param>
/// <param name="projection">Define projection direction</param>
/// <returns>Cuts differenciate by models - Patch</returns>
SurfacePatches diff_models(VCutAOIs &cuts,
/*const*/ CutMeshes &cut_models,
/*const*/ CutMeshes &models,
const Project3d &projection);
/// <summary>
/// Checking whether patch is uninterrupted cover of whole expolygon it belongs.
/// </summary>
/// <param name="cutAOI">Part of surface to check</param>
/// <param name="shape">Source shape</param>
/// <param name="mesh">Source of cut</param>
/// <returns>True when cover whole expolygon otherwise false</returns>
bool is_over_whole_expoly(const CutAOI &cutAOI,
const ExPolygon &shape,
const CutMesh &mesh);
/// <summary>
/// Checking whether patch is uninterrupted cover of whole expolygon it belongs.
/// </summary>
/// <param name="patch">Part of surface to check</param>
/// <param name="shape">Source shape</param>
/// <returns>True when cover whole expolygon otherwise false</returns>
bool is_over_whole_expoly(const SurfacePatch &patch,
const ExPolygons &shapes,
const VCutAOIs &cutAOIs,
const CutMeshes &meshes);
/// <summary>
/// Unptoject points from outline loops of patch
/// </summary>
/// <param name="patch">Contain loops and vertices</param>
/// <param name="projection">Know how to project from 3d to 2d</param>
/// <param name="depth_range">Range of unprojected points x .. min, y .. max value</param>
/// <returns>Unprojected points in loops</returns>
Polygons unproject_loops(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range);
/// <summary>
/// Unproject points from loops and create expolygons
/// </summary>
/// <param name="patch">Patch to convert on expolygon</param>
/// <param name="projection">Convert 3d point to 2d</param>
/// <param name="depth_range">Range of unprojected points x .. min, y .. max value</param>
/// <returns>Expolygon represent patch in 2d</returns>
ExPolygon to_expoly(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range);
/// <summary>
/// To select surface near projection distance
/// </summary>
struct ProjectionDistance
{
// index of source model
uint32_t model_index = std::numeric_limits<uint32_t>::max();
// index of CutAOI
uint32_t aoi_index = std::numeric_limits<uint32_t>::max();
// index of Patch
uint32_t patch_index = std::numeric_limits<uint32_t>::max();
// signed distance to projection
float distance = std::numeric_limits<float>::max();
};
// addresed by ExPolygonsIndices
using ProjectionDistances = std::vector<ProjectionDistance>;
// each point in shapes has its ProjectionDistances
using VDistances = std::vector<ProjectionDistances>;
/// <summary>
/// Calculate distances for SurfacePatches outline points
/// NOTE:
/// each model has to have "vert_shape_map" .. Know source of new vertices
/// </summary>
/// <param name="patches">Part of surface</param>
/// <param name="models">Vertices position</param>
/// <param name="shapes_mesh">Mesh created by shapes</param>
/// <param name="count_shapes_points">Count of contour points in shapes</param>
/// <param name="projection_ratio">Define best distnace</param>
/// <returns>Projection distances of cutted shape points</returns>
VDistances calc_distances(const SurfacePatches &patches,
const CutMeshes &models,
const CutMesh &shapes_mesh,
size_t count_shapes_points,
float projection_ratio);
/// <summary>
/// Select distances in similar depth between expolygons
/// </summary>
/// <param name="distances">All distances - Vector distances for each shape point</param>
/// <param name="shapes">Vector of letters</param>
/// <param name="start">Pivot for start projection in 2d</param>
/// <param name="s2i">Convert index to addresss inside of shape</param>
/// <param name="patches">Cutted parts from surface</param>
/// <returns>Closest distance projection indexed by points in shapes(see s2i)</returns>
ProjectionDistances choose_best_distance(
const VDistances &distances,
const ExPolygons &shapes,
const Point &start,
const ExPolygonsIndices &s2i,
const SurfacePatches &patches);
/// <summary>
/// Create mask for patches
/// </summary>
/// <param name="best_distances">For each point selected closest distance</param>
/// <param name="patches">All patches</param>
/// <param name="shapes">All patches</param>
/// <returns>Mask of used patch</returns>
std::vector<bool> select_patches(const ProjectionDistances &best_distances,
const SurfacePatches &patches,
const ExPolygons &shapes,
const ExPolygonsIndices &s2i,
const VCutAOIs &cutAOIs,
const CutMeshes &meshes,
const Project &projection);
/// <summary>
/// Merge two surface cuts together
/// Added surface cut will be consumed
/// </summary>
/// <param name="sc">Surface cut to extend</param>
/// <param name="sc_add">Surface cut to consume</param>
void append(SurfaceCut &sc, SurfaceCut &&sc_add);
/// <summary>
/// Convert patch to indexed_triangle_set
/// </summary>
/// <param name="patch">Part of surface</param>
/// <returns>Converted patch</returns>
SurfaceCut patch2cut(SurfacePatch &patch);
/// <summary>
/// Merge masked patches to one surface cut
/// </summary>
/// <param name="patches">All patches
/// NOTE: Not const because One needs to add property for Convert indices</param>
/// <param name="mask">Mash for using patch</param>
/// <returns>Result surface cut</returns>
SurfaceCut merge_patches(/*const*/ SurfacePatches &patches,
const std::vector<bool> &mask);
#ifdef DEBUG_OUTPUT_DIR
void prepare_dir(const std::string &dir);
void initialize_store(const std::string &dir_to_clear);
/// <summary>
/// Debug purpose store of mesh with colored face by face type
/// </summary>
/// <param name="mesh">Input mesh, could add property color
/// NOTE: Not const because need to [optionaly] append color property map</param>
/// <param name="face_type_map">Color source</param>
/// <param name="file">File to store</param>
void store(const CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string &dir, bool is_filled = false);
void store(const ExPolygons &shapes, const std::string &svg_file);
void store(const CutMesh &mesh, const ReductionMap &reduction_map, const std::string &dir);
void store(const CutAOIs &aois, const CutMesh &mesh, const std::string &dir);
void store(const SurfacePatches &patches, const std::string &dir);
void store(const Vec3f &vertex, const Vec3f &normal, const std::string &file, float size = 2.f);
//void store(const ProjectionDistances &pds, const VCutAOIs &aois, const CutMeshes &meshes, const std::string &file, float width = 0.2f/* [in mm] */);
using Connection = std::pair<size_t, size_t>; using Connections = std::vector<Connection>;
void store(const ExPolygons &shapes, const std::vector<bool> &mask_distances, const Connections &connections, const std::string &file_svg);
void store(const SurfaceCut &cut, const std::string &file, const std::string &contour_dir);
void store(const std::vector<indexed_triangle_set> &models, const std::string &obj_filename);
void store(const std::vector<CutMesh>&models, const std::string &dir);
void store(const Emboss::IProjection &projection, const Point &point_to_project, float projection_ratio, const std::string &obj_filename);
#endif // DEBUG_OUTPUT_DIR
} // namespace privat
#ifdef DEBUG_OUTPUT_DIR
#include "libslic3r/SVG.hpp"
#include <boost/log/trivial.hpp>
#include <filesystem>
#endif // DEBUG_OUTPUT_DIR
SurfaceCut Slic3r::cut_surface(const ExPolygons &shapes,
const std::vector<indexed_triangle_set> &models,
const Emboss::IProjection &projection,
float projection_ratio)
{
assert(!models.empty());
assert(!shapes.empty());
if (models.empty() || shapes.empty() ) return {};
#ifdef DEBUG_OUTPUT_DIR
priv::initialize_store(DEBUG_OUTPUT_DIR);
priv::store(models, DEBUG_OUTPUT_DIR + "models_input.obj");
priv::store(shapes, DEBUG_OUTPUT_DIR + "shapes.svg");
#endif // DEBUG_OUTPUT_DIR
// for filter out triangles out of bounding box
BoundingBox shapes_bb = get_extents(shapes);
#ifdef DEBUG_OUTPUT_DIR
priv::store(projection, shapes_bb.center(), projection_ratio, DEBUG_OUTPUT_DIR + "projection_center.obj");
#endif // DEBUG_OUTPUT_DIR
// for filttrate opposite triangles and a little more
const float max_angle = 89.9f;
priv::CutMeshes cgal_models; // source for patch
priv::CutMeshes cgal_neg_models; // model used for differenciate patches
cgal_models.reserve(models.size());
for (const indexed_triangle_set &its : models) {
std::vector<bool> skip_indicies(its.indices.size(), {false});
priv::set_skip_for_out_of_aoi(skip_indicies, its, projection, shapes_bb);
// create model for differenciate cutted patches
bool flip = true;
cgal_neg_models.push_back(priv::to_cgal(its, skip_indicies, flip));
// cut out more than only opposit triangles
priv::set_skip_by_angle(skip_indicies, its, projection, max_angle);
cgal_models.push_back(priv::to_cgal(its, skip_indicies));
}
#ifdef DEBUG_OUTPUT_DIR
priv::store(cgal_models, DEBUG_OUTPUT_DIR + "model/");// model[0-N].off
priv::store(cgal_neg_models, DEBUG_OUTPUT_DIR + "model_neg/"); // model[0-N].off
#endif // DEBUG_OUTPUT_DIR
priv::CutMesh cgal_shape = priv::to_cgal(shapes, projection);
#ifdef DEBUG_OUTPUT_DIR
CGAL::IO::write_OFF(DEBUG_OUTPUT_DIR + "shape.off", cgal_shape); // only debug
#endif // DEBUG_OUTPUT_DIR
// create tool for convert index to shape Point adress and vice versa
ExPolygonsIndices s2i(shapes);
priv::VCutAOIs model_cuts;
// cut shape from each cgal model
for (priv::CutMesh &cgal_model : cgal_models) {
priv::CutAOIs cutAOIs = priv::cut_from_model(
cgal_model, shapes, cgal_shape, projection_ratio, s2i);
#ifdef DEBUG_OUTPUT_DIR
size_t index = &cgal_model - &cgal_models.front();
priv::store(cutAOIs, cgal_model, DEBUG_OUTPUT_DIR + "model_AOIs/" + std::to_string(index) + "/"); // only debug
#endif // DEBUG_OUTPUT_DIR
model_cuts.push_back(std::move(cutAOIs));
}
priv::SurfacePatches patches = priv::diff_models(model_cuts, cgal_models, cgal_neg_models, projection);
#ifdef DEBUG_OUTPUT_DIR
priv::store(patches, DEBUG_OUTPUT_DIR + "patches/");
#endif // DEBUG_OUTPUT_DIR
if (patches.empty()) return {};
// fix - convert shape_point_id to expolygon index
// save 1 param(s2i) from diff_models call
for (priv::SurfacePatch &patch : patches)
patch.shape_id = s2i.cvt(patch.shape_id).expolygons_index;
// calc distance to projection for all outline points of cutAOI(shape)
// it is used for distiguish the top one
uint32_t shapes_points = s2i.get_count();
// for each point collect all projection distances
priv::VDistances distances = priv::calc_distances(patches, cgal_models, cgal_shape, shapes_points, projection_ratio);
Point start = shapes_bb.center(); // only align center
// Use only outline points
// for each point select best projection
priv::ProjectionDistances best_projection = priv::choose_best_distance(distances, shapes, start, s2i, patches);
std::vector<bool> use_patch = priv::select_patches(best_projection, patches,
shapes, s2i,model_cuts, cgal_models, projection);
SurfaceCut result = merge_patches(patches, use_patch);
//*/
#ifdef DEBUG_OUTPUT_DIR
priv::store(result, DEBUG_OUTPUT_DIR + "result.obj", DEBUG_OUTPUT_DIR + "result_contours/");
#endif // DEBUG_OUTPUT_DIR
return result;
}
indexed_triangle_set Slic3r::cut2model(const SurfaceCut &cut,
const Emboss::IProject3d &projection)
{
assert(!cut.empty());
size_t count_vertices = cut.vertices.size() * 2;
size_t count_indices = cut.indices.size() * 2;
// indices from from zig zag
for (const auto &c : cut.contours) {
assert(!c.empty());
count_indices += c.size() * 2;
}
indexed_triangle_set result;
result.vertices.reserve(count_vertices);
result.indices.reserve(count_indices);
// front
result.vertices.insert(result.vertices.end(),
cut.vertices.begin(), cut.vertices.end());
result.indices.insert(result.indices.end(),
cut.indices.begin(), cut.indices.end());
// back
for (const Vec3f &v : cut.vertices) {
Vec3d vd = v.cast<double>();
Vec3d vd2 = projection.project(vd);
result.vertices.push_back(vd2.cast<float>());
}
size_t back_offset = cut.vertices.size();
for (const auto &i : cut.indices) {
// check range of indices in cut
assert(i.x() + back_offset < result.vertices.size());
assert(i.y() + back_offset < result.vertices.size());
assert(i.z() + back_offset < result.vertices.size());
assert(i.x() >= 0 && i.x() < cut.vertices.size());
assert(i.y() >= 0 && i.y() < cut.vertices.size());
assert(i.z() >= 0 && i.z() < cut.vertices.size());
// Y and Z is swapped CCW triangles for back side
result.indices.emplace_back(i.x() + back_offset,
i.z() + back_offset,
i.y() + back_offset);
}
// zig zag indices
for (const auto &contour : cut.contours) {
size_t prev_front_index = contour.back();
size_t prev_back_index = back_offset + prev_front_index;
for (size_t front_index : contour) {
assert(front_index < cut.vertices.size());
size_t back_index = back_offset + front_index;
result.indices.emplace_back(front_index, prev_front_index, back_index);
result.indices.emplace_back(prev_front_index, prev_back_index, back_index);
prev_front_index = front_index;
prev_back_index = back_index;
}
}
assert(count_vertices == result.vertices.size());
assert(count_indices == result.indices.size());
return result;
}
// set_skip_for_out_of_aoi helping functions
namespace priv {
// define plane
using PointNormal = std::pair<Vec3d, Vec3d>;
using PointNormals = std::array<PointNormal, 4>;
/// <summary>
/// Check
/// </summary>
/// <param name="side"></param>
/// <param name="v"></param>
/// <param name="point_normals"></param>
/// <returns></returns>
bool is_out_of(const Vec3d &v, const PointNormal &point_normal);
using IsOnSides = std::vector<std::array<bool, 4>>;
/// <summary>
/// Check if triangle t has all vertices out of any plane
/// </summary>
/// <param name="t">Triangle</param>
/// <param name="is_on_sides">Flag is vertex index out of plane</param>
/// <returns>True when triangle is out of one of plane</returns>
bool is_all_on_one_side(const Vec3i &t, const IsOnSides& is_on_sides);
} // namespace priv
bool priv::is_out_of(const Vec3d &v, const PointNormal &point_normal)
{
const Vec3d& p = point_normal.first;
const Vec3d& n = point_normal.second;
double signed_distance = (v - p).dot(n);
return signed_distance > 1e-5;
};
bool priv::is_all_on_one_side(const Vec3i &t, const IsOnSides& is_on_sides) {
for (size_t side = 0; side < 4; side++) {
bool result = true;
for (auto vi : t) {
if (!is_on_sides[vi][side]) {
result = false;
break;
}
}
if (result) return true;
}
return false;
}
void priv::set_skip_for_out_of_aoi(std::vector<bool> &skip_indicies,
const indexed_triangle_set &its,
const Project &projection,
const BoundingBox &shapes_bb)
{
assert(skip_indicies.size() == its.indices.size());
// 1`*----* 2`
// / 2 /|
// 1 *----* |
// | | * 3`
// | |/
// 0 *----* 3
//////////////////
std::array<std::pair<Vec3d, Vec3d>, 4> bb;
int index = 0;
for (Point v :
{shapes_bb.min, Point{shapes_bb.min.x(), shapes_bb.max.y()},
shapes_bb.max, Point{shapes_bb.max.x(), shapes_bb.min.y()}})
bb[index++] = projection.create_front_back(v);
// define planes to test
// 0 .. under
// 1 .. left
// 2 .. above
// 3 .. right
size_t prev_i = 3;
// plane is defined by point and normal
PointNormals point_normals;
for (size_t i = 0; i < 4; i++) {
const Vec3d &p1 = bb[i].first;
const Vec3d &p2 = bb[i].second;
const Vec3d &p3 = bb[prev_i].first;
prev_i = i;
Vec3d v1 = p2 - p1;
v1.normalize();
Vec3d v2 = p3 - p1;
v2.normalize();
Vec3d normal = v2.cross(v1);
normal.normalize();
point_normals[i] = {p1, normal};
}
// same meaning as point normal
IsOnSides is_on_sides(its.vertices.size(), {false,false,false,false});
// inspect all vertices when it is out of bounding box
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.vertices.size()),
[&its, &point_normals, &is_on_sides](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
Vec3d v = its.vertices[i].cast<double>();
// under + above
for (int side : {0, 2}) {
if (is_out_of(v, point_normals[side])) {
is_on_sides[i][side] = true;
// when it is under it can't be above
break;
}
}
// left + right
for (int side : {1, 3}) {
if (is_out_of(v, point_normals[side])) {
is_on_sides[i][side] = true;
// when it is on left side it can't be on right
break;
}
}
}
}); // END parallel for
// inspect all triangles, when it is out of bounding box
tbb::parallel_for(tbb::blocked_range<size_t>(0, its.indices.size()),
[&its, &is_on_sides, &skip_indicies](const tbb::blocked_range<size_t> &range) {
for (size_t i = range.begin(); i < range.end(); ++i) {
if (is_all_on_one_side(its.indices[i], is_on_sides))
skip_indicies[i] = true;
}
}); // END parallel for
}
indexed_triangle_set Slic3r::its_mask(const indexed_triangle_set &its,
const std::vector<bool> &mask)
{
if (its.indices.size() != mask.size()) {
assert(false);
return {};
}
std::vector<uint32_t> cvt_vetices(its.vertices.size(), {std::numeric_limits<uint32_t>::max()});
size_t vertices_count = 0;
size_t faces_count = 0;
for (const auto &t : its.indices) {
size_t index = &t - &its.indices.front();
if (!mask[index]) continue;
++faces_count;
for (const auto vi : t) {
uint32_t &cvt = cvt_vetices[vi];
if (cvt == std::numeric_limits<uint32_t>::max())
cvt = vertices_count++;
}
}
if (faces_count == 0) return {};
indexed_triangle_set result;
result.indices.reserve(faces_count);
result.vertices = std::vector<Vec3f>(vertices_count);
for (size_t i = 0; i < its.vertices.size(); ++i) {
uint32_t index = cvt_vetices[i];
if (index == std::numeric_limits<uint32_t>::max()) continue;
result.vertices[index] = its.vertices[i];
}
for (const stl_triangle_vertex_indices &f : its.indices)
if (mask[&f - &its.indices.front()])
result.indices.push_back(stl_triangle_vertex_indices(
cvt_vetices[f[0]], cvt_vetices[f[1]], cvt_vetices[f[2]]));
return result;
}
indexed_triangle_set Slic3r::its_cut_AoI(const indexed_triangle_set &its,
const BoundingBox &bb,
const Emboss::IProjection &projection)
{
std::vector<bool> skip_indicies(its.indices.size(), false);
priv::set_skip_for_out_of_aoi(skip_indicies, its, projection, bb);
// invert values in vector of bool
skip_indicies.flip();
return its_mask(its, skip_indicies);
}
void priv::set_skip_by_angle(std::vector<bool> &skip_indicies,
const indexed_triangle_set &its,
const Project3d &projection,
double max_angle)
{
assert(max_angle < 90. && max_angle > 89.);
assert(skip_indicies.size() == its.indices.size());
float threshold = static_cast<float>(cos(max_angle / 180. * M_PI));
for (const stl_triangle_vertex_indices& face : its.indices) {
size_t index = &face - &its.indices.front();
if (skip_indicies[index]) continue;
Vec3f n = its_face_normal(its, face);
const Vec3f& v = its.vertices[face[0]];
const Vec3d vd = v.cast<double>();
// Improve: For Orthogonal Projection it is same for each vertex
Vec3d projectedd = projection.project(vd);
Vec3f projected = projectedd.cast<float>();
Vec3f project_dir = projected - v;
project_dir.normalize();
float cos_alpha = project_dir.dot(n);
if (cos_alpha > threshold) continue;
skip_indicies[index] = true;
}
}
priv::CutMesh priv::to_cgal(const indexed_triangle_set &its,
const std::vector<bool> &skip_indicies,
bool flip)
{
const std::vector<stl_vertex> &vertices = its.vertices;
const std::vector<stl_triangle_vertex_indices> &indices = its.indices;
std::vector<bool> use_vetices(vertices.size(), {false});
size_t vertices_count = 0;
size_t faces_count = 0;
size_t edges_count = 0;
for (const auto &t : indices) {
size_t index = &t - &indices.front();
if (skip_indicies[index]) continue;
++faces_count;
size_t count_used_vertices = 0;
for (const auto vi : t) {
if (!use_vetices[vi]) {
++vertices_count;
use_vetices[vi] = true;
} else {
++count_used_vertices;
}
}
switch (count_used_vertices) {
case 3: break; // all edges are already counted
case 2: edges_count += 2; break;
case 1:
case 0: edges_count += 3; break;
default: assert(false);
}
}
assert(vertices_count <= vertices.size());
assert(edges_count <= (indices.size() * 3));
assert(faces_count <= indices.size());
CutMesh result;
result.reserve(vertices_count, edges_count, faces_count);
std::vector<VI> to_filtrated_vertices_index(vertices.size());
size_t filtrated_vertices_index = 0;
for (size_t i = 0; i < vertices.size(); ++i)
if (use_vetices[i]) {
to_filtrated_vertices_index[i] = VI(filtrated_vertices_index);
++filtrated_vertices_index;
}
for (const stl_vertex& v : vertices) {
if (!use_vetices[&v - &vertices.front()]) continue;
result.add_vertex(CutMesh::Point{v.x(), v.y(), v.z()});
}
if (!flip) {
for (const stl_triangle_vertex_indices &f : indices) {
if (skip_indicies[&f - &indices.front()]) continue;
result.add_face(to_filtrated_vertices_index[f[0]],
to_filtrated_vertices_index[f[1]],
to_filtrated_vertices_index[f[2]]);
}
} else {
for (const stl_triangle_vertex_indices &f : indices) {
if (skip_indicies[&f - &indices.front()]) continue;
result.add_face(to_filtrated_vertices_index[f[2]],
to_filtrated_vertices_index[f[1]],
to_filtrated_vertices_index[f[0]]);
}
}
return result;
}
bool priv::exist_duplicit_vertex(const CutMesh &mesh) {
std::vector<Vec3d> points;
points.reserve(mesh.vertices().size());
// copy points
for (VI vi : mesh.vertices()) {
const P3 &p = mesh.point(vi);
points.emplace_back(p.x(), p.y(), p.z());
}
std::sort(points.begin(), points.end(), [](const Vec3d &v1, const Vec3d &v2) {
return v1.x() < v2.x() ||
(v1.x() == v2.x() &&
(v1.y() < v2.y() ||
(v1.y() == v2.y() &&
v1.z() < v2.z())));
});
// find first duplicit
auto it = std::adjacent_find(points.begin(), points.end());
return it != points.end();
}
priv::CutMesh priv::to_cgal(const ExPolygons &shapes,
const Project &projection)
{
if (shapes.empty()) return {};
CutMesh result;
EdgeShapeMap edge_shape_map = result.add_property_map<EI, IntersectingElement>(edge_shape_map_name).first;
FaceShapeMap face_shape_map = result.add_property_map<FI, IntersectingElement>(face_shape_map_name).first;
std::vector<VI> indices;
auto insert_contour = [&projection, &indices, &result,
&edge_shape_map, &face_shape_map]
(const Polygon &polygon) {
indices.clear();
indices.reserve(polygon.points.size() * 2);
size_t num_vertices_old = result.number_of_vertices();
for (const Point &polygon_point : polygon.points) {
auto [front, back] = projection.create_front_back(polygon_point);
P3 v_front{front.x(), front.y(), front.z()};
VI vi1 = result.add_vertex(v_front);
assert(vi1.idx() == (indices.size() + num_vertices_old));
indices.push_back(vi1);
P3 v_back{back.x(), back.y(), back.z()};
VI vi2 = result.add_vertex(v_back);
assert(vi2.idx() == (indices.size() + num_vertices_old));
indices.push_back(vi2);
}
auto find_edge = [&result](FI fi, VI from, VI to) {
HI hi = result.halfedge(fi);
for (; result.target(hi) != to; hi = result.next(hi));
assert(result.source(hi) == from);
assert(result.target(hi) == to);
return result.edge(hi);
};
uint32_t contour_index = static_cast<uint32_t>(num_vertices_old / 2);
for (int32_t i = 0; i < int32_t(indices.size()); i += 2) {
bool is_first = i == 0;
bool is_last = size_t(i + 2) >= indices.size();
int32_t j = is_last ? 0 : (i + 2);
FI fi1 = result.add_face(indices[i], indices[j], indices[i + 1]);
EI ei1 = find_edge(fi1, indices[i + 1], indices[i]);
EI ei2 = find_edge(fi1, indices[j], indices[i + 1]);
FI fi2 = result.add_face(indices[j], indices[j + 1], indices[i + 1]);
IntersectingElement element {contour_index, (unsigned char)IntersectingElement::Type::undefined};
if (is_first) element.set_is_first();
if (is_last) element.set_is_last();
edge_shape_map[ei1] = element.set_type(IntersectingElement::Type::edge_1);
face_shape_map[fi1] = element.set_type(IntersectingElement::Type::face_1);
edge_shape_map[ei2] = element.set_type(IntersectingElement::Type::edge_2);
face_shape_map[fi2] = element.set_type(IntersectingElement::Type::face_2);
++contour_index;
}
};
size_t count_point = count_points(shapes);
result.reserve(result.number_of_vertices() + 2 * count_point,
result.number_of_edges() + 4 * count_point,
result.number_of_faces() + 2 * count_point);
// Identify polygon
for (const ExPolygon &shape : shapes) {
insert_contour(shape.contour);
for (const Polygon &hole : shape.holes)
insert_contour(hole);
}
assert(!exist_duplicit_vertex(result));
return result;
}
priv::ModelCut2index::ModelCut2index(const VCutAOIs &cuts)
{
// prepare offsets
m_offsets.reserve(cuts.size());
uint32_t offset = 0;
for (const CutAOIs &model_cuts: cuts) {
m_offsets.push_back(offset);
offset += model_cuts.size();
}
m_count = offset;
}
uint32_t priv::ModelCut2index::calc_index(const ModelCutId &id) const
{
assert(id.model_index < m_offsets.size());
uint32_t offset = m_offsets[id.model_index];
uint32_t res = offset + id.cut_index;
assert(((id.model_index+1) < m_offsets.size() && res < m_offsets[id.model_index+1]) ||
((id.model_index+1) == m_offsets.size() && res < m_count));
return res;
}
priv::ModelCutId priv::ModelCut2index::calc_id(uint32_t index) const
{
assert(index < m_count);
ModelCutId result{0,0};
// find shape index
for (size_t model_index = 1; model_index < m_offsets.size(); ++model_index) {
if (m_offsets[model_index] > index) break;
result.model_index = model_index;
}
result.cut_index = index - m_offsets[result.model_index];
return result;
}
// cut_from_model help functions
namespace priv {
/// <summary>
/// Track source of intersection
/// Help for anotate inner and outer faces
/// </summary>
struct Visitor {
const CutMesh &object;
const CutMesh &shape;
// Properties of the shape mesh:
EdgeShapeMap edge_shape_map;
FaceShapeMap face_shape_map;
// Properties of the object mesh.
VertexShapeMap vert_shape_map;
// check for anomalities
bool* is_valid;
// keep source of intersection for each intersection
// used to copy data into vert_shape_map
std::vector<const IntersectingElement*> intersections;
/// <summary>
/// Called when a new intersection point is detected.
/// The intersection is detected using a face of tm_f and an edge of tm_e.
/// Intersecting an edge hh_edge from tm_f with a face h_e of tm_e.
/// https://doc.cgal.org/latest/Polygon_mesh_processing/classPMPCorefinementVisitor.html#a00ee0ca85db535a48726a92414acda7f
/// </summary>
/// <param name="i_id">The id of the intersection point, starting at 0. Ids are consecutive.</param>
/// <param name="sdim">Dimension of a simplex part of face(h_e) that is intersected by edge(h_f):
/// 0 for vertex: target(h_e)
/// 1 for edge: h_e
/// 2 for the interior of face: face(h_e) </param>
/// <param name="h_f">
/// A halfedge from tm_f indicating the simplex intersected:
/// if sdim==0 the target of h_f is the intersection point,
/// if sdim==1 the edge of h_f contains the intersection point in its interior,
/// if sdim==2 the face of h_f contains the intersection point in its interior.
/// @Vojta: Edge of tm_f, see is_target_coplanar & is_source_coplanar whether any vertex of h_f is coplanar with face(h_e).
/// </param>
/// <param name="h_e">A halfedge from tm_e
/// @Vojta: Vertex, halfedge or face of tm_e intersected by h_f, see comment at sdim.
/// </param>
/// <param name="tm_f">Mesh containing h_f</param>
/// <param name="tm_e">Mesh containing h_e</param>
/// <param name="is_target_coplanar">True if the target of h_e is the intersection point
/// @Vojta: source(h_f) is coplanar with face(made by h_e).</param>
/// <param name="is_source_coplanar">True if the source of h_e is the intersection point
/// @Vojta: target(h_f) is coplanar with face(h_e).</param>
void intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar);
/// <summary>
/// Called when a new vertex is added in tm (either an edge split or a vertex inserted in the interior of a face).
/// Fill vertex_shape_map by intersections
/// </summary>
/// <param name="i_id">Order number of intersection point</param>
/// <param name="v">New added vertex</param>
/// <param name="tm">Affected mesh</param>
void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm);
// Not used visitor functions
void before_subface_creations(FI /* f_old */, CutMesh &/* mesh */){}
void after_subface_created(FI /* f_new */, CutMesh &/* mesh */) {}
void after_subface_creations(CutMesh&) {}
void before_subface_created(CutMesh&) {}
void before_edge_split(HI /* h */, CutMesh& /* tm */) {}
void edge_split(HI /* hnew */, CutMesh& /* tm */) {}
void after_edge_split() {}
void add_retriangulation_edge(HI /* h */, CutMesh& /* tm */) {}
};
/// <summary>
/// Distiquish face type for half edge
/// </summary>
/// <param name="hi">Define face</param>
/// <param name="mesh">Mesh to process</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
/// <param name="vertex_shape_map">Keep information about source of created vertex</param>
/// <param name="shape2index"></param>
/// <param name="shape2index">Convert index to shape point from ExPolygons</param>
/// <returns>Face type defined by hi</returns>
bool is_face_inside(HI hi,
const CutMesh &mesh,
const CutMesh &shape_mesh,
const VertexShapeMap &vertex_shape_map,
const ExPolygonsIndices &shape2index);
/// <summary>
/// Face with constrained edge are inside/outside by type of intersection
/// Other set to not_constrained(still it could be inside/outside)
/// </summary>
/// <param name="face_type_map">[Output] property map with type of faces</param>
/// <param name="mesh">Mesh to process</param>
/// <param name="vertex_shape_map">Keep information about source of created vertex</param>
/// <param name="ecm">Dynamic Edge Constrained Map of bool</param>
/// <param name="shape_mesh">Vertices of mesh made by shapes</param>
/// <param name="shape2index">Convert index to shape point from ExPolygons</param>
void set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EdgeBoolMap &ecm,
const CutMesh &shape_mesh,
const ExPolygonsIndices &shape2index);
/// <summary>
/// Change FaceType from not_constrained to inside
/// For neighbor(or neighbor of neighbor of ...) of inside triangles.
/// Process only not_constrained triangles
/// </summary>
/// <param name="mesh">Corefined mesh</param>
/// <param name="face_type_map">In/Out map with faces type</param>
void flood_fill_inner(const CutMesh &mesh, FaceTypeMap &face_type_map);
/// <summary>
/// Collect connected inside faces
/// Collect outline half edges
/// </summary>
/// <param name="process">Queue of face to process - find connected</param>
/// <param name="faces">[Output] collected Face indices from mesh</param>
/// <param name="outlines">[Output] collected Halfedge indices from mesh</param>
/// <param name="face_type_map">Use flag inside / outside
/// NOTE: Modify in function: inside -> inside_processed</param>
/// <param name="mesh">mesh to process</param>
void collect_surface_data(std::queue<FI> &process,
std::vector<FI> &faces,
std::vector<HI> &outlines,
FaceTypeMap &face_type_map,
const CutMesh &mesh);
/// <summary>
/// Create areas from mesh surface
/// </summary>
/// <param name="mesh">Model</param>
/// <param name="shapes">Cutted shapes</param>
/// <param name="face_type_map">Define Triangles of interest.
/// Edge between inside / outside.
/// NOTE: Not const because it need to flag proccessed faces</param>
/// <returns>Areas of interest from mesh</returns>
CutAOIs create_cut_area_of_interests(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map);
} // namespace priv
void priv::Visitor::intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar)
{
if (i_id >= intersections.size()) {
size_t capacity = Slic3r::next_highest_power_of_2(i_id + 1);
intersections.reserve(capacity);
intersections.resize(capacity);
}
const IntersectingElement *intersection_ptr = nullptr;
if (&tm_e == &shape) {
assert(&tm_f == &object);
switch (sdim) {
case 1:
// edge x edge intersection
intersection_ptr = &edge_shape_map[shape.edge(h_e)];
break;
case 2:
// edge x face intersection
intersection_ptr = &face_shape_map[shape.face(h_e)];
break;
default: assert(false);
}
if (is_target_coplanar)
vert_shape_map[object.source(h_f)] = intersection_ptr;
if (is_source_coplanar)
vert_shape_map[object.target(h_f)] = intersection_ptr;
} else {
assert(&tm_f == &shape && &tm_e == &object);
assert(!is_target_coplanar);
assert(!is_source_coplanar);
if (is_target_coplanar || is_source_coplanar)
*is_valid = false;
intersection_ptr = &edge_shape_map[shape.edge(h_f)];
if (sdim == 0) vert_shape_map[object.target(h_e)] = intersection_ptr;
}
if (intersection_ptr->shape_point_index == std::numeric_limits<uint32_t>::max()) {
// there is unexpected intersection
// Top (or Bottom) shape contour edge (or vertex) intersection
// Suggest to change projection min/max limits
*is_valid = false;
}
intersections[i_id] = intersection_ptr;
}
void priv::Visitor::new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
{
assert(&tm == &object);
assert(i_id < intersections.size());
const IntersectingElement *intersection_ptr = intersections[i_id];
assert(intersection_ptr != nullptr);
// intersection was not filled in function intersection_point_detected
//assert(intersection_ptr->point_index != std::numeric_limits<uint32_t>::max());
vert_shape_map[v] = intersection_ptr;
}
bool priv::is_face_inside(HI hi,
const CutMesh &mesh,
const CutMesh &shape_mesh,
const VertexShapeMap &vertex_shape_map,
const ExPolygonsIndices &shape2index)
{
VI vi_from = mesh.source(hi);
VI vi_to = mesh.target(hi);
// This face has a constrained edge.
const IntersectingElement &shape_from = *vertex_shape_map[vi_from];
const IntersectingElement &shape_to = *vertex_shape_map[vi_to];
assert(shape_from.shape_point_index != std::numeric_limits<uint32_t>::max());
assert(shape_from.attr != (unsigned char) IntersectingElement::Type::undefined);
assert(shape_to.shape_point_index != std::numeric_limits<uint32_t>::max());
assert(shape_to.attr != (unsigned char) IntersectingElement::Type::undefined);
// index into contour
uint32_t i_from = shape_from.shape_point_index;
uint32_t i_to = shape_to.shape_point_index;
IntersectingElement::Type type_from = shape_from.get_type();
IntersectingElement::Type type_to = shape_to.get_type();
if (i_from == i_to && type_from == type_to) {
// intersecting element must be face
assert(type_from == IntersectingElement::Type::face_1 ||
type_from == IntersectingElement::Type::face_2);
// count of vertices is twice as count of point in the contour
uint32_t i = i_from * 2;
// j is next contour point in vertices
uint32_t j = i + 2;
if (shape_from.is_last()) {
ExPolygonsIndex point_id = shape2index.cvt(i_from);
point_id.point_index = 0;
j = shape2index.cvt(point_id)*2;
}
// opposit point(in triangle face) to edge
const P3 &p = mesh.point(mesh.target(mesh.next(hi)));
// abc is source triangle face
CGAL::Sign abcp = type_from == IntersectingElement::Type::face_1 ?
CGAL::orientation(shape_mesh.point(VI(i)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j)), p) :
// type_from == IntersectingElement::Type::face_2
CGAL::orientation(shape_mesh.point(VI(j)),
shape_mesh.point(VI(i + 1)),
shape_mesh.point(VI(j + 1)), p);
return abcp == CGAL::POSITIVE;
} else if (i_from < i_to || (i_from == i_to && type_from < type_to)) {
bool is_last = shape_to.is_last() && shape_from.is_first();
// check continuity of indicies
assert(i_from == i_to || is_last || (i_from + 1) == i_to);
return !is_last;
} else {
assert(i_from > i_to || (i_from == i_to && type_from > type_to));
bool is_last = shape_to.is_first() && shape_from.is_last();
// check continuity of indicies
assert(i_from == i_to || is_last || (i_to + 1) == i_from);
return is_last;
}
assert(false);
return false;
}
void priv::set_face_type(FaceTypeMap &face_type_map,
const CutMesh &mesh,
const VertexShapeMap &vertex_shape_map,
const EdgeBoolMap &ecm,
const CutMesh &shape_mesh,
const ExPolygonsIndices &shape2index)
{
for (EI ei : mesh.edges()) {
if (!ecm[ei]) continue;
HI hi = mesh.halfedge(ei);
FI fi = mesh.face(hi);
bool is_inside = is_face_inside(hi, mesh, shape_mesh, vertex_shape_map, shape2index);
face_type_map[fi] = is_inside ? FaceType::inside : FaceType::outside;
HI hi_op = mesh.opposite(hi);
assert(hi_op.is_valid());
if (!hi_op.is_valid()) continue;
FI fi_op = mesh.face(hi_op);
assert(fi_op.is_valid());
if (!fi_op.is_valid()) continue;
face_type_map[fi_op] = (!is_inside) ? FaceType::inside : FaceType::outside;
}
}
priv::CutAOIs priv::cut_from_model(CutMesh &cgal_model,
const ExPolygons &shapes,
CutMesh &cgal_shape,
float projection_ratio,
const ExPolygonsIndices &s2i)
{
// pointer to edge or face shape_map
VertexShapeMap vert_shape_map = cgal_model.add_property_map<VI, const IntersectingElement*>(vert_shape_map_name, nullptr).first;
// detect anomalities in visitor.
bool is_valid = true;
// NOTE: map are created when convert shapes to cgal model
const EdgeShapeMap& edge_shape_map = cgal_shape.property_map<EI, IntersectingElement>(edge_shape_map_name).first;
const FaceShapeMap& face_shape_map = cgal_shape.property_map<FI, IntersectingElement>(face_shape_map_name).first;
Visitor visitor{cgal_model, cgal_shape, edge_shape_map, face_shape_map, vert_shape_map, &is_valid};
// a property map containing the constrained-or-not status of each edge
EdgeBoolMap ecm = cgal_model.add_property_map<EI, bool>(is_constrained_edge_name, false).first;
const auto &p = CGAL::parameters::visitor(visitor)
.edge_is_constrained_map(ecm)
.throw_on_self_intersection(false);
const auto& q = CGAL::parameters::do_not_modify(true);
CGAL::Polygon_mesh_processing::corefine(cgal_model, cgal_shape, p, q);
if (!is_valid) return {};
FaceTypeMap face_type_map = cgal_model.add_property_map<FI, FaceType>(face_type_map_name, FaceType::not_constrained).first;
// Select inside and outside face in model
set_face_type(face_type_map, cgal_model, vert_shape_map, ecm, cgal_shape, s2i);
#ifdef DEBUG_OUTPUT_DIR
store(cgal_model, face_type_map, DEBUG_OUTPUT_DIR + "constrained/"); // only debug
#endif // DEBUG_OUTPUT_DIR
// flood fill the other faces inside the region.
flood_fill_inner(cgal_model, face_type_map);
#ifdef DEBUG_OUTPUT_DIR
store(cgal_model, face_type_map, DEBUG_OUTPUT_DIR + "filled/", true); // only debug
#endif // DEBUG_OUTPUT_DIR
// IMPROVE: AOIs area could be created during flood fill
return create_cut_area_of_interests(cgal_model, shapes, face_type_map);
}
void priv::flood_fill_inner(const CutMesh &mesh,
FaceTypeMap &face_type_map)
{
std::vector<FI> process;
// guess count of connected not constrained triangles
size_t guess_size = 128;
process.reserve(guess_size);
// check if neighbor(one of three in triangle) has type inside
auto has_inside_neighbor = [&mesh, &face_type_map](FI fi) {
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
auto exist_next = [&hi, &hi_end, &mesh]() -> bool {
hi = mesh.next(hi);
return hi != hi_end;
};
// loop over 3 half edges of face
do {
HI hi_opposite = mesh.opposite(hi);
// open edge doesn't have opposit half edge
if (!hi_opposite.is_valid()) continue;
FI fi_opposite = mesh.face(hi_opposite);
if (!fi_opposite.is_valid()) continue;
if (face_type_map[fi_opposite] == FaceType::inside) return true;
} while (exist_next());
return false;
};
for (FI fi : mesh.faces()) {
FaceType type = face_type_map[fi];
if (type != FaceType::not_constrained) continue;
if (!has_inside_neighbor(fi)) continue;
assert(process.empty());
process.push_back(fi);
//store(mesh, face_type_map, DEBUG_OUTPUT_DIR + "progress.off");
while (!process.empty()) {
FI process_fi = process.back();
process.pop_back();
// Do not fill twice
FaceType& process_type = face_type_map[process_fi];
if (process_type == FaceType::inside) continue;
process_type = FaceType::inside;
// check neighbor triangle
HI hi = mesh.halfedge(process_fi);
HI hi_end = hi;
auto exist_next = [&hi, &hi_end, &mesh]() -> bool {
hi = mesh.next(hi);
return hi != hi_end;
};
do {
HI hi_opposite = mesh.opposite(hi);
// open edge doesn't have opposit half edge
if (!hi_opposite.is_valid()) continue;
FI fi_opposite = mesh.face(hi_opposite);
if (!fi_opposite.is_valid()) continue;
FaceType type_opposite = face_type_map[fi_opposite];
if (type_opposite == FaceType::not_constrained)
process.push_back(fi_opposite);
} while (exist_next());
}
}
}
void priv::collect_surface_data(std::queue<FI> &process,
std::vector<FI> &faces,
std::vector<HI> &outlines,
FaceTypeMap &face_type_map,
const CutMesh &mesh)
{
assert(!process.empty());
assert(faces.empty());
assert(outlines.empty());
while (!process.empty()) {
FI fi = process.front();
process.pop();
FaceType &fi_type = face_type_map[fi];
// Do not process twice
if (fi_type == FaceType::inside_processed) continue;
assert(fi_type == FaceType::inside);
// flag face as processed
fi_type = FaceType::inside_processed;
faces.push_back(fi);
// check neighbor triangle
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
do {
HI hi_opposite = mesh.opposite(hi);
// open edge doesn't have opposit half edge
if (!hi_opposite.is_valid()) {
outlines.push_back(hi);
hi = mesh.next(hi);
continue;
}
FI fi_opposite = mesh.face(hi_opposite);
if (!fi_opposite.is_valid()) {
outlines.push_back(hi);
hi = mesh.next(hi);
continue;
}
FaceType side = face_type_map[fi_opposite];
if (side == FaceType::inside) {
process.emplace(fi_opposite);
} else if (side == FaceType::outside) {
// store outlines
outlines.push_back(hi);
}
hi = mesh.next(hi);
} while (hi != hi_end);
}
}
void priv::create_reduce_map(ReductionMap &reduction_map, const CutMesh &mesh)
{
const VertexShapeMap &vert_shape_map = mesh.property_map<VI, const IntersectingElement*>(vert_shape_map_name).first;
const EdgeBoolMap &ecm = mesh.property_map<EI, bool>(is_constrained_edge_name).first;
// check if vertex was made by edge_2 which is diagonal of quad
auto is_reducible_vertex = [&vert_shape_map](VI reduction_from) -> bool {
const IntersectingElement *ie = vert_shape_map[reduction_from];
if (ie == nullptr) return false;
IntersectingElement::Type type = ie->get_type();
return type == IntersectingElement::Type::edge_2;
};
/// <summary>
/// Append reduction or change existing one.
/// </summary>
/// <param name="hi">HalEdge between outside and inside face.
/// Target vertex will be reduced, source vertex left</param>
/// [[maybe_unused]] &face_type_map, &is_reducible_vertex are need only in debug
auto add_reduction = [&] //&reduction_map, &mesh, &face_type_map, &is_reducible_vertex
(HI hi) {
VI erase = mesh.target(hi);
VI left = mesh.source(hi);
assert(is_reducible_vertex(erase));
assert(!is_reducible_vertex(left));
VI &vi = reduction_map[erase];
// check if it is first add
if (!vi.is_valid())
reduction_map[erase] = left;
// I have no better rule than take the first
// for decide which reduction will be better
// But it could be use only one of them
};
for (EI ei : mesh.edges()) {
if (!ecm[ei]) continue;
HI hi = mesh.halfedge(ei);
VI vi = mesh.target(hi);
if (is_reducible_vertex(vi)) add_reduction(hi);
HI hi_op = mesh.opposite(hi);
VI vi_op = mesh.target(hi_op);
if (is_reducible_vertex(vi_op)) add_reduction(hi_op);
}
#ifdef DEBUG_OUTPUT_DIR
store(mesh, reduction_map, DEBUG_OUTPUT_DIR + "reduces/");
#endif // DEBUG_OUTPUT_DIR
}
priv::CutAOIs priv::create_cut_area_of_interests(const CutMesh &mesh,
const ExPolygons &shapes,
FaceTypeMap &face_type_map)
{
// IMPROVE: Create better heuristic for count.
size_t faces_per_cut = mesh.faces().size() / shapes.size();
size_t outlines_per_cut = faces_per_cut / 2;
size_t cuts_per_model = shapes.size() * 2;
CutAOIs result;
result.reserve(cuts_per_model);
// It is faster to use one queue for all cuts
std::queue<FI> process;
for (FI fi : mesh.faces()) {
if (face_type_map[fi] != FaceType::inside) continue;
CutAOI cut;
std::vector<FI> &faces = cut.first;
std::vector<HI> &outlines = cut.second;
// faces for one surface cut
faces.reserve(faces_per_cut);
// outline for one surface cut
outlines.reserve(outlines_per_cut);
assert(process.empty());
// Process queue of faces to separate to surface_cut
process.push(fi);
collect_surface_data(process, faces, outlines, face_type_map, mesh);
assert(!faces.empty());
assert(!outlines.empty());
result.emplace_back(std::move(cut));
}
return result;
}
namespace priv {
/// <summary>
/// Calculate projection distance of point [in mm]
/// </summary>
/// <param name="p">Point to calc distance</param>
/// <param name="pi">Index of point on contour</param>
/// <param name="shapes_mesh">Model of cutting shape</param>
/// <param name="projection_ratio">Ratio for best projection distance</param>
/// <returns>Distance of point from best projection</returns>
float calc_distance(const P3 &p,
uint32_t pi,
const CutMesh &shapes_mesh,
float projection_ratio);
}
float priv::calc_distance(const P3 &p,
uint32_t pi,
const CutMesh &shapes_mesh,
float projection_ratio)
{
// It is known because shapes_mesh is created inside of private space
VI vi_start(2 * pi);
VI vi_end(2 * pi + 1);
// Get range for intersection
const P3 &start = shapes_mesh.point(vi_start);
const P3 &end = shapes_mesh.point(vi_end);
// find index in vector with biggest difference
size_t max_i = 0;
float max_val = 0.f;
for (size_t i = 0; i < 3; i++) {
float val = start[i] - end[i];
// abs value
if (val < 0.f) val *= -1.f;
if (max_val < val) {
max_val = val;
max_i = i;
}
}
float from_start = p[max_i] - start[max_i];
float best_distance = projection_ratio * (end[max_i] - start[max_i]);
return from_start - best_distance;
}
priv::VDistances priv::calc_distances(const SurfacePatches &patches,
const CutMeshes &models,
const CutMesh &shapes_mesh,
size_t count_shapes_points,
float projection_ratio)
{
priv::VDistances result(count_shapes_points);
for (const SurfacePatch &patch : patches) {
// map is created during intersection by corefine visitor
const VertexShapeMap &vert_shape_map =
models[patch.model_id].property_map<VI, const IntersectingElement *>(vert_shape_map_name).first;
uint32_t patch_index = &patch - &patches.front();
// map is created during patch creation / dividing
const CvtVI2VI& cvt = patch.mesh.property_map<VI, VI>(patch_source_name).first;
// for each point on outline
for (const Loop &loop : patch.loops)
for (const VI &vi_patch : loop) {
VI vi_model = cvt[vi_patch];
if (!vi_model.is_valid()) continue;
const IntersectingElement *ie = vert_shape_map[vi_model];
if (ie == nullptr) continue;
assert(ie->shape_point_index != std::numeric_limits<uint32_t>::max());
assert(ie->attr != (unsigned char) IntersectingElement::Type::undefined);
uint32_t pi = ie->shape_point_index;
assert(pi <= count_shapes_points);
std::vector<ProjectionDistance> &pds = result[pi];
uint32_t model_index = patch.model_id;
uint32_t aoi_index = patch.aoi_id;
//uint32_t hi_index = &hi - &patch.outline.front();
const P3 &p = patch.mesh.point(vi_patch);
float distance = calc_distance(p, pi, shapes_mesh, projection_ratio);
pds.push_back({model_index, aoi_index, patch_index, distance});
}
}
return result;
}
#include "libslic3r/AABBTreeLines.hpp"
#include "libslic3r/Line.hpp"
// functions for choose_best_distance
namespace priv {
// euler square size of vector stored in Point
float calc_size_sq(const Point &p);
// structure to store index and distance together
struct ClosePoint
{
// index of closest point from another shape
uint32_t index = std::numeric_limits<uint32_t>::max();
// squere distance to index
float dist_sq = std::numeric_limits<float>::max();
};
struct SearchData{
// IMPROVE: float lines are enough
std::vector<Linef> lines;
// convert line index into Shape point index
std::vector<size_t> cvt;
// contain lines from prev point to Point index
AABBTreeIndirect::Tree<2, double> tree;
};
SearchData create_search_data(const ExPolygons &shapes, const std::vector<bool>& mask);
uint32_t get_closest_point_index(const SearchData &sd, size_t line_idx, const Vec2d &hit_point, const ExPolygons &shapes, const ExPolygonsIndices &s2i);
// use AABB Tree Lines to find closest point
uint32_t find_closest_point_index(const Point &p, const ExPolygons &shapes, const ExPolygonsIndices &s2i, const std::vector<bool> &mask);
std::pair<uint32_t, uint32_t> find_closest_point_pair(const ExPolygons &shapes, const std::vector<bool> &done_shapes, const ExPolygonsIndices &s2i, const std::vector<bool> &mask);
// Search for closest projection to wanted distance
const ProjectionDistance *get_closest_projection(const ProjectionDistances &distance, float wanted_distance);
// fill result around known index inside one polygon
void fill_polygon_distances(const ProjectionDistance &pd, uint32_t index, const ExPolygonsIndex &id, ProjectionDistances & result, const ExPolygon &shape, const VDistances &distances);
// search for closest projection for expolygon
// choose correct cut by source point
void fill_shape_distances(uint32_t start_index, const ProjectionDistance *start_pd, ProjectionDistances &result, const ExPolygonsIndices &s2i, const ExPolygon &shape, const VDistances &distances);
// find close points between finished and unfinished ExPolygons
ClosePoint find_close_point(const Point &p, ProjectionDistances &result, std::vector<bool>& finished_shapes,const ExPolygonsIndices &s2i, const ExPolygons &shapes);
}
float priv::calc_size_sq(const Point &p){
// NOTE: p.squaredNorm() can't be use due to overflow max int value
return (float) p.x() * p.x() + (float) p.y() * p.y();
}
priv::SearchData priv::create_search_data(const ExPolygons &shapes,
const std::vector<bool> &mask)
{
// IMPROVE: Use float precission (it is enough)
SearchData sd;
sd.lines.reserve(mask.size());
sd.cvt.reserve(mask.size());
size_t index = 0;
auto add_lines = [&sd, &index, &mask]
(const Polygon &poly) {
Vec2d prev = poly.back().cast<double>();
bool use_point = mask[index + poly.points.size() - 1];
for (const Point &p : poly.points) {
if (!use_point) {
use_point = mask[index];
if (use_point) prev = p.cast<double>();
} else if (!mask[index]) {
use_point = false;
} else {
Vec2d p_d = p.cast<double>();
sd.lines.emplace_back(prev, p_d);
sd.cvt.push_back(index);
prev = p_d;
}
++index;
}
};
for (const ExPolygon &shape : shapes) {
add_lines(shape.contour);
for (const Polygon &hole : shape.holes) add_lines(hole);
}
sd.tree = AABBTreeLines::build_aabb_tree_over_indexed_lines(sd.lines);
return sd;
}
uint32_t priv::get_closest_point_index(const SearchData &sd,
size_t line_idx,
const Vec2d &hit_point,
const ExPolygons &shapes,
const ExPolygonsIndices &s2i)
{
const Linef &line = sd.lines[line_idx];
Vec2d dir = line.a - line.b;
Vec2d dir_abs = dir.cwiseAbs();
// use x coordinate
int i = (dir_abs.x() > dir_abs.y())? 0 :1;
bool use_index = abs(line.a[i] - hit_point[i]) >
abs(line.b[i] - hit_point[i]);
size_t point_index = sd.cvt[line_idx];
// Lambda used only for check result
[[maybe_unused]] auto is_same = [&s2i, &shapes]
(const Vec2d &p, size_t i) -> bool {
auto id = s2i.cvt(i);
const ExPolygon &shape = shapes[id.expolygons_index];
const Polygon &poly = (id.polygon_index == 0) ?
shape.contour :
shape.holes[id.polygon_index - 1];
Vec2i p_ = p.cast<int>();
return p_ == poly[id.point_index];
};
if (use_index) {
assert(is_same(line.b, point_index));
return point_index;
}
auto id = s2i.cvt(point_index);
if (id.point_index != 0) {
assert(is_same(line.a, point_index - 1));
return point_index - 1;
}
const ExPolygon &shape = shapes[id.expolygons_index];
size_t count_polygon_points = (id.polygon_index == 0) ?
shape.contour.size() :
shape.holes[id.polygon_index - 1].size();
size_t prev_point_index = point_index + (count_polygon_points - 1);
assert(is_same(line.a, prev_point_index));
// return previous point index
return prev_point_index;
}
// use AABB Tree Lines
uint32_t priv::find_closest_point_index(const Point &p,
const ExPolygons &shapes,
const ExPolygonsIndices &s2i,
const std::vector<bool> &mask)
{
SearchData sd = create_search_data(shapes, mask);
size_t line_idx = std::numeric_limits<size_t>::max();
Vec2d hit_point;
Vec2d p_d = p.cast<double>();
[[maybe_unused]] double distance_sq =
AABBTreeLines::squared_distance_to_indexed_lines(
sd.lines, sd.tree, p_d, line_idx, hit_point);
assert(distance_sq > 0);
// IMPROVE: one could use line ratio to find closest point
return get_closest_point_index(sd, line_idx, hit_point, shapes, s2i);
}
std::pair<uint32_t, uint32_t> priv::find_closest_point_pair(
const ExPolygons &shapes,
const std::vector<bool> &done_shapes,
const ExPolygonsIndices &s2i,
const std::vector<bool> &mask)
{
assert(mask.size() == s2i.get_count());
assert(done_shapes.size() == shapes.size());
std::vector<bool> unfinished_mask = mask; // copy
size_t index = 0;
for (size_t shape_index = 0; shape_index < shapes.size(); shape_index++) {
size_t count = count_points(shapes[shape_index]);
if (done_shapes[shape_index]) {
for (size_t i = 0; i < count; ++i, ++index)
unfinished_mask[index] = false;
} else {
index += count;
}
}
assert(index == s2i.get_count());
SearchData sd = create_search_data(shapes, unfinished_mask);
struct ClosestPair
{
size_t finish_idx = std::numeric_limits<size_t>::max();
size_t unfinished_line_idx = std::numeric_limits<size_t>::max();
Vec2d hit_point = Vec2d();
double distance_sq = std::numeric_limits<double>::max();
} cp;
index = 0;
for (size_t shape_index = 0; shape_index < shapes.size(); shape_index++) {
const ExPolygon shape = shapes[shape_index];
if (!done_shapes[shape_index]) {
index += count_points(shape);
continue;
}
auto search_in_polygon = [&index, &cp, &sd, &mask](const Polygon& polygon) {
for (size_t i = 0; i < polygon.size(); ++i, ++index) {
if (mask[index] == false) continue;
Vec2d p_d = polygon[i].cast<double>();
size_t line_idx = std::numeric_limits<size_t>::max();
Vec2d hit_point;
double distance_sq = AABBTreeLines::squared_distance_to_indexed_lines(
sd.lines, sd.tree, p_d, line_idx, hit_point, cp.distance_sq);
if (distance_sq < 0 ||
distance_sq >= cp.distance_sq) continue;
assert(line_idx < sd.lines.size());
cp.distance_sq = distance_sq;
cp.unfinished_line_idx = line_idx;
cp.hit_point = hit_point;
cp.finish_idx = index;
}
};
search_in_polygon(shape.contour);
for (const Polygon& hole: shape.holes)
search_in_polygon(hole);
}
assert(index == s2i.get_count());
// check that exists result
if (cp.finish_idx == std::numeric_limits<size_t>::max()) {
return std::make_pair(std::numeric_limits<size_t>::max(),
std::numeric_limits<size_t>::max());
}
size_t unfinished_idx = get_closest_point_index(sd, cp.unfinished_line_idx, cp.hit_point, shapes, s2i);
return std::make_pair(cp.finish_idx, unfinished_idx);
}
const priv::ProjectionDistance *priv::get_closest_projection(
const ProjectionDistances &distance, float wanted_distance)
{
// minimal distance
float min_d = std::numeric_limits<float>::max();
const ProjectionDistance *min_pd = nullptr;
for (const ProjectionDistance &pd : distance) {
float d = std::fabs(pd.distance - wanted_distance);
// There should be limit for maximal distance
if (min_d > d) {
min_d = d;
min_pd = &pd;
}
}
return min_pd;
}
void priv::fill_polygon_distances(const ProjectionDistance &pd,
uint32_t index,
const ExPolygonsIndex &id,
ProjectionDistances &result,
const ExPolygon &shape,
const VDistances &distances)
{
const Points& points = (id.polygon_index == 0) ?
shape.contour.points :
shape.holes[id.polygon_index - 1].points;
// border of indexes for Polygon
uint32_t first_index = index - id.point_index;
uint32_t last_index = first_index + points.size();
uint32_t act_index = index;
const ProjectionDistance* act_pd = &pd;
// Copy starting pd to result
result[act_index] = pd;
auto exist_next = [&distances, &act_index, &act_pd, &result]
(uint32_t nxt_index) {
const ProjectionDistance *nxt_pd = get_closest_projection(distances[nxt_index] ,act_pd->distance);
// exist next projection distance ?
if (nxt_pd == nullptr) return false;
// check no rewrite result
assert(result[nxt_index].aoi_index == std::numeric_limits<uint32_t>::max());
// copy founded projection to result
result[nxt_index] = *nxt_pd; // copy
// next
act_index = nxt_index;
act_pd = &result[nxt_index];
return true;
};
// last index in circle
uint32_t finish_index = (index == first_index) ? (last_index - 1) :
(index - 1);
// Positive iteration inside polygon
do {
uint32_t nxt_index = act_index + 1;
// close loop of indexes inside of contour
if (nxt_index == last_index) nxt_index = first_index;
// check that exist next
if (!exist_next(nxt_index)) break;
} while (act_index != finish_index);
// when all results for polygon are set no neccessary to iterate negative
if (act_index == finish_index) return;
act_index = index;
act_pd = &pd;
// Negative iteration inside polygon
do {
uint32_t nxt_index = (act_index == first_index) ?
(last_index-1) : (act_index - 1);
// When iterate negative it must be split to parts
// and can't iterate in circle
assert(nxt_index != index);
// check that exist next
if (!exist_next(nxt_index)) break;
} while (true);
}
// IMPROVE: when select distance fill in all distances from Patch
void priv::fill_shape_distances(uint32_t start_index,
const ProjectionDistance *start_pd,
ProjectionDistances &result,
const ExPolygonsIndices &s2i,
const ExPolygon &shape,
const VDistances &distances)
{
uint32_t expolygons_index = s2i.cvt(start_index).expolygons_index;
uint32_t first_shape_index = s2i.cvt({expolygons_index, 0, 0});
do {
fill_polygon_distances(*start_pd, start_index, s2i.cvt(start_index),result, shape, distances);
// seaching only inside shape, return index of closed finished point
auto find_close_finished_point = [&first_shape_index, &shape, &result]
(const Point &p) -> ClosePoint {
uint32_t index = first_shape_index;
ClosePoint cp;
auto check_finished_points = [&cp, &result, &index, &p]
(const Points& pts) {
for (const Point &p_ : pts) {
// finished point with some distances
if (result[index].aoi_index == std::numeric_limits<uint32_t>::max()) {
++index;
continue;
}
float distance = calc_size_sq(p_ - p);
if (cp.dist_sq > distance) {
cp.dist_sq = distance;
cp.index = index;
}
++index;
}
};
check_finished_points(shape.contour.points);
for (const Polygon &h : shape.holes)
check_finished_points(h.points);
return cp;
};
// find next closest pair of points
// (finished + unfinished) in ExPolygon
start_index = std::numeric_limits<uint32_t>::max(); // unfinished_index
uint32_t finished_index = std::numeric_limits<uint32_t>::max();
float dist_sq = std::numeric_limits<float>::max();
// first index in shape
uint32_t index = first_shape_index;
auto check_unfinished_points = [&index, &result, &distances, &find_close_finished_point, &dist_sq, &start_index, &finished_index]
(const Points& pts) {
for (const Point &p : pts) {
// try find unfinished
if (result[index].aoi_index !=
std::numeric_limits<uint32_t>::max() ||
distances[index].empty()) {
++index;
continue;
}
ClosePoint cp = find_close_finished_point(p);
if (dist_sq > cp.dist_sq) {
dist_sq = cp.dist_sq;
start_index = index;
finished_index = cp.index;
}
++index;
}
};
// for each unfinished points
check_unfinished_points(shape.contour.points);
for (const Polygon &h : shape.holes)
check_unfinished_points(h.points);
} while (start_index != std::numeric_limits<uint32_t>::max());
}
priv::ClosePoint priv::find_close_point(const Point &p,
ProjectionDistances &result,
std::vector<bool> &finished_shapes,
const ExPolygonsIndices &s2i,
const ExPolygons &shapes)
{
// result
ClosePoint cp;
// for all finished points
for (uint32_t shape_index = 0; shape_index < shapes.size(); ++shape_index) {
if (!finished_shapes[shape_index]) continue;
const ExPolygon &shape = shapes[shape_index];
uint32_t index = s2i.cvt({shape_index, 0, 0});
auto find_close_point_in_points = [&p, &cp, &index, &result]
(const Points &pts){
for (const Point &p_ : pts) {
// Exist result (is finished) ?
if (result[index].aoi_index ==
std::numeric_limits<uint32_t>::max()) {
++index;
continue;
}
float distance_sq = calc_size_sq(p - p_);
if (cp.dist_sq > distance_sq) {
cp.dist_sq = distance_sq;
cp.index = index;
}
++index;
}
};
find_close_point_in_points(shape.contour.points);
// shape could be inside of another shape's hole
for (const Polygon& h:shape.holes)
find_close_point_in_points(h.points);
}
return cp;
}
// IMPROVE: when select distance fill in all distances from Patch
priv::ProjectionDistances priv::choose_best_distance(
const VDistances &distances, const ExPolygons &shapes, const Point &start, const ExPolygonsIndices &s2i, const SurfacePatches &patches)
{
assert(distances.size() == count_points(shapes));
// vector of patches for shape
std::vector<std::vector<uint32_t>> shapes_patches(shapes.size());
for (const SurfacePatch &patch : patches)
shapes_patches[patch.shape_id].push_back(&patch-&patches.front());
// collect one closest projection for each outline point
ProjectionDistances result(distances.size());
// store info about finished shapes
std::vector<bool> finished_shapes(shapes.size(), {false});
// wanted distance from ideal projection
// Distances are relative to projection distance
// so first wanted distance is the closest one (ZERO)
float wanted_distance = 0.f;
std::vector<bool> mask_distances(s2i.get_count(), {true});
for (const auto &d : distances)
if (d.empty()) mask_distances[&d - &distances.front()] = false;
// Select point from shapes(text contour) which is closest to center (all in 2d)
uint32_t unfinished_index = find_closest_point_index(start, shapes, s2i, mask_distances);
#ifdef DEBUG_OUTPUT_DIR
Connections connections;
connections.reserve(shapes.size());
connections.emplace_back(unfinished_index, unfinished_index);
#endif // DEBUG_OUTPUT_DIR
do {
const ProjectionDistance* pd = get_closest_projection(distances[unfinished_index], wanted_distance);
// selection of closest_id should proove that pd has value
// (functions: get_closest_point_index and find_close_point_in_points)
assert(pd != nullptr);
uint32_t expolygons_index = s2i.cvt(unfinished_index).expolygons_index;
const ExPolygon &shape = shapes[expolygons_index];
std::vector<uint32_t> &shape_patches = shapes_patches[expolygons_index];
if (shape_patches.size() == 1){
// Speed up, only one patch so copy distance from patch
uint32_t first_shape_index = s2i.cvt({expolygons_index, 0, 0});
uint32_t laset_shape_index = first_shape_index + count_points(shape);
for (uint32_t i = first_shape_index; i < laset_shape_index; ++i) {
const ProjectionDistances &pds = distances[i];
if (pds.empty()) continue;
// check that index belongs to patch
assert(pds.front().patch_index == shape_patches.front());
result[i] = pds.front();
if (pds.size() == 1) continue;
float relative_distance = fabs(result[i].distance - pd->distance);
// patch could contain multiple value for one outline point
// so choose closest to start point
for (uint32_t pds_index = 1; pds_index < pds.size(); ++pds_index) {
// check that index still belongs to same patch
assert(pds[pds_index].patch_index == shape_patches.front());
float relative_distance2 = fabs(pds[pds_index].distance - pd->distance);
if (relative_distance > relative_distance2) {
relative_distance = relative_distance2;
result[i] = pds[pds_index];
}
}
}
} else {
// multiple patches for expolygon
// check that exist patch to fill shape
assert(!shape_patches.empty());
fill_shape_distances(unfinished_index, pd, result, s2i, shape, distances);
}
finished_shapes[expolygons_index] = true;
// The most close points between finished and unfinished shapes
auto [finished, unfinished] = find_closest_point_pair(
shapes, finished_shapes, s2i, mask_distances);
// detection of end (best doesn't have value)
if (finished == std::numeric_limits<uint32_t>::max()) break;
assert(unfinished != std::numeric_limits<uint32_t>::max());
const ProjectionDistance &closest_pd = result[finished];
// check that best_cp is finished and has result
assert(closest_pd.aoi_index != std::numeric_limits<uint32_t>::max());
wanted_distance = closest_pd.distance;
unfinished_index = unfinished;
#ifdef DEBUG_OUTPUT_DIR
connections.emplace_back(finished, unfinished);
#endif // DEBUG_OUTPUT_DIR
} while (true); //(unfinished_index != std::numeric_limits<uint32_t>::max());
#ifdef DEBUG_OUTPUT_DIR
store(shapes, mask_distances, connections, DEBUG_OUTPUT_DIR + "closest_points.svg");
#endif // DEBUG_OUTPUT_DIR
return result;
}
// functions to help 'diff_model'
namespace priv {
const VI default_vi(std::numeric_limits<uint32_t>::max());
// Keep info about intersection source
struct Source{ HI hi; int sdim=0;};
using Sources = std::vector<Source>;
const std::string vertex_source_map_name = "v:SourceIntersecting";
using VertexSourceMap = CutMesh::Property_map<VI, Source>;
/// <summary>
/// Corefine visitor
/// Store intersection source for vertices of constrained edge of tm1
/// Must be used with corefine flag no modification of tm2
/// </summary>
struct IntersectionSources
{
const CutMesh *patch; // patch
const CutMesh *model; // const model
VertexSourceMap vmap;
// keep sources from call intersection_point_detected
// until call new_vertex_added
Sources* sources;
// count intersections
void intersection_point_detected(std::size_t i_id,
int sdim,
HI h_f,
HI h_e,
const CutMesh &tm_f,
const CutMesh &tm_e,
bool is_target_coplanar,
bool is_source_coplanar)
{
Source source;
if (&tm_e == model) {
source = {h_e, sdim};
// check other CGAL model that is patch
assert(&tm_f == patch);
if (is_target_coplanar) {
assert(sdim == 0);
vmap[tm_f.source(h_f)] = source;
}
if (is_source_coplanar) {
assert(sdim == 0);
vmap[tm_f.target(h_f)] = source;
}
// clear source to be able check that this intersection source is
// not used any more
if (is_source_coplanar || is_target_coplanar) source = {};
} else {
source = {h_f, sdim};
assert(&tm_f == model && &tm_e == patch);
assert(!is_target_coplanar);
assert(!is_source_coplanar);
// if (is_target_coplanar) vmap[tm_e.source(h_e)] = source;
// if (is_source_coplanar) vmap[tm_e.target(h_e)] = source;
// if (sdim == 0)
// vmap[tm_e.target(h_e)] = source;
}
// By documentation i_id is consecutive.
// check id goes in a row, without skips
assert(sources->size() == i_id);
// add source of intersection
sources->push_back(source);
}
/// <summary>
/// Store VI to intersections by i_id
/// </summary>
/// <param name="i_id">Order number of intersection point</param>
/// <param name="v">New added vertex</param>
/// <param name="tm">Affected mesh</param>
void new_vertex_added(std::size_t i_id, VI v, const CutMesh &tm)
{
// check that it is first insertation into item of vmap
assert(!vmap[v].hi.is_valid());
// check valid addresing into sources
assert(i_id < sources->size());
// check that source has value
assert(sources->at(i_id).hi.is_valid());
vmap[v] = sources->at(i_id);
}
// Not used visitor functions
void before_subface_creations(FI /* f_old */, CutMesh & /* mesh */) {}
void after_subface_created(FI /* f_new */, CutMesh & /* mesh */) {}
void after_subface_creations(CutMesh &) {}
void before_subface_created(CutMesh &) {}
void before_edge_split(HI /* h */, CutMesh & /* tm */) {}
void edge_split(HI /* hnew */, CutMesh & /* tm */) {}
void after_edge_split() {}
void add_retriangulation_edge(HI /* h */, CutMesh & /* tm */) {}
};
/// <summary>
/// Create map1 and map2
/// </summary>
/// <param name="map">Convert tm1.face to type</param>
/// <param name="tm1">Corefined mesh</param>
/// <param name="tm2">Source of intersection</param>
/// <param name="ecm1">Identify constrainde edge</param>
/// <param name="sources">Convert tm1.face to type</param>
void create_face_types(FaceTypeMap &map,
const CutMesh &tm1,
const CutMesh &tm2,
const EdgeBoolMap &ecm,
const VertexSourceMap &sources);
/// <summary>
/// Implement 'cut' Minus 'clipper', where clipper is reverse input Volume
/// NOTE: clipper will be modified (corefined by cut) !!!
/// </summary>
/// <param name="cut">differ from</param>
/// <param name="clipper">differ what</param>
/// <returns>True on succes, otherwise FALSE</returns>
bool clip_cut(SurfacePatch &cut, CutMesh clipper);
BoundingBoxf3 bounding_box(const CutAOI &cut, const CutMesh &mesh);
BoundingBoxf3 bounding_box(const CutMesh &mesh);
BoundingBoxf3 bounding_box(const SurfacePatch &ecut);
/// <summary>
/// Create patch
/// </summary>
/// <param name="fis">Define patch faces</param>
/// <param name="mesh">Source of fis
/// NOTE: Need temporary add property map for convert vertices</param>
/// <param name="rmap">Options to reduce vertices from fis.
/// NOTE: Used for skip vertices made by diagonal edge in rectangle of shape side</param>
/// <returns>Patch</returns>
SurfacePatch create_surface_patch(const std::vector<FI> &fis,
/*const*/ CutMesh &mesh,
const ReductionMap *rmap = nullptr);
} // namespace priv
void priv::create_face_types(FaceTypeMap &map,
const CutMesh &tm1,
const CutMesh &tm2,
const EdgeBoolMap &ecm,
const VertexSourceMap &sources)
{
auto get_intersection_source = [&tm2](const Source& s1, const Source& s2)->FI{
// when one of sources is face than return it
FI fi1 = tm2.face(s1.hi);
if (s1.sdim == 2) return fi1;
FI fi2 = tm2.face(s2.hi);
if (s2.sdim == 2) return fi2;
// both vertices are made by same source triangle
if (fi1 == fi2) return fi1;
// when one from sources is edge second one decide side of triangle triangle
HI hi1_opposit = tm2.opposite(s1.hi);
FI fi1_opposit;
if (hi1_opposit.is_valid())
fi1_opposit = tm2.face(hi1_opposit);
if (fi2 == fi1_opposit) return fi2;
HI hi2_opposit = tm2.opposite(s2.hi);
FI fi2_opposit;
if (hi2_opposit.is_valid())
fi2_opposit = tm2.face(hi2_opposit);
if (fi1 == fi2_opposit) return fi1;
if (fi1_opposit.is_valid() && fi1_opposit == fi2_opposit)
return fi1_opposit;
// when intersection is vertex need loop over neighbor
for (FI fi_around_hi1 : tm2.faces_around_target(s1.hi)) {
for (FI fi_around_hi2 : tm2.faces_around_target(s2.hi)) {
if (fi_around_hi1 == fi_around_hi2)
return fi_around_hi1;
}
}
// should never rich it
// Exist case when do not know source triangle for decide side of intersection
assert(false);
return FI();
};
for (FI fi : tm1.faces()) map[fi] = FaceType::not_constrained;
for (EI ei1 : tm1.edges()) {
if (!get(ecm, ei1)) continue;
// get faces from tm1 (f1a + f1b)
HI hi1 = tm1.halfedge(ei1);
assert(hi1.is_valid());
FI f1a = tm1.face(hi1);
assert(f1a.is_valid());
HI hi_op = tm1.opposite(hi1);
assert(hi_op.is_valid());
FI f1b = tm1.face(hi_op);
assert(f1b.is_valid());
// get faces from tm2 (f2a + f2b)
VI vi1_source = tm1.source(hi1);
assert(vi1_source.is_valid());
VI vi1_target = tm1.target(hi1);
assert(vi1_target.is_valid());
const Source &s_s = sources[vi1_source];
const Source &s_t = sources[vi1_target];
FI fi2 = get_intersection_source(s_s, s_t);
// in release solve situation that face was NOT deduced
if (!fi2.is_valid()) continue;
HI hi2 = tm2.halfedge(fi2);
std::array<const P3 *, 3> t;
size_t ti =0;
for (VI vi2 : tm2.vertices_around_face(hi2))
t[ti++] = &tm2.point(vi2);
// triangle tip from face f1a
VI vi1a_tip = tm1.target(tm1.next(hi1));
assert(vi1a_tip.is_valid());
const P3 &p = tm1.point(vi1a_tip);
// check if f1a is behinde f2a
// inside mean it will be used
// outside will be discarded
if (CGAL::orientation(*t[0], *t[1], *t[2], p) == CGAL::POSITIVE) {
map[f1a] = FaceType::inside;
map[f1b] = FaceType::outside;
} else {
map[f1a] = FaceType::outside;
map[f1b] = FaceType::inside;
}
}
}
#include <CGAL/Polygon_mesh_processing/clip.h>
#include <CGAL/Polygon_mesh_processing/corefinement.h>
bool priv::clip_cut(SurfacePatch &cut, CutMesh clipper)
{
CutMesh& tm = cut.mesh;
// create backup for case that there is no intersection
CutMesh backup_copy = tm;
class ExistIntersectionClipVisitor: public CGAL::Polygon_mesh_processing::Corefinement::Default_visitor<CutMesh>
{
bool* exist_intersection;
public:
ExistIntersectionClipVisitor(bool *exist_intersection): exist_intersection(exist_intersection){}
void intersection_point_detected(std::size_t, int , HI, HI, const CutMesh&, const CutMesh&, bool, bool)
{ *exist_intersection = true;}
};
bool exist_intersection = false;
ExistIntersectionClipVisitor visitor{&exist_intersection};
// namep parameters for model tm and function clip
const auto &np_tm = CGAL::parameters::visitor(visitor)
.throw_on_self_intersection(false);
// name parameters for model clipper and function clip
const auto &np_c = CGAL::parameters::throw_on_self_intersection(false);
// Can't use 'do_not_modify', when Ture than clipper has to be closed !!
// .do_not_modify(true);
// .throw_on_self_intersection(false); is set automaticaly by param 'do_not_modify'
// .clip_volume(false); is set automaticaly by param 'do_not_modify'
bool suc = CGAL::Polygon_mesh_processing::clip(tm, clipper, np_tm, np_c);
// true if the output surface mesh is manifold.
// If false is returned tm and clipper are only corefined.
assert(suc);
// decide what TODO when can't clip source object !?!
if (!exist_intersection || !suc) {
// TODO: test if cut is fully in or fully out!!
cut.mesh = backup_copy;
return false;
}
return true;
}
BoundingBoxf3 priv::bounding_box(const CutAOI &cut, const CutMesh &mesh) {
const P3& p_from_cut = mesh.point(mesh.target(mesh.halfedge(cut.first.front())));
Vec3d min(p_from_cut.x(), p_from_cut.y(), p_from_cut.z());
Vec3d max = min;
for (FI fi : cut.first) {
for(VI vi: mesh.vertices_around_face(mesh.halfedge(fi))){
const P3& p = mesh.point(vi);
for (size_t i = 0; i < 3; ++i) {
if (min[i] > p[i]) min[i] = p[i];
if (max[i] < p[i]) max[i] = p[i];
}
}
}
return BoundingBoxf3(min, max);
}
BoundingBoxf3 priv::bounding_box(const CutMesh &mesh)
{
const P3 &p_from_cut = *mesh.points().begin();
Vec3d min(p_from_cut.x(), p_from_cut.y(), p_from_cut.z());
Vec3d max = min;
for (VI vi : mesh.vertices()) {
const P3 &p = mesh.point(vi);
for (size_t i = 0; i < 3; ++i) {
if (min[i] > p[i]) min[i] = p[i];
if (max[i] < p[i]) max[i] = p[i];
}
}
return BoundingBoxf3(min, max);
}
BoundingBoxf3 priv::bounding_box(const SurfacePatch &ecut) {
return bounding_box(ecut.mesh);
}
priv::SurfacePatch priv::create_surface_patch(const std::vector<FI> &fis,
/* const */ CutMesh &mesh,
const ReductionMap *rmap)
{
auto is_counted = mesh.add_property_map<VI, bool>("v:is_counted").first;
uint32_t count_vertices = 0;
if (rmap == nullptr) {
for (FI fi : fis)
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi)))
if (!is_counted[vi]) {
is_counted[vi] = true;
++count_vertices;
}
} else {
for (FI fi : fis)
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi))) {
// Will vertex be reduced?
if ((*rmap)[vi].is_valid()) continue;
if (!is_counted[vi]) {
is_counted[vi] = true;
++count_vertices;
}
}
}
mesh.remove_property_map(is_counted);
uint32_t count_faces = fis.size();
// IMPROVE: Value is greater than neccessary, count edges used twice
uint32_t count_edges = count_faces*3;
CutMesh cm;
cm.reserve(count_vertices, count_edges, count_faces);
// vertex conversion function from mesh VI to result VI
CvtVI2VI mesh2result = mesh.add_property_map<VI,VI>("v:mesh2result").first;
if (rmap == nullptr) {
for (FI fi : fis) {
std::array<VI, 3> t;
int index = 0;
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi))) {
VI &vi_cvt = mesh2result[vi];
if (!vi_cvt.is_valid()) {
vi_cvt = VI(cm.vertices().size());
cm.add_vertex(mesh.point(vi));
}
t[index++] = vi_cvt;
}
cm.add_face(t[0], t[1], t[2]);
}
} else {
for (FI fi :fis) {
std::array<VI, 3> t;
int index = 0;
bool exist_reduction = false;
for (VI vi : mesh.vertices_around_face(mesh.halfedge(fi))) {
VI vi_r = (*rmap)[vi];
if (vi_r.is_valid()) {
exist_reduction = true;
vi = vi_r;
}
VI &vi_cvt = mesh2result[vi];
if (!vi_cvt.is_valid()) {
vi_cvt = VI(cm.vertices().size());
cm.add_vertex(mesh.point(vi));
}
t[index++] = vi_cvt;
}
// prevent add reduced triangle
if (exist_reduction &&
(t[0] == t[1] ||
t[1] == t[2] ||
t[2] == t[0]))
continue;
cm.add_face(t[0], t[1], t[2]);
}
}
assert(count_vertices == cm.vertices().size());
assert((rmap == nullptr && count_faces == cm.faces().size()) ||
(rmap != nullptr && count_faces >= cm.faces().size()));
assert(count_edges >= cm.edges().size());
// convert VI from this patch to source VI, when exist
CvtVI2VI cvt = cm.add_property_map<VI, VI>(patch_source_name).first;
// vi_s .. VertexIndex into mesh (source)
// vi_d .. new VertexIndex in cm (destination)
for (VI vi_s : mesh.vertices()) {
VI vi_d = mesh2result[vi_s];
if (!vi_d.is_valid()) continue;
cvt[vi_d] = vi_s;
}
mesh.remove_property_map(mesh2result);
return {std::move(cm)};
}
// diff_models help functions
namespace priv {
struct SurfacePatchEx
{
SurfacePatch patch;
// flag that part will be deleted
bool full_inside = false;
// flag that Patch could contain more than one part
bool just_cliped = false;
};
using SurfacePatchesEx = std::vector<SurfacePatchEx>;
using BBS = std::vector<BoundingBoxf3>;
/// <summary>
/// Create bounding boxes for AOI
/// </summary>
/// <param name="cuts">Cutted AOI from models</param>
/// <param name="cut_models">Source points of cuts</param>
/// <returns>Bounding boxes</returns>
BBS create_bbs(const VCutAOIs &cuts, const CutMeshes &cut_models);
using Primitive = CGAL::AABB_face_graph_triangle_primitive<CutMesh>;
using Traits = CGAL::AABB_traits<EpicKernel, Primitive>;
using Ray = EpicKernel::Ray_3;
using Tree = CGAL::AABB_tree<Traits>;
using Trees = std::vector<Tree>;
/// <summary>
/// Create AABB trees for check when patch is whole inside of model
/// </summary>
/// <param name="models">Source for trees</param>
/// <returns>trees</returns>
Trees create_trees(const CutMeshes &models);
/// <summary>
/// Check whether bounding box has intersection with model
/// </summary>
/// <param name="bb">Bounding box to check</param>
/// <param name="model_index">Model to check with</param>
/// <param name="bbs">All bounding boxes from VCutAOIs</param>
/// <param name="m2i">Help index into VCutAOIs</param>
/// <returns>True when exist bounding boxes intersection</returns>
bool has_bb_intersection(const BoundingBoxf3 &bb,
size_t model_index,
const BBS &bbs,
const ModelCut2index &m2i);
/// <summary>
/// Only for model without intersection
/// Use ray (in projection direction) from a point from patch
/// and count intersections: pair .. outside | odd .. inside
/// </summary>
/// <param name="patch">Patch to check</param>
/// <param name="tree">Model converted to AABB tree</param>
/// <param name="projection">Define direction of projection</param>
/// <returns>True when patch point lay inside of model defined by tree,
/// otherwise FALSE</returns>
bool is_patch_inside_of_model(const SurfacePatch &patch,
const Tree &tree,
const Project3d &projection);
/// <summary>
/// Return some shape point index which identify shape
/// NOTE: Used to find expolygon index
/// </summary>
/// <param name="cut">Used to search source shapes poin</param>
/// <param name="model"></param>
/// <returns>shape point index</returns>
uint32_t get_shape_point_index(const CutAOI &cut, const CutMesh &model);
using PatchNumber = CutMesh::Property_map<FI, size_t>;
/// <summary>
/// Separate triangles singned with number n
/// </summary>
/// <param name="fis">Face indices owned by separate patch</param>
/// <param name="patch">Original patch
/// NOTE: Can't be const. For indexing vetices need temporary add property map</param>
/// <param name="cvt_from">conversion map</param>
/// <returns>Just separated patch</returns>
SurfacePatch separate_patch(const std::vector<FI> &fis,
/* const*/ SurfacePatch &patch,
const CvtVI2VI &cvt_from);
/// <summary>
/// Separate connected triangles into it's own patches
/// new patches are added to back of input patches
/// </summary>
/// <param name="i">index into patches</param>
/// <param name="patches">In/Out Patches</param>
void divide_patch(size_t i, SurfacePatchesEx &patches);
/// <summary>
/// Fill outline in patches by open edges
/// </summary>
/// <param name="patches">Input/Output meshes with open edges</param>
void collect_open_edges(SurfacePatches &patches);
} // namespace priv
std::vector<BoundingBoxf3> priv::create_bbs(const VCutAOIs &cuts,
const CutMeshes &cut_models)
{
size_t count = 0;
for (const CutAOIs &cut : cuts) count += cut.size();
std::vector<BoundingBoxf3> bbs;
bbs.reserve(count);
for (size_t model_index = 0; model_index < cut_models.size(); ++model_index) {
const CutMesh &cut_model = cut_models[model_index];
const CutAOIs &cutAOIs = cuts[model_index];
for (size_t cut_index = 0; cut_index < cutAOIs.size(); ++cut_index) {
const CutAOI &cut = cutAOIs[cut_index];
bbs.push_back(bounding_box(cut, cut_model));
}
}
return bbs;
}
priv::Trees priv::create_trees(const CutMeshes &models) {
Trees result;
result.reserve(models.size());
for (const CutMesh &model : models) {
Tree tree;
tree.insert(faces(model).first, faces(model).second, model);
tree.build();
result.emplace_back(std::move(tree));
}
return result;
}
bool priv::has_bb_intersection(const BoundingBoxf3 &bb,
size_t model_index,
const BBS &bbs,
const ModelCut2index &m2i)
{
const auto&offsets = m2i.get_offsets();
// for cut index with model_index2
size_t start = offsets[model_index];
size_t next = model_index + 1;
size_t end = (next < offsets.size()) ? offsets[next] : m2i.get_count();
for (size_t bb_index = start; bb_index < end; bb_index++)
if (bb.intersects(bbs[bb_index])) return true;
return false;
}
bool priv::is_patch_inside_of_model(const SurfacePatch &patch,
const Tree &tree,
const Project3d &projection)
{
// TODO: Solve model with hole in projection direction !!!
const P3 &a = patch.mesh.point(VI(0));
Vec3d a_(a.x(), a.y(), a.z());
Vec3d b_ = projection.project(a_);
P3 b(b_.x(), b_.y(), b_.z());
Ray ray_query(a, b);
size_t count = tree.number_of_intersected_primitives(ray_query);
bool is_in = (count % 2) == 1;
// try opposit direction result should be same, otherwise open model is used
//Vec3f c_ = a_ - (b_ - a_); // opposit direction
//P3 c(c_.x(), c_.y(), c_.z());
//Ray ray_query2(a, b);
//size_t count2 = tree.number_of_intersected_primitives(ray_query2);
//bool is_in2 = (count2 % 2) == 1;
assert(((tree.number_of_intersected_primitives(
Ray(a, P3(2 * a.x() - b.x(),
2 * a.y() - b.y(),
2 * a.z() - b.z()))) %
2) == 1) == is_in);
return is_in;
}
uint32_t priv::get_shape_point_index(const CutAOI &cut, const CutMesh &model)
{
// map is created during intersection by corefine visitor
const VertexShapeMap &vert_shape_map = model.property_map<VI, const IntersectingElement *>(vert_shape_map_name).first;
// for each half edge of outline
for (HI hi : cut.second) {
VI vi = model.source(hi);
const IntersectingElement *ie = vert_shape_map[vi];
if (ie == nullptr) continue;
assert(ie->shape_point_index != std::numeric_limits<uint32_t>::max());
return ie->shape_point_index;
}
// can't found any intersecting element in cut
assert(false);
return 0;
}
priv::SurfacePatch priv::separate_patch(const std::vector<FI>& fis,
SurfacePatch &patch,
const CvtVI2VI &cvt_from)
{
assert(patch.mesh.is_valid());
SurfacePatch patch_new = create_surface_patch(fis, patch.mesh);
patch_new.bb = bounding_box(patch_new.mesh);
patch_new.aoi_id = patch.aoi_id;
patch_new.model_id = patch.model_id;
patch_new.shape_id = patch.shape_id;
// fix cvt
CvtVI2VI cvt = patch_new.mesh.property_map<VI, VI>(patch_source_name).first;
for (VI &vi : cvt) {
if (!vi.is_valid()) continue;
vi = cvt_from[vi];
}
return patch_new;
}
void priv::divide_patch(size_t i, SurfacePatchesEx &patches)
{
SurfacePatchEx &patch_ex = patches[i];
assert(patch_ex.just_cliped);
patch_ex.just_cliped = false;
SurfacePatch& patch = patch_ex.patch;
CutMesh& cm = patch.mesh;
assert(!cm.faces().empty());
std::string patch_number_name = "f:patch_number";
CutMesh::Property_map<FI,bool> is_processed = cm.add_property_map<FI, bool>(patch_number_name, false).first;
const CvtVI2VI& cvt_from = patch.mesh.property_map<VI, VI>(patch_source_name).first;
std::vector<FI> fis;
fis.reserve(cm.faces().size());
SurfacePatchesEx new_patches;
std::vector<FI> queue;
// IMPROVE: create groups around triangles and than connect groups
for (FI fi_cm : cm.faces()) {
if (is_processed[fi_cm]) continue;
assert(queue.empty());
queue.push_back(fi_cm);
if (!fis.empty()) {
// Be carefull after push to patches,
// all ref on patch contain non valid values
SurfacePatchEx patch_ex_n;
patch_ex_n.patch = separate_patch(fis, patch, cvt_from);
patch_ex_n.patch.is_whole_aoi = false;
new_patches.push_back(std::move(patch_ex_n));
fis.clear();
}
// flood fill from triangle fi_cm to surrounding
do {
FI fi_q = queue.back();
queue.pop_back();
if (is_processed[fi_q]) continue;
is_processed[fi_q] = true;
fis.push_back(fi_q);
HI hi = cm.halfedge(fi_q);
for (FI fi : cm.faces_around_face(hi)) {
// by documentation The face descriptor may be the null face, and it may be several times the same face descriptor.
if (!fi.is_valid()) continue;
if (!is_processed[fi]) queue.push_back(fi);
}
} while (!queue.empty());
}
cm.remove_property_map(is_processed);
assert(!fis.empty());
// speed up for only one patch - no dividing (the most common)
if (new_patches.empty()) {
patch.bb = bounding_box(cm);
patch.is_whole_aoi = false;
} else {
patch = separate_patch(fis, patch, cvt_from);
patches.insert(patches.end(), new_patches.begin(), new_patches.end());
}
}
void priv::collect_open_edges(SurfacePatches &patches) {
std::vector<HI> open_half_edges;
for (SurfacePatch &patch : patches) {
open_half_edges.clear();
const CutMesh &mesh = patch.mesh;
for (FI fi : mesh.faces()) {
HI hi1 = mesh.halfedge(fi);
assert(hi1.is_valid());
HI hi2 = mesh.next(hi1);
assert(hi2.is_valid());
HI hi3 = mesh.next(hi2);
assert(hi3.is_valid());
// Is fi triangle?
assert(mesh.next(hi3) == hi1);
for (HI hi : {hi1, hi2, hi3}) {
HI hi_op = mesh.opposite(hi);
FI fi_op = mesh.face(hi_op);
if (!fi_op.is_valid())
open_half_edges.push_back(hi);
}
}
patch.loops = create_loops(open_half_edges, mesh);
}
}
priv::SurfacePatches priv::diff_models(VCutAOIs &cuts,
/*const*/ CutMeshes &cut_models,
/*const*/ CutMeshes &models,
const Project3d &projection)
{
// IMPROVE: when models contain ONE mesh. It is only about convert cuts to patches
// and reduce unneccessary triangles on contour
//Convert model_index and cut_index into one index
priv::ModelCut2index m2i(cuts);
// create bounding boxes for cuts
std::vector<BoundingBoxf3> bbs = create_bbs(cuts, cut_models);
Trees trees(models.size());
SurfacePatches patches;
// queue of patches for one AOI (permanent with respect to for loop)
SurfacePatchesEx aoi_patches;
//SurfacePatches aoi_patches;
patches.reserve(m2i.get_count()); // only approximation of count
size_t index = 0;
for (size_t model_index = 0; model_index < models.size(); ++model_index) {
CutAOIs &model_cuts = cuts[model_index];
CutMesh &cut_model_ = cut_models[model_index];
const CutMesh &cut_model = cut_model_;
ReductionMap vertex_reduction_map = cut_model_.add_property_map<VI, VI>(vertex_reduction_map_name).first;
create_reduce_map(vertex_reduction_map, cut_model);
for (size_t cut_index = 0; cut_index < model_cuts.size(); ++cut_index, ++index) {
const CutAOI &cut = model_cuts[cut_index];
SurfacePatchEx patch_ex;
SurfacePatch &patch = patch_ex.patch;
patch = create_surface_patch(cut.first, cut_model_, &vertex_reduction_map);
patch.bb = bbs[index];
patch.aoi_id = cut_index;
patch.model_id = model_index;
patch.shape_id = get_shape_point_index(cut, cut_model);
patch.is_whole_aoi = true;
aoi_patches.clear();
aoi_patches.push_back(patch_ex);
for (size_t model_index2 = 0; model_index2 < models.size(); ++model_index2) {
// do not clip source model itself
if (model_index == model_index2) continue;
for (SurfacePatchEx &patch_ex : aoi_patches) {
SurfacePatch &patch = patch_ex.patch;
if (has_bb_intersection(patch.bb, model_index2, bbs, m2i) &&
clip_cut(patch, models[model_index2])){
patch_ex.just_cliped = true;
} else {
// build tree on demand
// NOTE: it is possible not neccessary: e.g. one model
Tree &tree = trees[model_index2];
if (tree.empty()) {
const CutMesh &model = models[model_index2];
auto f_range = faces(model);
tree.insert(f_range.first, f_range.second, model);
tree.build();
}
if (is_patch_inside_of_model(patch, tree, projection))
patch_ex.full_inside = true;
}
}
// erase full inside
for (size_t i = aoi_patches.size(); i != 0; --i) {
auto it = aoi_patches.begin() + (i - 1);
if (it->full_inside) aoi_patches.erase(it);
}
// detection of full AOI inside of model
if (aoi_patches.empty()) break;
// divide cliped into parts
size_t end = aoi_patches.size();
for (size_t i = 0; i < end; ++i)
if (aoi_patches[i].just_cliped)
divide_patch(i, aoi_patches);
}
if (!aoi_patches.empty()) {
patches.reserve(patches.size() + aoi_patches.size());
for (SurfacePatchEx &patch : aoi_patches)
patches.push_back(std::move(patch.patch));
}
}
cut_model_.remove_property_map(vertex_reduction_map);
}
// Also use outline inside of patches(made by non manifold models)
// IMPROVE: trace outline from AOIs
collect_open_edges(patches);
return patches;
}
bool priv::is_over_whole_expoly(const SurfacePatch &patch,
const ExPolygons &shapes,
const VCutAOIs &cutAOIs,
const CutMeshes &meshes)
{
if (!patch.is_whole_aoi) return false;
return is_over_whole_expoly(cutAOIs[patch.model_id][patch.aoi_id],
shapes[patch.shape_id],
meshes[patch.model_id]);
}
bool priv::is_over_whole_expoly(const CutAOI &cutAOI,
const ExPolygon &shape,
const CutMesh &mesh)
{
// NonInterupted contour is without other point and contain all from shape
const VertexShapeMap &vert_shape_map = mesh.property_map<VI, const IntersectingElement*>(vert_shape_map_name).first;
for (HI hi : cutAOI.second) {
const IntersectingElement *ie_s = vert_shape_map[mesh.source(hi)];
const IntersectingElement *ie_t = vert_shape_map[mesh.target(hi)];
if (ie_s == nullptr || ie_t == nullptr)
return false;
assert(ie_s->attr != (unsigned char) IntersectingElement::Type::undefined);
assert(ie_t->attr != (unsigned char) IntersectingElement::Type::undefined);
// check if it is neighbor indices
uint32_t i_s = ie_s->shape_point_index;
uint32_t i_t = ie_t->shape_point_index;
assert(i_s != std::numeric_limits<uint32_t>::max());
assert(i_t != std::numeric_limits<uint32_t>::max());
if (i_s == std::numeric_limits<uint32_t>::max() ||
i_t == std::numeric_limits<uint32_t>::max())
return false;
// made by same index
if (i_s == i_t) continue;
// order from source to target
if (i_s > i_t) {
std::swap(i_s, i_t);
std::swap(ie_s, ie_t);
}
// Must be after fix order !!
bool is_last_polygon_segment = ie_s->is_first() && ie_t->is_last();
if (is_last_polygon_segment) {
std::swap(i_s, i_t);
std::swap(ie_s, ie_t);
}
// Is continous indices
if (!is_last_polygon_segment &&
(ie_s->is_last() || (i_s + 1) != i_t))
return false;
IntersectingElement::Type t_s = ie_s->get_type();
IntersectingElement::Type t_t = ie_t->get_type();
if (t_s == IntersectingElement::Type::undefined ||
t_t == IntersectingElement::Type::undefined)
return false;
// next segment must start with edge intersection
if (t_t != IntersectingElement::Type::edge_1)
return false;
// After face1 must be edge2 or face2
if (t_s == IntersectingElement::Type::face_1)
return false;
}
// When all open edges are on contour than there is NO holes is shape
auto is_open = [&mesh](HI hi)->bool {
HI opposite = mesh.opposite(hi);
return !mesh.face(opposite).is_valid();
};
std::vector<HI> opens; // copy
opens.reserve(cutAOI.second.size());
for (HI hi : cutAOI.second) // from lower to bigger
if (is_open(hi)) opens.push_back(hi);
std::sort(opens.begin(), opens.end());
for (FI fi: cutAOI.first) {
HI face_hi = mesh.halfedge(fi);
for (HI hi : mesh.halfedges_around_face(face_hi)) {
if (!is_open(hi)) continue;
// open edge
auto lb = std::lower_bound(opens.begin(), opens.end(), hi);
if (lb == opens.end() || *lb != hi)
return false; // not in contour
}
}
return true;
}
std::vector<bool> priv::select_patches(const ProjectionDistances &best_distances,
const SurfacePatches &patches,
const ExPolygons &shapes,
const ExPolygonsIndices &s2i,
const VCutAOIs &cutAOIs,
const CutMeshes &meshes,
const Project &projection)
{
// extension to cover numerical mistake made by back projection patch from 3d to 2d
const float extend_delta = 5.f / Emboss::SHAPE_SCALE; // [Font points scaled by Emboss::SHAPE_SCALE]
// vector of patches for shape
std::vector<std::vector<uint32_t>> used_shapes_patches(shapes.size());
std::vector<bool> in_distances(patches.size(), {false});
for (const ProjectionDistance &d : best_distances) {
// exist valid projection for shape point?
if (d.patch_index == std::numeric_limits<uint32_t>::max()) continue;
if (in_distances[d.patch_index]) continue;
in_distances[d.patch_index] = true;
ExPolygonsIndex id = s2i.cvt(&d - &best_distances.front());
used_shapes_patches[id.expolygons_index].push_back(d.patch_index);
}
// vector of patches for shape
std::vector<std::vector<uint32_t>> shapes_patches(shapes.size());
for (const SurfacePatch &patch : patches)
shapes_patches[patch.shape_id].push_back(&patch - &patches.front());
#ifdef DEBUG_OUTPUT_DIR
std::string store_dir = DEBUG_OUTPUT_DIR + "select_patches/";
prepare_dir(store_dir);
#endif // DEBUG_OUTPUT_DIR
for (size_t shape_index = 0; shape_index < shapes.size(); shape_index++) {
const ExPolygon &shape = shapes[shape_index];
std::vector<uint32_t> &used_shape_patches = used_shapes_patches[shape_index];
if (used_shape_patches.empty()) continue;
// is used all exist patches?
if (used_shapes_patches.size() == shapes_patches[shape_index].size()) continue;
if (used_shape_patches.size() == 1) {
uint32_t patch_index = used_shape_patches.front();
const SurfacePatch &patch = patches[patch_index];
if (is_over_whole_expoly(patch, shapes, cutAOIs, meshes)) continue;
}
// only shapes containing multiple patches
// or not full filled are back projected (hard processed)
// intersection of converted patches to 2d
ExPolygons fill;
fill.reserve(used_shape_patches.size());
// Heuristics to predict which patch to be used need average patch depth
Vec2d used_patches_depth(std::numeric_limits<double>::max(), std::numeric_limits<double>::min());
for (uint32_t patch_index : used_shape_patches) {
ExPolygon patch_area = to_expoly(patches[patch_index], projection, used_patches_depth);
//*/
ExPolygons patch_areas = offset_ex(patch_area, extend_delta);
fill.insert(fill.end(), patch_areas.begin(), patch_areas.end());
/*/
// without save extension
fill.push_back(patch_area);
//*/
}
fill = union_ex(fill);
// not cutted area of expolygon
ExPolygons rest = diff_ex(ExPolygons{shape}, fill, ApplySafetyOffset::Yes);
#ifdef DEBUG_OUTPUT_DIR
BoundingBox shape_bb = get_extents(shape);
SVG svg(store_dir + "shape_" + std::to_string(shape_index) + ".svg", shape_bb);
svg.draw(fill, "darkgreen");
svg.draw(rest, "green");
#endif // DEBUG_OUTPUT_DIR
// already filled by multiple patches
if (rest.empty()) continue;
// find patches overlaped rest area
struct PatchShape{
uint32_t patch_index;
ExPolygon shape;
ExPolygons intersection;
double depth_range_center_distance; // always positive
};
using PatchShapes = std::vector<PatchShape>;
PatchShapes patch_shapes;
double used_patches_depth_center = (used_patches_depth[0] + used_patches_depth[1]) / 2;
// sort used_patches for faster search
std::sort(used_shape_patches.begin(), used_shape_patches.end());
for (uint32_t patch_index : shapes_patches[shape_index]) {
// check is patch already used
auto it = std::lower_bound(used_shape_patches.begin(), used_shape_patches.end(), patch_index);
if (it != used_shape_patches.end() && *it == patch_index) continue;
// Heuristics to predict which patch to be used need average patch depth
Vec2d patche_depth_range(std::numeric_limits<double>::max(), std::numeric_limits<double>::min());
ExPolygon patch_shape = to_expoly(patches[patch_index], projection, patche_depth_range);
double depth_center = (patche_depth_range[0] + patche_depth_range[1]) / 2;
double depth_range_center_distance = std::fabs(used_patches_depth_center - depth_center);
ExPolygons patch_intersection = intersection_ex(ExPolygons{patch_shape}, rest);
if (patch_intersection.empty()) continue;
patch_shapes.push_back({patch_index, patch_shape, patch_intersection, depth_range_center_distance});
}
// nothing to add
if (patch_shapes.empty()) continue;
// only one solution to add
if (patch_shapes.size() == 1) {
used_shape_patches.push_back(patch_shapes.front().patch_index);
continue;
}
// Idea: Get depth range of used patches and add patches in order by distance to used depth center
std::sort(patch_shapes.begin(), patch_shapes.end(), [](const PatchShape &a, const PatchShape &b)
{ return a.depth_range_center_distance < b.depth_range_center_distance; });
#ifdef DEBUG_OUTPUT_DIR
for (size_t i = patch_shapes.size(); i > 0; --i) {
const PatchShape &p = patch_shapes[i - 1];
int gray_level = (i * 200) / patch_shapes.size();
std::stringstream color;
color << "#" << std::hex << std::setfill('0') << std::setw(2) << gray_level << gray_level << gray_level;
svg.draw(p.shape, color.str());
Point text_pos = get_extents(p.shape).center().cast<int>();
svg.draw_text(text_pos, std::to_string(i-1).c_str(), "orange", std::ceil(shape_bb.size().x() / 20 * 0.000001));
//svg.draw(p.intersection, color.str());
}
#endif // DEBUG_OUTPUT_DIR
for (const PatchShape &patch : patch_shapes) {
// Check when exist some place to fill
ExPolygons patch_intersection = intersection_ex(patch.intersection, rest);
if (patch_intersection.empty()) continue;
// Extend for sure
ExPolygons intersection = offset_ex(patch.intersection, extend_delta);
rest = diff_ex(rest, intersection, ApplySafetyOffset::Yes);
used_shape_patches.push_back(patch.patch_index);
if (rest.empty()) break;
}
// QUESTION: How to select which patch to use? How to sort them?
// Now is used back projection distance from used patches
//
// Idealy by outline depth: (need ray cast into patches)
// how to calc wanted depth - idealy by depth of outline help to overlap
// how to calc patch depth - depth in place of outline position
// Which outline to use between
}
std::vector<bool> result(patches.size(), {false});
for (const std::vector<uint32_t> &patches: used_shapes_patches)
for (uint32_t patch_index : patches) {
assert(patch_index < result.size());
// check only onece insertation of patch
assert(!result[patch_index]);
result[patch_index] = true;
}
return result;
}
priv::Loops priv::create_loops(const std::vector<HI> &outlines, const CutMesh& mesh)
{
Loops loops;
Loops unclosed;
for (HI hi : outlines) {
VI vi_s = mesh.source(hi);
VI vi_t = mesh.target(hi);
Loop *loop_move = nullptr;
Loop *loop_connect = nullptr;
for (std::vector<VI> &cut : unclosed) {
if (cut.back() != vi_s) continue;
if (cut.front() == vi_t) {
// cut closing
loop_move = &cut;
} else {
loop_connect = &cut;
}
break;
}
if (loop_move != nullptr) {
// index of closed cut
size_t index = loop_move - &unclosed.front();
// move cut to result
loops.emplace_back(std::move(*loop_move));
// remove it from unclosed cut
unclosed.erase(unclosed.begin() + index);
} else if (loop_connect != nullptr) {
// try find tail to connect cut
Loop *loop_tail = nullptr;
for (Loop &cut : unclosed) {
if (cut.front() != vi_t) continue;
loop_tail = &cut;
break;
}
if (loop_tail != nullptr) {
// index of tail
size_t index = loop_tail - &unclosed.front();
// move to connect vector
loop_connect->insert(loop_connect->end(),
make_move_iterator(loop_tail->begin()),
make_move_iterator(loop_tail->end()));
// remove tail from unclosed cut
unclosed.erase(unclosed.begin() + index);
} else {
loop_connect->push_back(vi_t);
}
} else { // not found
bool create_cut = true;
// try to insert to front of cut
for (Loop &cut : unclosed) {
if (cut.front() != vi_t) continue;
cut.insert(cut.begin(), vi_s);
create_cut = false;
break;
}
if (create_cut)
unclosed.emplace_back(std::vector{vi_s, vi_t});
}
}
assert(unclosed.empty());
return loops;
}
Polygons priv::unproject_loops(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range)
{
assert(!patch.loops.empty());
if (patch.loops.empty()) return {};
// NOTE: this method is working only when patch did not contain outward faces
Polygons polys;
polys.reserve(patch.loops.size());
// project conture into 2d space to fillconvert outlines to
size_t count = 0;
for (const Loop &l : patch.loops) count += l.size();
std::vector<float> depths;
depths.reserve(count);
Points pts;
for (const Loop &l : patch.loops) {
pts.clear();
pts.reserve(l.size());
for (VI vi : l) {
const P3 &p3 = patch.mesh.point(vi);
Vec3d p(p3.x(), p3.y(), p3.z());
double depth;
std::optional<Vec2d> p2_opt = projection.unproject(p, &depth);
if (depth_range[0] > depth) depth_range[0] = depth; // min
if (depth_range[1] < depth) depth_range[1] = depth; // max
// Check when appear that skip is enough for poit which can't be unprojected
// - it could break contour
assert(p2_opt.has_value());
if (!p2_opt.has_value()) continue;
pts.push_back(p2_opt->cast<Point::coord_type>());
depths.push_back(static_cast<float>(depth));
}
// minimal is triangle
assert(pts.size() >= 3);
if (pts.size() < 3) continue;
polys.emplace_back(pts);
}
assert(!polys.empty());
return polys;
}
ExPolygon priv::to_expoly(const SurfacePatch &patch, const Project &projection, Vec2d &depth_range)
{
Polygons polys = unproject_loops(patch, projection, depth_range);
// should not be used when no opposit triangle are counted so should not create overlaps
ClipperLib::PolyFillType fill_type = ClipperLib::PolyFillType::pftEvenOdd;
ExPolygons expolys = Slic3r::union_ex(polys, fill_type);
assert(expolys.size() == 1);
if (expolys.empty()) return {};
return expolys.front();
}
SurfaceCut priv::patch2cut(SurfacePatch &patch)
{
CutMesh &mesh = patch.mesh;
std::string convert_map_name = "v:convert";
CutMesh::Property_map<VI, SurfaceCut::Index> convert_map =
mesh.add_property_map<VI, SurfaceCut::Index>(convert_map_name).first;
size_t indices_size = mesh.faces().size();
size_t vertices_size = mesh.vertices().size();
SurfaceCut sc;
sc.indices.reserve(indices_size);
sc.vertices.reserve(vertices_size);
for (VI vi : mesh.vertices()) {
// vi order is is not sorted
// assert(vi.idx() == sc.vertices.size());
// vi is not continous
// assert(vi.idx() < vertices_size);
convert_map[vi] = sc.vertices.size();
const P3 &p = mesh.point(vi);
sc.vertices.emplace_back(p.x(), p.y(), p.z());
}
for (FI fi : mesh.faces()) {
HI hi = mesh.halfedge(fi);
assert(mesh.next(hi).is_valid());
assert(mesh.next(mesh.next(hi)).is_valid());
// Is fi triangle?
assert(mesh.next(mesh.next(mesh.next(hi))) == hi);
// triangle indicies
Vec3i ti;
size_t i = 0;
for (VI vi : { mesh.source(hi),
mesh.target(hi),
mesh.target(mesh.next(hi))})
ti[i++] = convert_map[vi];
sc.indices.push_back(ti);
}
sc.contours.reserve(patch.loops.size());
for (const Loop &loop : patch.loops) {
sc.contours.push_back({});
std::vector<SurfaceCut::Index> &contour = sc.contours.back();
contour.reserve(loop.size());
for (VI vi : loop) contour.push_back(convert_map[vi]);
}
// Not neccessary, clean and free memory
mesh.remove_property_map(convert_map);
return sc;
}
void priv::append(SurfaceCut &sc, SurfaceCut &&sc_add)
{
if (sc.empty()) {
sc = std::move(sc_add);
return;
}
if (!sc_add.contours.empty()) {
SurfaceCut::Index offset = static_cast<SurfaceCut::Index>(
sc.vertices.size());
size_t require = sc.contours.size() + sc_add.contours.size();
if (sc.contours.capacity() < require) sc.contours.reserve(require);
for (std::vector<SurfaceCut::Index> &cut : sc_add.contours)
for (SurfaceCut::Index &i : cut) i += offset;
Slic3r::append(sc.contours, std::move(sc_add.contours));
}
its_merge(sc, std::move(sc_add));
}
SurfaceCut priv::merge_patches(SurfacePatches &patches, const std::vector<bool>& mask)
{
SurfaceCut result;
for (SurfacePatch &patch : patches) {
size_t index = &patch - &patches.front();
if (!mask[index]) continue;
append(result, patch2cut(patch));
}
return result;
}
#ifdef DEBUG_OUTPUT_DIR
void priv::prepare_dir(const std::string &dir){
namespace fs = std::filesystem;
if (fs::exists(dir)) {
for (auto &path : fs::directory_iterator(dir)) fs::remove_all(path);
} else {
fs::create_directories(dir);
}
}
namespace priv{
int reduction_order = 0;
int filled_order = 0;
int constrained_order = 0;
int diff_patch_order = 0;
} // namespace priv
void priv::initialize_store(const std::string& dir)
{
// clear previous output
prepare_dir(dir);
reduction_order = 0;
filled_order = 0;
constrained_order = 0;
diff_patch_order = 0;
}
void priv::store(const Vec3f &vertex,
const Vec3f &normal,
const std::string &file,
float size)
{
int flatten = 20;
size_t min_i = 0;
for (size_t i = 1; i < 3; i++)
if (normal[min_i] > normal[i]) min_i = i;
Vec3f up_ = Vec3f::Zero();
up_[min_i] = 1.f;
Vec3f side = normal.cross(up_).normalized() * size;
Vec3f up = side.cross(normal).normalized() * size;
indexed_triangle_set its;
its.vertices.reserve(flatten + 1);
its.indices.reserve(flatten);
its.vertices.push_back(vertex);
its.vertices.push_back(vertex + up);
size_t max_i = static_cast<size_t>(flatten);
for (size_t i = 1; i < max_i; i++) {
float angle = i * 2 * M_PI / flatten;
Vec3f v = vertex + sin(angle) * side + cos(angle) * up;
its.vertices.push_back(v);
its.indices.emplace_back(0, i, i + 1);
}
its.indices.emplace_back(0, flatten, 1);
its_write_obj(its, file.c_str());
}
void priv::store(const CutMesh &mesh, const FaceTypeMap &face_type_map, const std::string& dir, bool is_filled)
{
std::string off_file;
if (is_filled) {
if (filled_order == 0) prepare_dir(dir);
off_file = dir + "model" + std::to_string(filled_order++) + ".off";
}else{
if (constrained_order == 0) prepare_dir(dir);
off_file = dir + "model" + std::to_string(constrained_order++) + ".off";
}
CutMesh &mesh_ = const_cast<CutMesh &>(mesh);
auto face_colors = mesh_.add_property_map<priv::FI, CGAL::Color>("f:color").first;
for (FI fi : mesh.faces()) {
auto &color = face_colors[fi];
switch (face_type_map[fi]) {
case FaceType::inside: color = CGAL::Color{100, 250, 100}; break; // light green
case FaceType::inside_processed: color = CGAL::Color{170, 0, 0}; break; // dark red
case FaceType::outside: color = CGAL::Color{100, 0, 100}; break; // purple
case FaceType::not_constrained: color = CGAL::Color{127, 127, 127}; break; // gray
default: color = CGAL::Color{0, 0, 255}; // blue
}
}
CGAL::IO::write_OFF(off_file, mesh);
mesh_.remove_property_map(face_colors);
}
void priv::store(const ExPolygons &shapes, const std::string &svg_file) {
SVG svg(svg_file);
svg.draw(shapes);
}
void priv::store(const CutMesh &mesh, const ReductionMap &reduction_map, const std::string& dir)
{
if (reduction_order == 0) prepare_dir(dir);
std::string off_file = dir + "model" + std::to_string(reduction_order++) + ".off";
CutMesh &mesh_ = const_cast<CutMesh &>(mesh);
auto vertex_colors = mesh_.add_property_map<priv::VI, CGAL::Color>("v:color").first;
// initialize to gray color
for (VI vi: mesh.vertices())
vertex_colors[vi] = CGAL::Color{127, 127, 127};
for (VI reduction_from : mesh.vertices()) {
VI reduction_to = reduction_map[reduction_from];
if (!reduction_to.is_valid()) continue;
vertex_colors[reduction_from] = CGAL::Color{255, 0, 0};
vertex_colors[reduction_to] = CGAL::Color{0, 0, 255};
}
CGAL::IO::write_OFF(off_file, mesh);
mesh_.remove_property_map(vertex_colors);
}
namespace priv {
indexed_triangle_set create_indexed_triangle_set(const std::vector<FI> &faces,
const CutMesh &mesh);
} // namespace priv
indexed_triangle_set priv::create_indexed_triangle_set(
const std::vector<FI> &faces, const CutMesh &mesh)
{
std::vector<VI> vertices;
vertices.reserve(faces.size() * 2);
indexed_triangle_set its;
its.indices.reserve(faces.size());
for (FI fi : faces) {
HI hi = mesh.halfedge(fi);
HI hi_end = hi;
int ti = 0;
Vec3i t;
do {
VI vi = mesh.source(hi);
auto res = std::find(vertices.begin(), vertices.end(), vi);
t[ti++] = res - vertices.begin();
if (res == vertices.end()) vertices.push_back(vi);
hi = mesh.next(hi);
} while (hi != hi_end);
its.indices.push_back(t);
}
its.vertices.reserve(vertices.size());
for (VI vi : vertices) {
const auto &p = mesh.point(vi);
its.vertices.emplace_back(p.x(), p.y(), p.z());
}
return its;
}
void priv::store(const CutAOIs &aois, const CutMesh &mesh, const std::string &dir) {
auto create_outline_its =
[&mesh](const std::vector<HI> &outlines) -> indexed_triangle_set {
static const float line_width = 0.1f;
indexed_triangle_set its;
its.indices.reserve(2*outlines.size());
its.vertices.reserve(outlines.size()*4);
for (HI hi : outlines) {
//FI fi = mesh.face(hi);
VI vi_a = mesh.source(hi);
VI vi_b = mesh.target(hi);
VI vi_c = mesh.target(mesh.next(hi));
P3 p3_a = mesh.point(vi_a);
P3 p3_b = mesh.point(vi_b);
P3 p3_c = mesh.point(vi_c);
Vec3f a(p3_a.x(), p3_a.y(), p3_a.z());
Vec3f b(p3_b.x(), p3_b.y(), p3_b.z());
Vec3f c(p3_c.x(), p3_c.y(), p3_c.z());
Vec3f v1 = b - a; // from a to b
v1.normalize();
Vec3f v2 = c - a; // from a to c
v2.normalize();
Vec3f norm = v1.cross(v2);
norm.normalize();
Vec3f perp_to_edge = norm.cross(v1);
perp_to_edge.normalize();
Vec3f dir = -perp_to_edge * line_width;
size_t ai = its.vertices.size();
its.vertices.push_back(a);
size_t bi = its.vertices.size();
its.vertices.push_back(b);
size_t ai2 = its.vertices.size();
its.vertices.push_back(a + dir);
size_t bi2 = its.vertices.size();
its.vertices.push_back(b + dir);
its.indices.push_back(Vec3i(ai, ai2, bi));
its.indices.push_back(Vec3i(ai2, bi2, bi));
}
return its;
};
prepare_dir(dir);
for (const auto &aoi : aois) {
size_t index = &aoi - &aois.front();
std::string file = dir + "aoi" + std::to_string(index) + ".obj";
indexed_triangle_set its = create_indexed_triangle_set(aoi.first, mesh);
its_write_obj(its, file.c_str());
// exist some outline?
if (aoi.second.empty()) continue;
std::string file_outline = dir + "outline" + std::to_string(index) + ".obj";
indexed_triangle_set outline = create_outline_its(aoi.second);
its_write_obj(outline, file_outline.c_str());
}
}
void priv::store(const SurfacePatches &patches, const std::string &dir) {
prepare_dir(dir);
for (const priv::SurfacePatch &patch : patches) {
size_t index = &patch - &patches.front();
if (patch.mesh.faces().empty()) continue;
CGAL::IO::write_OFF(dir + "patch" + std::to_string(index) + ".off", patch.mesh);
}
}
//
//void priv::store(const ProjectionDistances &pds,
// const VCutAOIs &aois,
// const CutMeshes &meshes,
// const std::string &file,
// float width)
//{
// // create rectangle for each half edge from projection distances
// indexed_triangle_set its;
// its.vertices.reserve(4 * pds.size());
// its.indices.reserve(2 * pds.size());
// for (const ProjectionDistance &pd : pds) {
// if (pd.aoi_index == std::numeric_limits<uint32_t>::max()) continue;
// HI hi = aois[pd.model_index][pd.aoi_index].second[pd.hi_index];
// const CutMesh &mesh = meshes[pd.model_index];
// VI vi1 = mesh.source(hi);
// VI vi2 = mesh.target(hi);
// VI vi3 = mesh.target(mesh.next(hi));
// const P3 &p1 = mesh.point(vi1);
// const P3 &p2 = mesh.point(vi2);
// const P3 &p3 = mesh.point(vi3);
// Vec3f v1(p1.x(), p1.y(), p1.z());
// Vec3f v2(p2.x(), p2.y(), p2.z());
// Vec3f v3(p3.x(), p3.y(), p3.z());
//
// Vec3f v12 = v2 - v1;
// v12.normalize();
// Vec3f v13 = v3 - v1;
// v13.normalize();
// Vec3f n = v12.cross(v13);
// n.normalize();
// Vec3f side = n.cross(v12);
// side.normalize();
// side *= -width;
//
// uint32_t i = its.vertices.size();
// its.vertices.push_back(v1);
// its.vertices.push_back(v1+side);
// its.vertices.push_back(v2);
// its.vertices.push_back(v2+side);
//
// its.indices.emplace_back(i, i + 1, i + 2);
// its.indices.emplace_back(i + 2, i + 1, i + 3);
// }
// its_write_obj(its, file.c_str());
//}
void priv::store(const ExPolygons &shapes, const std::vector<bool> &mask, const Connections &connections, const std::string &file_svg)
{
auto bb = get_extents(shapes);
int width = get_extents(shapes.front()).size().x() / 70;
SVG svg(file_svg, bb);
svg.draw(shapes);
ExPolygonsIndices s2i(shapes);
auto get_point = [&shapes, &s2i](size_t i)->Point {
auto id = s2i.cvt(i);
const ExPolygon &s = shapes[id.expolygons_index];
const Polygon &p = (id.polygon_index == 0) ?
s.contour :
s.holes[id.polygon_index - 1];
return p[id.point_index];
};
bool is_first = true;
for (const Connection &c : connections) {
if (is_first) {
is_first = false;
Point p = get_point(c.first);
svg.draw(p, "purple", 4 * width);
continue;
}
Point p1 = get_point(c.first);
Point p2 = get_point(c.second);
svg.draw(Line(p1, p2), "red", width);
}
for (size_t i = 0; i < s2i.get_count(); i++) {
Point p = get_point(i);
svg.draw(p, "black", 2*width);
if (!mask[i])
svg.draw(p, "white", width);
}
svg.Close();
}
namespace priv {
/// <summary>
/// Create model consist of rectangles for each contour edge
/// </summary>
/// <param name="its"></param>
/// <param name="contour"></param>
/// <returns></returns>
indexed_triangle_set create_contour_its(const indexed_triangle_set& its, const std::vector<unsigned int> &contour);
/// <summary>
/// Getter on triangle tip (third vertex of face)
/// </summary>
/// <param name="vi1">First vertex index</param>
/// <param name="vi2">Second vertex index</param>
/// <param name="its">Source model</param>
/// <returns>Tip Vertex index</returns>
unsigned int get_triangle_tip(unsigned int vi1,
unsigned int vi2,
const indexed_triangle_set &its);
}
unsigned int priv::get_triangle_tip(unsigned int vi1,
unsigned int vi2,
const indexed_triangle_set &its)
{
assert(vi1 < its.vertices.size());
assert(vi2 < its.vertices.size());
for (const auto &t : its.indices) {
unsigned int tvi = std::numeric_limits<unsigned int>::max();
for (const auto &vi : t) {
unsigned int vi_ = static_cast<unsigned int>(vi);
if (vi_ == vi1) continue;
if (vi_ == vi2) continue;
if (tvi == std::numeric_limits<unsigned int>::max()) {
tvi = vi_;
} else {
tvi = std::numeric_limits<unsigned int>::max();
break;
}
}
if (tvi != std::numeric_limits<unsigned int>::max())
return tvi;
}
// triangle with indices vi1 and vi2 doesnt exist
assert(false);
return std::numeric_limits<unsigned int>::max();
}
indexed_triangle_set priv::create_contour_its(
const indexed_triangle_set &its, const std::vector<unsigned int> &contour)
{
static const float line_width = 0.1f;
indexed_triangle_set result;
result.vertices.reserve((contour.size() + 1) * 4);
result.indices.reserve((contour.size() + 1) * 2);
unsigned int prev_vi = contour.back();
for (unsigned int vi : contour) {
const Vec3f &a = its.vertices[vi];
const Vec3f &b = its.vertices[prev_vi];
const Vec3f &c = its.vertices[get_triangle_tip(vi, prev_vi, its)];
Vec3f v1 = b - a; // from a to b
v1.normalize();
Vec3f v2 = c - a; // from a to c
v2.normalize();
// triangle normal
Vec3f norm = v1.cross(v2);
norm.normalize();
// perpendiculat to edge lay on triangle
Vec3f perp_to_edge = norm.cross(v1);
perp_to_edge.normalize();
Vec3f dir = -perp_to_edge * line_width;
size_t ai = result.vertices.size();
result.vertices.push_back(a);
size_t bi = result.vertices.size();
result.vertices.push_back(b);
size_t ai2 = result.vertices.size();
result.vertices.push_back(a + dir);
size_t bi2 = result.vertices.size();
result.vertices.push_back(b + dir);
result.indices.push_back(Vec3i(ai, bi, ai2));
result.indices.push_back(Vec3i(ai2, bi, bi2));
prev_vi = vi;
}
return result;
}
//void priv::store(const SurfaceCuts &cut, const std::string &dir) {
// prepare_dir(dir);
// for (const auto &c : cut) {
// size_t index = &c - &cut.front();
// std::string file = dir + "cut" + std::to_string(index) + ".obj";
// its_write_obj(c, file.c_str());
// for (const auto& contour : c.contours) {
// size_t c_index = &contour - &c.contours.front();
// std::string c_file = dir + "cut" + std::to_string(index) +
// "contour" + std::to_string(c_index) + ".obj";
// indexed_triangle_set c_its = create_contour_its(c, contour);
// its_write_obj(c_its, c_file.c_str());
// }
// }
//}
void priv::store(const SurfaceCut &cut, const std::string &file, const std::string &contour_dir) {
prepare_dir(contour_dir);
its_write_obj(cut, file.c_str());
for (const auto& contour : cut.contours) {
size_t c_index = &contour - &cut.contours.front();
std::string c_file = contour_dir + std::to_string(c_index) + ".obj";
indexed_triangle_set c_its = create_contour_its(cut, contour);
its_write_obj(c_its, c_file.c_str());
}
}
void priv::store(const std::vector<indexed_triangle_set> &models,
const std::string &obj_filename)
{
indexed_triangle_set merged_model;
for (const indexed_triangle_set &model : models)
its_merge(merged_model, model);
its_write_obj(merged_model, obj_filename.c_str());
}
void priv::store(const std::vector<priv::CutMesh> &models,
const std::string &dir)
{
prepare_dir(dir);
if (models.empty()) return;
if (models.size() == 1) {
CGAL::IO::write_OFF(dir + "model.off", models.front());
return;
}
size_t model_index = 0;
for (const priv::CutMesh& model : models) {
std::string filename = dir + "model" + std::to_string(model_index++) + ".off";
CGAL::IO::write_OFF(filename, model);
}
}
// store projection center
void priv::store(const Emboss::IProjection &projection,
const Point &point_to_project,
float projection_ratio,
const std::string &obj_filename)
{
auto [front, back] = projection.create_front_back(point_to_project);
Vec3d diff = back - front;
Vec3d pos = front + diff * projection_ratio;
priv::store(pos.cast<float>(), diff.normalized().cast<float>(),
DEBUG_OUTPUT_DIR + "projection_center.obj"); // only debug
}
#endif // DEBUG_OUTPUT_DIR
bool Slic3r::corefine_test(const std::string &model_path, const std::string &shape_path) {
priv::CutMesh model, shape;
if (!CGAL::IO::read_OFF(model_path, model)) return false;
if (!CGAL::IO::read_OFF(shape_path, shape)) return false;
CGAL::Polygon_mesh_processing::corefine(model, shape);
return true;
}