PrusaSlicer-NonPlainar/src/libslic3r/TriangleSelector.hpp

395 lines
20 KiB
C++

#ifndef libslic3r_TriangleSelector_hpp_
#define libslic3r_TriangleSelector_hpp_
// #define PRUSASLICER_TRIANGLE_SELECTOR_DEBUG
#include <cfloat>
#include "Point.hpp"
#include "TriangleMesh.hpp"
namespace Slic3r {
enum class EnforcerBlockerType : int8_t;
// Following class holds information about selected triangles. It also has power
// to recursively subdivide the triangles and make the selection finer.
class TriangleSelector
{
protected:
class Triangle;
struct Vertex;
public:
enum CursorType {
CIRCLE,
SPHERE,
POINTER
};
struct ClippingPlane
{
Vec3f normal;
float offset;
ClippingPlane() : normal{0.f, 0.f, 1.f}, offset{FLT_MAX} {};
explicit ClippingPlane(const std::array<float, 4> &clp) : normal{clp[0], clp[1], clp[2]}, offset{clp[3]} {}
bool is_active() const { return offset != FLT_MAX; }
bool is_mesh_point_clipped(const Vec3f &point) const { return normal.dot(point) - offset > 0.f; }
};
class Cursor
{
public:
Cursor() = delete;
virtual ~Cursor() = default;
bool is_pointer_in_triangle(const Triangle &tr, const std::vector<Vertex> &vertices) const;
virtual bool is_mesh_point_inside(const Vec3f &point) const = 0;
virtual bool is_pointer_in_triangle(const Vec3f &p1, const Vec3f &p2, const Vec3f &p3) const = 0;
virtual int vertices_inside(const Triangle &tr, const std::vector<Vertex> &vertices) const;
virtual bool is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const = 0;
virtual bool is_facet_visible(int facet_idx, const std::vector<Vec3f> &face_normals) const = 0;
static bool is_facet_visible(const Cursor &cursor, int facet_idx, const std::vector<Vec3f> &face_normals);
protected:
explicit Cursor(const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_);
Transform3f trafo;
Vec3f source;
bool uniform_scaling;
Transform3f trafo_normal;
float radius;
float radius_sqr;
Vec3f dir = Vec3f(0.f, 0.f, 0.f);
ClippingPlane clipping_plane; // Clipping plane to limit painting to not clipped facets only
friend TriangleSelector;
};
class SinglePointCursor : public Cursor
{
public:
SinglePointCursor() = delete;
~SinglePointCursor() override = default;
bool is_pointer_in_triangle(const Vec3f &p1, const Vec3f &p2, const Vec3f &p3) const override;
static std::unique_ptr<Cursor> cursor_factory(const Vec3f &center, const Vec3f &camera_pos, const float cursor_radius, const CursorType cursor_type, const Transform3d &trafo_matrix, const ClippingPlane &clipping_plane)
{
assert(cursor_type == TriangleSelector::CursorType::CIRCLE || cursor_type == TriangleSelector::CursorType::SPHERE);
if (cursor_type == TriangleSelector::CursorType::SPHERE)
return std::make_unique<TriangleSelector::Sphere>(center, camera_pos, cursor_radius, trafo_matrix, clipping_plane);
else
return std::make_unique<TriangleSelector::Circle>(center, camera_pos, cursor_radius, trafo_matrix, clipping_plane);
}
protected:
explicit SinglePointCursor(const Vec3f &center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_);
Vec3f center;
};
class DoublePointCursor : public Cursor
{
public:
DoublePointCursor() = delete;
~DoublePointCursor() override = default;
bool is_pointer_in_triangle(const Vec3f &p1, const Vec3f &p2, const Vec3f &p3) const override;
static std::unique_ptr<Cursor> cursor_factory(const Vec3f &first_center, const Vec3f &second_center, const Vec3f &camera_pos, const float cursor_radius, const CursorType cursor_type, const Transform3d &trafo_matrix, const ClippingPlane &clipping_plane)
{
assert(cursor_type == TriangleSelector::CursorType::CIRCLE || cursor_type == TriangleSelector::CursorType::SPHERE);
if (cursor_type == TriangleSelector::CursorType::SPHERE)
return std::make_unique<TriangleSelector::Capsule3D>(first_center, second_center, camera_pos, cursor_radius, trafo_matrix, clipping_plane);
else
return std::make_unique<TriangleSelector::Capsule2D>(first_center, second_center, camera_pos, cursor_radius, trafo_matrix, clipping_plane);
}
protected:
explicit DoublePointCursor(const Vec3f &first_center_, const Vec3f &second_center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_);
Vec3f first_center;
Vec3f second_center;
};
class Sphere : public SinglePointCursor
{
public:
Sphere() = delete;
explicit Sphere(const Vec3f &center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_)
: SinglePointCursor(center_, source_, radius_world, trafo_, clipping_plane_){};
~Sphere() override = default;
bool is_mesh_point_inside(const Vec3f &point) const override;
bool is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const override;
bool is_facet_visible(int facet_idx, const std::vector<Vec3f> &face_normals) const override { return true; }
};
class Circle : public SinglePointCursor
{
public:
Circle() = delete;
explicit Circle(const Vec3f &center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_)
: SinglePointCursor(center_, source_, radius_world, trafo_, clipping_plane_){};
~Circle() override = default;
bool is_mesh_point_inside(const Vec3f &point) const override;
bool is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const override;
bool is_facet_visible(int facet_idx, const std::vector<Vec3f> &face_normals) const override
{
return TriangleSelector::Cursor::is_facet_visible(*this, facet_idx, face_normals);
}
};
class Capsule3D : public DoublePointCursor
{
public:
Capsule3D() = delete;
explicit Capsule3D(const Vec3f &first_center_, const Vec3f &second_center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_)
: TriangleSelector::DoublePointCursor(first_center_, second_center_, source_, radius_world, trafo_, clipping_plane_)
{}
~Capsule3D() override = default;
bool is_mesh_point_inside(const Vec3f &point) const override;
bool is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const override;
bool is_facet_visible(int facet_idx, const std::vector<Vec3f> &face_normals) const override { return true; }
};
class Capsule2D : public DoublePointCursor
{
public:
Capsule2D() = delete;
explicit Capsule2D(const Vec3f &first_center_, const Vec3f &second_center_, const Vec3f &source_, float radius_world, const Transform3d &trafo_, const ClippingPlane &clipping_plane_)
: TriangleSelector::DoublePointCursor(first_center_, second_center_, source_, radius_world, trafo_, clipping_plane_)
{}
~Capsule2D() override = default;
bool is_mesh_point_inside(const Vec3f &point) const override;
bool is_edge_inside_cursor(const Triangle &tr, const std::vector<Vertex> &vertices) const override;
bool is_facet_visible(int facet_idx, const std::vector<Vec3f> &face_normals) const override
{
return TriangleSelector::Cursor::is_facet_visible(*this, facet_idx, face_normals);
}
};
std::pair<std::vector<Vec3i>, std::vector<Vec3i>> precompute_all_neighbors() const;
void precompute_all_neighbors_recursive(int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector<Vec3i> &neighbors_out, std::vector<Vec3i> &neighbors_normal_out) const;
// Set a limit to the edge length, below which the edge will not be split by select_patch().
// Called by select_patch() internally. Made public for debugging purposes, see TriangleSelectorGUI::render_debug().
void set_edge_limit(float edge_limit);
// Create new object on a TriangleMesh. The referenced mesh must
// stay valid, a ptr to it is saved and used.
explicit TriangleSelector(const TriangleMesh& mesh);
// Returns the facet_idx of the unsplit triangle containing the "hit". Returns -1 if the triangle isn't found.
[[nodiscard]] int select_unsplit_triangle(const Vec3f &hit, int facet_idx) const;
[[nodiscard]] int select_unsplit_triangle(const Vec3f &hit, int facet_idx, const Vec3i &neighbors) const;
// Select all triangles fully inside the circle, subdivide where needed.
void select_patch(int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to
std::unique_ptr<Cursor> &&cursor, // Cursor containing information about the point where to start, camera position (mesh coords), matrix to get from mesh to world, and its shape and type.
EnforcerBlockerType new_state, // enforcer or blocker?
const Transform3d &trafo_no_translate, // matrix to get from mesh to world without translation
bool triangle_splitting, // If triangles will be split base on the cursor or not
float highlight_by_angle_deg = 0.f); // The maximal angle of overhang. If it is set to a non-zero value, it is possible to paint only the triangles of overhang defined by this angle in degrees.
void seed_fill_select_triangles(const Vec3f &hit, // point where to start
int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to
const Transform3d &trafo_no_translate, // matrix to get from mesh to world without translation
const ClippingPlane &clp, // Clipping plane to limit painting to not clipped facets only
float seed_fill_angle, // the maximal angle between two facets to be painted by the same color
float highlight_by_angle_deg = 0.f, // The maximal angle of overhang. If it is set to a non-zero value, it is possible to paint only the triangles of overhang defined by this angle in degrees.
bool force_reselection = false); // force reselection of the triangle mesh even in cases that mouse is pointing on the selected triangle
void bucket_fill_select_triangles(const Vec3f &hit, // point where to start
int facet_start, // facet of the original mesh (unsplit) that the hit point belongs to
const ClippingPlane &clp, // Clipping plane to limit painting to not clipped facets only
bool propagate, // if bucket fill is propagated to neighbor faces or if it fills the only facet of the modified mesh that the hit point belongs to.
bool force_reselection = false); // force reselection of the triangle mesh even in cases that mouse is pointing on the selected triangle
bool has_facets(EnforcerBlockerType state) const;
static bool has_facets(const std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> &data, EnforcerBlockerType test_state);
int num_facets(EnforcerBlockerType state) const;
// Get facets at a given state. Don't triangulate T-joints.
indexed_triangle_set get_facets(EnforcerBlockerType state) const;
// Get facets at a given state. Triangulate T-joints.
indexed_triangle_set get_facets_strict(EnforcerBlockerType state) const;
// Get edges around the selected area by seed fill.
std::vector<Vec2i> get_seed_fill_contour() const;
// Set facet of the mesh to a given state. Only works for original triangles.
void set_facet(int facet_idx, EnforcerBlockerType state);
// Clear everything and make the tree empty.
void reset();
// Remove all unnecessary data.
void garbage_collect();
// Store the division trees in compact form (a long stream of bits for each triangle of the original mesh).
// First vector contains pairs of (triangle index, first bit in the second vector).
std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> serialize() const;
// Load serialized data. Assumes that correct mesh is loaded.
void deserialize(const std::pair<std::vector<std::pair<int, int>>, std::vector<bool>> &data, bool needs_reset = true);
// For all triangles, remove the flag indicating that the triangle was selected by seed fill.
void seed_fill_unselect_all_triangles();
// For all triangles selected by seed fill, set new EnforcerBlockerType and remove flag indicating that triangle was selected by seed fill.
// The operation may merge split triangles if they are being assigned the same color.
void seed_fill_apply_on_triangles(EnforcerBlockerType new_state);
protected:
// Triangle and info about how it's split.
class Triangle {
public:
// Use TriangleSelector::push_triangle to create a new triangle.
// It increments/decrements reference counter on vertices.
Triangle(int a, int b, int c, int source_triangle, const EnforcerBlockerType init_state)
: verts_idxs{a, b, c},
source_triangle{source_triangle},
state{init_state}
{
// Initialize bit fields. Default member initializers are not supported by C++17.
m_selected_by_seed_fill = false;
m_valid = true;
}
// Indices into m_vertices.
std::array<int, 3> verts_idxs;
// Index of the source triangle at the initial (unsplit) mesh.
int source_triangle;
// Children triangles.
std::array<int, 4> children;
// Set the division type.
void set_division(int sides_to_split, int special_side_idx);
// Get/set current state.
void set_state(EnforcerBlockerType type) { assert(! is_split()); state = type; }
EnforcerBlockerType get_state() const { assert(! is_split()); return state; }
// Set if the triangle has been selected or unselected by seed fill.
void select_by_seed_fill() { assert(! is_split()); m_selected_by_seed_fill = true; }
void unselect_by_seed_fill() { assert(! is_split()); m_selected_by_seed_fill = false; }
// Get if the triangle has been selected or not by seed fill.
bool is_selected_by_seed_fill() const { assert(! is_split()); return m_selected_by_seed_fill; }
// Is this triangle valid or marked to be removed?
bool valid() const noexcept { return m_valid; }
// Get info on how it's split.
bool is_split() const noexcept { return number_of_split_sides() != 0; }
int number_of_split_sides() const noexcept { return number_of_splits; }
int special_side() const noexcept { assert(is_split()); return special_side_idx; }
private:
friend TriangleSelector;
// Packing the rest of member variables into 4 bytes, aligned to 4 bytes boundary.
char number_of_splits { 0 };
// Index of a vertex opposite to the split edge (for number_of_splits == 1)
// or index of a vertex shared by the two split edges (for number_of_splits == 2).
// For number_of_splits == 3, special_side_idx is always zero.
char special_side_idx { 0 };
EnforcerBlockerType state;
bool m_selected_by_seed_fill : 1;
// Is this triangle valid or marked to be removed?
bool m_valid : 1;
};
struct Vertex {
explicit Vertex(const stl_vertex& vert)
: v{vert},
ref_cnt{0}
{}
stl_vertex v;
int ref_cnt;
};
// Lists of vertices and triangles, both original and new
std::vector<Vertex> m_vertices;
std::vector<Triangle> m_triangles;
const TriangleMesh &m_mesh;
const std::vector<Vec3i> m_neighbors;
const std::vector<Vec3f> m_face_normals;
// Number of invalid triangles (to trigger garbage collection).
int m_invalid_triangles;
// Limiting length of triangle side (squared).
float m_edge_limit_sqr = 1.f;
// Number of original vertices and triangles.
int m_orig_size_vertices = 0;
int m_orig_size_indices = 0;
std::unique_ptr<Cursor> m_cursor;
// Zero indicates an uninitialized state.
float m_old_cursor_radius_sqr = 0;
// Private functions:
private:
bool select_triangle(int facet_idx, EnforcerBlockerType type, bool triangle_splitting);
bool select_triangle_recursive(int facet_idx, const Vec3i &neighbors, EnforcerBlockerType type, bool triangle_splitting);
void undivide_triangle(int facet_idx);
void split_triangle(int facet_idx, const Vec3i &neighbors);
void remove_useless_children(int facet_idx); // No hidden meaning. Triangles are meant.
bool is_facet_clipped(int facet_idx, const ClippingPlane &clp) const;
int push_triangle(int a, int b, int c, int source_triangle, EnforcerBlockerType state = EnforcerBlockerType{0});
void perform_split(int facet_idx, const Vec3i &neighbors, EnforcerBlockerType old_state);
Vec3i child_neighbors(const Triangle &tr, const Vec3i &neighbors, int child_idx) const;
Vec3i child_neighbors_propagated(const Triangle &tr, const Vec3i &neighbors_propagated, int child_idx, const Vec3i &child_neighbors) const;
// Return child of itriangle at a CCW oriented side (vertexi, vertexj), either first or 2nd part.
// If itriangle == -1 or if the side sharing (vertexi, vertexj) is not split, return -1.
enum class Partition {
First,
Second,
};
int neighbor_child(const Triangle& tr, int vertexi, int vertexj, Partition partition) const;
int neighbor_child(int itriangle, int vertexi, int vertexj, Partition partition) const;
int triangle_midpoint(const Triangle& tr, int vertexi, int vertexj) const;
int triangle_midpoint(int itriangle, int vertexi, int vertexj) const;
int triangle_midpoint_or_allocate(int itriangle, int vertexi, int vertexj);
static std::pair<int, int> triangle_subtriangles(const Triangle &tr, int vertexi, int vertexj);
std::pair<int, int> triangle_subtriangles(int itriangle, int vertexi, int vertexj) const;
void append_touching_subtriangles(int itriangle, int vertexi, int vertexj, std::vector<int> &touching_subtriangles_out) const;
void append_touching_edges(int itriangle, int vertexi, int vertexj, std::vector<Vec2i> &touching_edges_out) const;
#ifndef NDEBUG
bool verify_triangle_neighbors(const Triangle& tr, const Vec3i& neighbors) const;
bool verify_triangle_midpoints(const Triangle& tr) const;
#endif // NDEBUG
void get_facets_strict_recursive(
const Triangle &tr,
const Vec3i &neighbors,
EnforcerBlockerType state,
std::vector<stl_triangle_vertex_indices> &out_triangles) const;
void get_facets_split_by_tjoints(const Vec3i &vertices, const Vec3i &neighbors, std::vector<stl_triangle_vertex_indices> &out_triangles) const;
void get_seed_fill_contour_recursive(int facet_idx, const Vec3i &neighbors, const Vec3i &neighbors_propagated, std::vector<Vec2i> &edges_out) const;
int m_free_triangles_head { -1 };
int m_free_vertices_head { -1 };
};
} // namespace Slic3r
#endif // libslic3r_TriangleSelector_hpp_