PrusaSlicer-NonPlainar/src/libslic3r/PrintObject.cpp
bubnikv 7f376fa927 Fix of infill type update with vase mode enabled after change
of the number of bottom layers.
related to [2.2.1-RC] Vase mode prints base no matter what #3823
2020-03-14 11:59:50 +01:00

2649 lines
142 KiB
C++

#include "Print.hpp"
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "ElephantFootCompensation.hpp"
#include "Geometry.hpp"
#include "I18N.hpp"
#include "SupportMaterial.hpp"
#include "Surface.hpp"
#include "Slicing.hpp"
#include "Utils.hpp"
#include <utility>
#include <boost/log/trivial.hpp>
#include <float.h>
#include <tbb/parallel_for.h>
#include <tbb/atomic.h>
#include <Shiny/Shiny.h>
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
#define SLIC3R_DEBUG
#endif
// #define SLIC3R_DEBUG
// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
#undef NDEBUG
#define DEBUG
#define _DEBUG
#include "SVG.hpp"
#undef assert
#include <cassert>
#endif
namespace Slic3r {
// Constructor is called from the main thread, therefore all Model / ModelObject / ModelIntance data are valid.
PrintObject::PrintObject(Print* print, ModelObject* model_object, const Transform3d& trafo, PrintInstances&& instances) :
PrintObjectBaseWithState(print, model_object),
m_trafo(trafo)
{
// Compute centering offet to be applied to our meshes so that we work with smaller coordinates
// requiring less bits to represent Clipper coordinates.
// Snug bounding box of a rotated and scaled object by the 1st instantion, without the instance translation applied.
// All the instances share the transformation matrix with the exception of translation in XY and rotation by Z,
// therefore a bounding box from 1st instance of a ModelObject is good enough for calculating the object center,
// snug height and an approximate bounding box in XY.
BoundingBoxf3 bbox = model_object->raw_bounding_box();
Vec3d bbox_center = bbox.center();
// We may need to rotate the bbox / bbox_center from the original instance to the current instance.
double z_diff = Geometry::rotation_diff_z(model_object->instances.front()->get_rotation(), instances.front().model_instance->get_rotation());
if (std::abs(z_diff) > EPSILON) {
auto z_rot = Eigen::AngleAxisd(z_diff, Vec3d::UnitZ());
bbox = bbox.transformed(Transform3d(z_rot));
bbox_center = (z_rot * bbox_center).eval();
}
// Center of the transformed mesh (without translation).
m_center_offset = Point::new_scale(bbox_center.x(), bbox_center.y());
// Size of the transformed mesh. This bounding may not be snug in XY plane, but it is snug in Z.
m_size = (bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
this->set_instances(std::move(instances));
}
PrintBase::ApplyStatus PrintObject::set_instances(PrintInstances &&instances)
{
for (PrintInstance &i : instances)
// Add the center offset, which will be subtracted from the mesh when slicing.
i.shift += m_center_offset;
// Invalidate and set copies.
PrintBase::ApplyStatus status = PrintBase::APPLY_STATUS_UNCHANGED;
bool equal_length = instances.size() == m_instances.size();
bool equal = equal_length && std::equal(instances.begin(), instances.end(), m_instances.begin(),
[](const PrintInstance& lhs, const PrintInstance& rhs) { return lhs.model_instance == rhs.model_instance && lhs.shift == rhs.shift; });
if (! equal) {
status = PrintBase::APPLY_STATUS_CHANGED;
if (m_print->invalidate_steps({ psSkirt, psBrim, psGCodeExport }) ||
(! equal_length && m_print->invalidate_step(psWipeTower)))
status = PrintBase::APPLY_STATUS_INVALIDATED;
m_instances = std::move(instances);
for (PrintInstance &i : m_instances)
i.print_object = this;
}
return status;
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::slice()
{
if (! this->set_started(posSlice))
return;
m_print->set_status(10, L("Processing triangulated mesh"));
std::vector<coordf_t> layer_height_profile;
this->update_layer_height_profile(*this->model_object(), m_slicing_params, layer_height_profile);
m_print->throw_if_canceled();
this->_slice(layer_height_profile);
m_print->throw_if_canceled();
// Fix the model.
//FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
std::string warning = this->_fix_slicing_errors();
m_print->throw_if_canceled();
if (! warning.empty())
BOOST_LOG_TRIVIAL(info) << warning;
// Simplify slices if required.
if (m_print->config().resolution)
this->simplify_slices(scale_(this->print()->config().resolution));
// Update bounding boxes
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[layer_idx];
layer.lslices_bboxes.clear();
layer.lslices_bboxes.reserve(layer.lslices.size());
for (const ExPolygon &expoly : layer.lslices)
layer.lslices_bboxes.emplace_back(get_extents(expoly));
}
});
if (m_layers.empty())
throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
this->set_done(posSlice);
}
// 1) Merges typed region slices into stInternal type.
// 2) Increases an "extra perimeters" counter at region slices where needed.
// 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
void PrintObject::make_perimeters()
{
// prerequisites
this->slice();
if (! this->set_started(posPerimeters))
return;
m_print->set_status(20, L("Generating perimeters"));
BOOST_LOG_TRIVIAL(info) << "Generating perimeters..." << log_memory_info();
// merge slices if they were split into types
if (m_typed_slices) {
for (Layer *layer : m_layers) {
layer->merge_slices();
m_print->throw_if_canceled();
}
m_typed_slices = false;
}
// compare each layer to the one below, and mark those slices needing
// one additional inner perimeter, like the top of domed objects-
// this algorithm makes sure that at least one perimeter is overlapping
// but we don't generate any extra perimeter if fill density is zero, as they would be floating
// inside the object - infill_only_where_needed should be the method of choice for printing
// hollow objects
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const PrintRegion &region = *m_print->regions()[region_id];
if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
continue;
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
[this, &region, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
LayerRegion &layerm = *m_layers[layer_idx]->m_regions[region_id];
const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->m_regions[region_id];
const Polygons upper_layerm_polygons = upper_layerm.slices;
// Filter upper layer polygons in intersection_ppl by their bounding boxes?
// my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
const double total_loop_length = total_length(upper_layerm_polygons);
const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
for (Surface &slice : layerm.slices.surfaces) {
for (;;) {
// compute the total thickness of perimeters
const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
+ (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
// define a critical area where we don't want the upper slice to fall into
// (it should either lay over our perimeters or outside this area)
const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
const Polygons critical_area = diff(
offset(slice.expolygon, float(- perimeters_thickness)),
offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
);
// check whether a portion of the upper slices falls inside the critical area
const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
// only add an additional loop if at least 30% of the slice loop would benefit from it
if (total_length(intersection) <= total_loop_length*0.3)
break;
/*
if (0) {
require "Slic3r/SVG.pm";
Slic3r::SVG::output(
"extra.svg",
no_arrows => 1,
expolygons => union_ex($critical_area),
polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
);
}
*/
++ slice.extra_perimeters;
}
#ifdef DEBUG
if (slice.extra_perimeters > 0)
printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
#endif
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
}
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_perimeters();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
this->set_done(posPerimeters);
}
void PrintObject::prepare_infill()
{
if (! this->set_started(posPrepareInfill))
return;
m_print->set_status(30, L("Preparing infill"));
// This will assign a type (top/bottom/internal) to $layerm->slices.
// Then the classifcation of $layerm->slices is transfered onto
// the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
// by the cummulative area of the previous $layerm->fill_surfaces.
this->detect_surfaces_type();
m_print->throw_if_canceled();
// Decide what surfaces are to be filled.
// Here the stTop / stBottomBridge / stBottom infill is turned to just stInternal if zero top / bottom infill layers are configured.
// Also tiny stInternal surfaces are turned to stInternalSolid.
BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces..." << log_memory_info();
for (auto *layer : m_layers)
for (auto *region : layer->m_regions) {
region->prepare_fill_surfaces();
m_print->throw_if_canceled();
}
// this will detect bridges and reverse bridges
// and rearrange top/bottom/internal surfaces
// It produces enlarged overlapping bridging areas.
//
// 1) stBottomBridge / stBottom infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
// 2) stTop is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
// 3) Clip the internal surfaces by the grown top/bottom surfaces.
// 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
//FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
this->process_external_surfaces();
m_print->throw_if_canceled();
// Add solid fills to ensure the shell vertical thickness.
this->discover_vertical_shells();
m_print->throw_if_canceled();
// Debugging output.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Detect, which fill surfaces are near external layers.
// They will be split in internal and internal-solid surfaces.
// The purpose is to add a configurable number of solid layers to support the TOP surfaces
// and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
// to close these surfaces reliably.
//FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
this->discover_horizontal_shells();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
this->clip_fill_surfaces();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// the following step needs to be done before combination because it may need
// to remove only half of the combined infill
this->bridge_over_infill();
m_print->throw_if_canceled();
// combine fill surfaces to honor the "infill every N layers" option
this->combine_infill();
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
} // for each region
for (const Layer *layer : m_layers) {
layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
} // for each layer
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
this->set_done(posPrepareInfill);
}
void PrintObject::infill()
{
// prerequisites
this->prepare_infill();
if (this->set_started(posInfill)) {
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
m_layers[layer_idx]->make_fills();
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
/* we could free memory now, but this would make this step not idempotent
### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
*/
this->set_done(posInfill);
}
}
void PrintObject::generate_support_material()
{
if (this->set_started(posSupportMaterial)) {
this->clear_support_layers();
if ((m_config.support_material || m_config.raft_layers > 0) && m_layers.size() > 1) {
m_print->set_status(85, L("Generating support material"));
this->_generate_support_material();
m_print->throw_if_canceled();
} else {
#if 0
// Printing without supports. Empty layer means some objects or object parts are levitating,
// therefore they cannot be printed without supports.
for (const Layer *layer : m_layers)
if (layer->empty())
throw std::runtime_error("Levitating objects cannot be printed without supports.");
#endif
}
this->set_done(posSupportMaterial);
}
}
void PrintObject::clear_layers()
{
for (Layer *l : m_layers)
delete l;
m_layers.clear();
}
Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
return m_layers.back();
}
void PrintObject::clear_support_layers()
{
for (Layer *l : m_support_layers)
delete l;
m_support_layers.clear();
}
SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z)
{
m_support_layers.emplace_back(new SupportLayer(id, this, height, print_z, -1));
return m_support_layers.back();
}
SupportLayerPtrs::const_iterator PrintObject::insert_support_layer(SupportLayerPtrs::const_iterator pos, size_t id, coordf_t height, coordf_t print_z, coordf_t slice_z)
{
return m_support_layers.insert(pos, new SupportLayer(id, this, height, print_z, slice_z));
}
// Called by Print::apply().
// This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
std::vector<PrintObjectStep> steps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if ( opt_key == "perimeters"
|| opt_key == "extra_perimeters"
|| opt_key == "gap_fill_speed"
|| opt_key == "overhangs"
|| opt_key == "first_layer_extrusion_width"
|| opt_key == "perimeter_extrusion_width"
|| opt_key == "infill_overlap"
|| opt_key == "thin_walls"
|| opt_key == "external_perimeters_first") {
steps.emplace_back(posPerimeters);
} else if (
opt_key == "layer_height"
|| opt_key == "first_layer_height"
|| opt_key == "raft_layers"
|| opt_key == "slice_closing_radius") {
steps.emplace_back(posSlice);
} else if (
opt_key == "clip_multipart_objects"
|| opt_key == "elefant_foot_compensation"
|| opt_key == "support_material_contact_distance"
|| opt_key == "xy_size_compensation") {
steps.emplace_back(posSlice);
} else if (opt_key == "support_material") {
steps.emplace_back(posSupportMaterial);
if (m_config.support_material_contact_distance == 0.) {
// Enabling / disabling supports while soluble support interface is enabled.
// This changes the bridging logic (bridging enabled without supports, disabled with supports).
// Reset everything.
// See GH #1482 for details.
steps.emplace_back(posSlice);
}
} else if (
opt_key == "support_material_auto"
|| opt_key == "support_material_angle"
|| opt_key == "support_material_buildplate_only"
|| opt_key == "support_material_enforce_layers"
|| opt_key == "support_material_extruder"
|| opt_key == "support_material_extrusion_width"
|| opt_key == "support_material_interface_layers"
|| opt_key == "support_material_interface_contact_loops"
|| opt_key == "support_material_interface_extruder"
|| opt_key == "support_material_interface_spacing"
|| opt_key == "support_material_pattern"
|| opt_key == "support_material_xy_spacing"
|| opt_key == "support_material_spacing"
|| opt_key == "support_material_synchronize_layers"
|| opt_key == "support_material_threshold"
|| opt_key == "support_material_with_sheath"
|| opt_key == "dont_support_bridges"
|| opt_key == "first_layer_extrusion_width") {
steps.emplace_back(posSupportMaterial);
} else if (
opt_key == "interface_shells"
|| opt_key == "infill_only_where_needed"
|| opt_key == "infill_every_layers"
|| opt_key == "solid_infill_every_layers"
|| opt_key == "bottom_solid_layers"
|| opt_key == "bottom_solid_min_thickness"
|| opt_key == "top_solid_layers"
|| opt_key == "top_solid_min_thickness"
|| opt_key == "solid_infill_below_area"
|| opt_key == "infill_extruder"
|| opt_key == "solid_infill_extruder"
|| opt_key == "infill_extrusion_width"
|| opt_key == "ensure_vertical_shell_thickness"
|| opt_key == "bridge_angle") {
steps.emplace_back(posPrepareInfill);
} else if (
opt_key == "top_fill_pattern"
|| opt_key == "bottom_fill_pattern"
|| opt_key == "external_fill_link_max_length"
|| opt_key == "fill_angle"
|| opt_key == "fill_pattern"
|| opt_key == "fill_link_max_length"
|| opt_key == "top_infill_extrusion_width"
|| opt_key == "first_layer_extrusion_width") {
steps.emplace_back(posInfill);
} else if (
opt_key == "fill_density"
|| opt_key == "solid_infill_extrusion_width") {
steps.emplace_back(posPerimeters);
steps.emplace_back(posPrepareInfill);
} else if (
opt_key == "external_perimeter_extrusion_width"
|| opt_key == "perimeter_extruder") {
steps.emplace_back(posPerimeters);
steps.emplace_back(posSupportMaterial);
} else if (opt_key == "bridge_flow_ratio") {
if (m_config.support_material_contact_distance > 0.) {
// Only invalidate due to bridging if bridging is enabled.
// If later "support_material_contact_distance" is modified, the complete PrintObject is invalidated anyway.
steps.emplace_back(posPerimeters);
steps.emplace_back(posInfill);
steps.emplace_back(posSupportMaterial);
}
} else if (
opt_key == "seam_position"
|| opt_key == "seam_preferred_direction"
|| opt_key == "seam_preferred_direction_jitter"
|| opt_key == "support_material_speed"
|| opt_key == "support_material_interface_speed"
|| opt_key == "bridge_speed"
|| opt_key == "external_perimeter_speed"
|| opt_key == "infill_speed"
|| opt_key == "perimeter_speed"
|| opt_key == "small_perimeter_speed"
|| opt_key == "solid_infill_speed"
|| opt_key == "top_solid_infill_speed") {
invalidated |= m_print->invalidate_step(psGCodeExport);
} else if (
opt_key == "wipe_into_infill"
|| opt_key == "wipe_into_objects") {
invalidated |= m_print->invalidate_step(psWipeTower);
invalidated |= m_print->invalidate_step(psGCodeExport);
} else {
// for legacy, if we can't handle this option let's invalidate all steps
this->invalidate_all_steps();
invalidated = true;
}
}
sort_remove_duplicates(steps);
for (PrintObjectStep step : steps)
invalidated |= this->invalidate_step(step);
return invalidated;
}
bool PrintObject::invalidate_step(PrintObjectStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == posPerimeters) {
invalidated |= this->invalidate_steps({ posPrepareInfill, posInfill });
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
} else if (step == posPrepareInfill) {
invalidated |= this->invalidate_step(posInfill);
} else if (step == posInfill) {
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
} else if (step == posSlice) {
invalidated |= this->invalidate_steps({ posPerimeters, posPrepareInfill, posInfill, posSupportMaterial });
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
this->m_slicing_params.valid = false;
} else if (step == posSupportMaterial) {
invalidated |= m_print->invalidate_steps({ psSkirt, psBrim });
this->m_slicing_params.valid = false;
}
// Wipe tower depends on the ordering of extruders, which in turn depends on everything.
// It also decides about what the wipe_into_infill / wipe_into_object features will do,
// and that too depends on many of the settings.
invalidated |= m_print->invalidate_step(psWipeTower);
// Invalidate G-code export in any case.
invalidated |= m_print->invalidate_step(psGCodeExport);
return invalidated;
}
bool PrintObject::invalidate_all_steps()
{
// First call the "invalidate" functions, which may cancel background processing.
bool result = Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
// Then reset some of the depending values.
this->m_slicing_params.valid = false;
this->region_volumes.clear();
return result;
}
bool PrintObject::has_support_material() const
{
return m_config.support_material
|| m_config.raft_layers > 0
|| m_config.support_material_enforce_layers > 0;
}
static const PrintRegion* first_printing_region(const PrintObject &print_object)
{
for (size_t idx_region = 0; idx_region < print_object.region_volumes.size(); ++ idx_region)
if (!print_object.region_volumes.empty())
return print_object.print()->regions()[idx_region];
return nullptr;
}
// This function analyzes slices of a region (SurfaceCollection slices).
// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
// Initially all slices are of type stInternal.
// Slices are compared against the top / bottom slices and regions and classified to the following groups:
// stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
// stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
// stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
// stInternal - Part of a region, which is supported by the same region type.
// If a part of a region is of stBottom and stTop, the stBottom wins.
void PrintObject::detect_surfaces_type()
{
BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces..." << log_memory_info();
// Interface shells: the intersecting parts are treated as self standing objects supporting each other.
// Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
// are completely hidden inside a collective body of intersecting parts.
// This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
// should be visible.
bool spiral_vase = this->print()->config().spiral_vase.value;
bool interface_shells = ! spiral_vase && m_config.interface_shells.value;
size_t num_layers = spiral_vase ? first_printing_region(*this)->config().bottom_solid_layers : m_layers.size();
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " in parallel - start";
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (Layer *layer : m_layers)
layer->m_regions[idx_region]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
// Cache the result of the following parallel_loop.
std::vector<Surfaces> surfaces_new;
if (interface_shells)
surfaces_new.assign(num_layers, Surfaces());
tbb::parallel_for(
tbb::blocked_range<size_t>(0,
spiral_vase ?
// In spiral vase mode, reserve the last layer for the top surface if more than 1 layer is planned for the vase bottom.
((num_layers > 1) ? num_layers - 1 : num_layers) :
// In non-spiral vase mode, go over all layers.
m_layers.size()),
[this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
// If we have raft layers, consider bottom layer as a bridge just like any other bottom surface lying on the void.
SurfaceType surface_type_bottom_1st =
(m_config.raft_layers.value > 0 && m_config.support_material_contact_distance.value > 0) ?
stBottomBridge : stBottom;
// If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
// the support from the print.
SurfaceType surface_type_bottom_other =
(m_config.support_material.value && m_config.support_material_contact_distance.value == 0) ?
stBottom : stBottomBridge;
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
// BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << idx_region << " and layer " << layer->print_z;
Layer *layer = m_layers[idx_layer];
LayerRegion *layerm = layer->m_regions[idx_region];
// comparison happens against the *full* slices (considering all regions)
// unless internal shells are requested
Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
// collapse very narrow parts (using the safety offset in the diff is not enough)
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
Polygons layerm_slices_surfaces = to_polygons(layerm->slices.surfaces);
// find top surfaces (difference between current surfaces
// of current layer and upper one)
Surfaces top;
if (upper_layer) {
Polygons upper_slices = interface_shells ?
to_polygons(upper_layer->m_regions[idx_region]->slices.surfaces) :
to_polygons(upper_layer->lslices);
surfaces_append(top,
//FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice.
offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset),
stTop);
} else {
// if no upper layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
top = layerm->slices.surfaces;
for (Surface &surface : top)
surface.surface_type = stTop;
}
// Find bottom surfaces (difference between current surfaces of current layer and lower one).
Surfaces bottom;
if (lower_layer) {
#if 0
//FIXME Why is this branch failing t\multi.t ?
Polygons lower_slices = interface_shells ?
to_polygons(lower_layer->get_region(idx_region)->slices.surfaces) :
to_polygons(lower_layer->slices);
surfaces_append(bottom,
offset2_ex(diff(layerm_slices_surfaces, lower_slices, true), -offset, offset),
surface_type_bottom_other);
#else
// Any surface lying on the void is a true bottom bridge (an overhang)
surfaces_append(
bottom,
offset2_ex(
diff(layerm_slices_surfaces, to_polygons(lower_layer->lslices), true),
-offset, offset),
surface_type_bottom_other);
// if user requested internal shells, we need to identify surfaces
// lying on other slices not belonging to this region
if (interface_shells) {
// non-bridging bottom surfaces: any part of this layer lying
// on something else, excluding those lying on our own region
surfaces_append(
bottom,
offset2_ex(
diff(
intersection(layerm_slices_surfaces, to_polygons(lower_layer->lslices)), // supported
to_polygons(lower_layer->m_regions[idx_region]->slices.surfaces),
true),
-offset, offset),
stBottom);
}
#endif
} else {
// if no lower layer, all surfaces of this one are solid
// we clone surfaces because we're going to clear the slices collection
bottom = layerm->slices.surfaces;
for (Surface &surface : bottom)
surface.surface_type = surface_type_bottom_1st;
}
// now, if the object contained a thin membrane, we could have overlapping bottom
// and top surfaces; let's do an intersection to discover them and consider them
// as bottom surfaces (to allow for bridge detection)
if (! top.empty() && ! bottom.empty()) {
// Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
// Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
// if $Slic3r::debug;
Polygons top_polygons = to_polygons(std::move(top));
top.clear();
surfaces_append(top,
diff_ex(top_polygons, to_polygons(bottom), false),
stTop);
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
static int iRun = 0;
std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green")));
expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown")));
expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces), SVG::ExPolygonAttributes("black")));
SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, idx_region, layer->print_z).c_str(), expolygons_with_attributes);
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// save surfaces to layer
Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces;
surfaces_out.clear();
// find internal surfaces (difference between top/bottom surfaces and others)
{
Polygons topbottom = to_polygons(top);
polygons_append(topbottom, to_polygons(bottom));
surfaces_append(surfaces_out,
diff_ex(layerm_slices_surfaces, topbottom, false),
stInternal);
}
surfaces_append(surfaces_out, std::move(top));
surfaces_append(surfaces_out, std::move(bottom));
// Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
// $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
}
); // for each layer of a region
m_print->throw_if_canceled();
if (interface_shells) {
// Move surfaces_new to layerm->slices.surfaces
for (size_t idx_layer = 0; idx_layer < num_layers; ++ idx_layer)
m_layers[idx_layer]->m_regions[idx_region]->slices.surfaces = std::move(surfaces_new[idx_layer]);
}
if (spiral_vase) {
if (num_layers > 1)
// Turn the last bottom layer infill to a top infill, so it will be extruded with a proper pattern.
m_layers[num_layers - 1]->m_regions[idx_region]->slices.set_type(stTop);
for (size_t i = num_layers; i < m_layers.size(); ++ i)
m_layers[i]->m_regions[idx_region]->slices.set_type(stInternal);
}
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - start";
// Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, idx_region, interface_shells](const tbb::blocked_range<size_t>& range) {
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
LayerRegion *layerm = m_layers[idx_layer]->m_regions[idx_region];
layerm->slices_to_fill_surfaces_clipped();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each layer of a region
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
} // for each this->print->region_count
// Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
m_typed_slices = true;
}
void PrintObject::process_external_surfaces()
{
BOOST_LOG_TRIVIAL(info) << "Processing external surfaces..." << log_memory_info();
// Cached surfaces covered by some extrusion, defining regions, over which the from the surfaces one layer higher are allowed to expand.
std::vector<Polygons> surfaces_covered;
// Is there any printing region, that has zero infill? If so, then we don't want the expansion to be performed over the complete voids, but only
// over voids, which are supported by the layer below.
bool has_voids = false;
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
if (! this->region_volumes.empty() && this->print()->regions()[region_id]->config().fill_density == 0) {
has_voids = true;
break;
}
if (has_voids && m_layers.size() > 1) {
// All but stInternal fill surfaces will get expanded and possibly trimmed.
std::vector<unsigned char> layer_expansions_and_voids(m_layers.size(), false);
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
const Layer *layer = m_layers[layer_idx];
bool expansions = false;
bool voids = false;
for (const LayerRegion *layerm : layer->regions()) {
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
if (surface.surface_type == stInternal)
voids = true;
else
expansions = true;
if (voids && expansions) {
layer_expansions_and_voids[layer_idx] = true;
goto end;
}
}
}
end:;
}
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - start";
surfaces_covered.resize(m_layers.size() - 1, Polygons());
auto unsupported_width = - float(scale_(0.3 * EXTERNAL_INFILL_MARGIN));
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size() - 1),
[this, &surfaces_covered, &layer_expansions_and_voids, unsupported_width](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
if (layer_expansions_and_voids[layer_idx + 1]) {
m_print->throw_if_canceled();
Polygons voids;
for (const LayerRegion *layerm : m_layers[layer_idx]->regions()) {
if (layerm->region()->config().fill_density.value == 0.)
for (const Surface &surface : layerm->fill_surfaces.surfaces)
// Shrink the holes, let the layer above expand slightly inside the unsupported areas.
polygons_append(voids, offset(surface.expolygon, unsupported_width));
}
surfaces_covered[layer_idx] = diff(to_polygons(this->m_layers[layer_idx]->lslices), voids);
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Collecting surfaces covered with extrusions in parallel - end";
}
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++region_id) {
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &surfaces_covered, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
// BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
m_layers[layer_idx]->get_region((int)region_id)->process_external_surfaces(
(layer_idx == 0) ? nullptr : m_layers[layer_idx - 1],
(layer_idx == 0 || surfaces_covered.empty() || surfaces_covered[layer_idx - 1].empty()) ? nullptr : &surfaces_covered[layer_idx - 1]);
}
}
);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
}
}
void PrintObject::discover_vertical_shells()
{
PROFILE_FUNC();
BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells..." << log_memory_info();
struct DiscoverVerticalShellsCacheEntry
{
// Collected polygons, offsetted
Polygons top_surfaces;
Polygons bottom_surfaces;
Polygons holes;
};
bool spiral_vase = this->print()->config().spiral_vase.value;
size_t num_layers = spiral_vase ? first_printing_region(*this)->config().bottom_solid_layers : m_layers.size();
coordf_t min_layer_height = this->slicing_parameters().min_layer_height;
// Does this region possibly produce more than 1 top or bottom layer?
auto has_extra_layers_fn = [min_layer_height](const PrintRegionConfig &config) {
auto num_extra_layers = [min_layer_height](int num_solid_layers, coordf_t min_shell_thickness) {
if (num_solid_layers == 0)
return 0;
int n = num_solid_layers - 1;
int n2 = int(ceil(min_shell_thickness / min_layer_height));
return std::max(n, n2 - 1);
};
return num_extra_layers(config.top_solid_layers, config.top_solid_min_thickness) +
num_extra_layers(config.bottom_solid_layers, config.bottom_solid_min_thickness) > 0;
};
std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(num_layers, DiscoverVerticalShellsCacheEntry());
bool top_bottom_surfaces_all_regions = this->region_volumes.size() > 1 && ! m_config.interface_shells.value;
if (top_bottom_surfaces_all_regions) {
// This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
// is calculated over all materials.
// Is the "ensure vertical wall thickness" applicable to any region?
bool has_extra_layers = false;
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++idx_region) {
const PrintRegionConfig &config = m_print->get_region(idx_region)->config();
if (config.ensure_vertical_shell_thickness.value && has_extra_layers_fn(config)) {
has_extra_layers = true;
break;
}
}
if (! has_extra_layers)
// The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
return;
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(num_layers / 16, size_t(1));
tbb::parallel_for(
tbb::blocked_range<size_t>(0, num_layers, grain_size),
[this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
const size_t num_regions = this->region_volumes.size();
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
const Layer &layer = *m_layers[idx_layer];
DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer];
// Simulate single set of perimeters over all merged regions.
float perimeter_offset = 0.f;
float perimeter_min_spacing = FLT_MAX;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
static size_t debug_idx = 0;
++ debug_idx;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
for (size_t idx_region = 0; idx_region < num_regions; ++ idx_region) {
LayerRegion &layerm = *layer.m_regions[idx_region];
float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
// Top surfaces.
append(cache.top_surfaces, offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing));
append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
// Bottom surfaces.
append(cache.bottom_surfaces, offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
// Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
// First find the maxium number of perimeters per region slice.
unsigned int perimeters = 0;
for (Surface &s : layerm.slices.surfaces)
perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
perimeters += layerm.region()->config().perimeters.value;
// Then calculate the infill offset.
if (perimeters > 0) {
Flow extflow = layerm.flow(frExternalPerimeter);
Flow flow = layerm.flow(frPerimeter);
perimeter_offset = std::max(perimeter_offset,
0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
}
polygons_append(cache.holes, to_polygons(layerm.fill_expolygons));
}
// Save some computing time by reducing the number of polygons.
cache.top_surfaces = union_(cache.top_surfaces, false);
cache.bottom_surfaces = union_(cache.bottom_surfaces, false);
// For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
if (perimeter_offset > 0.) {
// The layer.lslices are forced to merge by expanding them first.
polygons_append(cache.holes, offset(offset_ex(layer.lslices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.lslices));
svg.draw(layer.lslices, "blue");
svg.draw(union_ex(cache.holes), "red");
svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
cache.holes = union_(cache.holes, false);
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
}
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region) {
PROFILE_BLOCK(discover_vertical_shells_region);
const PrintRegion &region = *m_print->get_region(idx_region);
if (! region.config().ensure_vertical_shell_thickness.value)
// This region will be handled by discover_horizontal_shells().
continue;
if (! has_extra_layers_fn(region.config()))
// Zero or 1 layer, there is no additional vertical wall thickness enforced.
continue;
//FIXME Improve the heuristics for a grain size.
size_t grain_size = std::max(num_layers / 16, size_t(1));
if (! top_bottom_surfaces_all_regions) {
// This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
// is calculated over a single material.
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : cache top / bottom";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, num_layers, grain_size),
[this, idx_region, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
m_print->throw_if_canceled();
Layer &layer = *m_layers[idx_layer];
LayerRegion &layerm = *layer.m_regions[idx_region];
float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
// Top surfaces.
auto &cache = cache_top_botom_regions[idx_layer];
cache.top_surfaces = offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing);
append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
// Bottom surfaces.
cache.bottom_surfaces = offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing);
append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
// Holes over all regions. Only collect them once, they are valid for all idx_region iterations.
if (cache.holes.empty()) {
for (size_t idx_region = 0; idx_region < layer.regions().size(); ++ idx_region)
polygons_append(cache.holes, to_polygons(layer.regions()[idx_region]->fill_expolygons));
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end : cache top / bottom";
}
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : ensure vertical wall thickness";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, num_layers, grain_size),
[this, idx_region, &cache_top_botom_regions]
(const tbb::blocked_range<size_t>& range) {
// printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
PROFILE_BLOCK(discover_vertical_shells_region_layer);
m_print->throw_if_canceled();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
static size_t debug_idx = 0;
++ debug_idx;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
Layer *layer = m_layers[idx_layer];
LayerRegion *layerm = layer->m_regions[idx_region];
const PrintRegionConfig &region_config = layerm->region()->config();
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-initial");
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
Flow solid_infill_flow = layerm->flow(frSolidInfill);
coord_t infill_line_spacing = solid_infill_flow.scaled_spacing();
// Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
Polygons shell;
Polygons holes;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
ExPolygons shell_ex;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
{
PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
#if 0
// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
if (n < 0 || n >= (int)m_layers.size())
continue;
ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
for (size_t i = 0; i < expolys.size(); ++ i) {
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
svg.draw(expolys[i]);
svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
svg.Close();
svg_cummulative.draw(expolys[i]);
svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
}
}
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
polygons_append(holes, cache_top_botom_regions[idx_layer].holes);
if (int n_top_layers = region_config.top_solid_layers.value; n_top_layers > 0) {
// Gather top regions projected to this layer.
coordf_t print_z = layer->print_z;
for (int i = int(idx_layer) + 1;
i < int(cache_top_botom_regions.size()) &&
(i < int(idx_layer) + n_top_layers ||
m_layers[i]->print_z - print_z < region_config.top_solid_min_thickness - EPSILON);
++ i) {
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
if (! holes.empty())
holes = intersection(holes, cache.holes);
if (! cache.top_surfaces.empty()) {
polygons_append(shell, cache.top_surfaces);
// Running the union_ using the Clipper library piece by piece is cheaper
// than running the union_ all at once.
shell = union_(shell, false);
}
}
}
if (int n_bottom_layers = region_config.bottom_solid_layers.value; n_bottom_layers > 0) {
// Gather bottom regions projected to this layer.
coordf_t bottom_z = layer->bottom_z();
for (int i = int(idx_layer) - 1;
i >= 0 &&
(i > int(idx_layer) - n_bottom_layers ||
bottom_z - m_layers[i]->bottom_z() < region_config.bottom_solid_min_thickness - EPSILON);
-- i) {
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[i];
if (! holes.empty())
holes = intersection(holes, cache.holes);
if (! cache.bottom_surfaces.empty()) {
polygons_append(shell, cache.bottom_surfaces);
// Running the union_ using the Clipper library piece by piece is cheaper
// than running the union_ all at once.
shell = union_(shell, false);
}
}
}
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
svg.draw(shell);
svg.draw_outline(shell, "black", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#if 0
{
PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_);
// shell = union_(shell, true);
shell = union_(shell, false);
}
#endif
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
shell_ex = union_ex(shell, true);
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
//if (shell.empty())
// continue;
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
svg.draw(shell_ex);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
svg.draw(shell_ex, "blue", 0.5);
svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the shells region by the internal & internal void surfaces.
const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid };
const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 3));
shell = intersection(shell, polygonsInternal, true);
polygons_append(shell, diff(polygonsInternal, holes));
if (shell.empty())
continue;
// Append the internal solids, so they will be merged with the new ones.
polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
// These regions will be filled by a rectilinear full infill. Currently this type of infill
// only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
// make sure that this region does not contain parts narrower than the infill spacing width.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
Polygons shell_before = shell;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
#if 1
// Intentionally inflate a bit more than how much the region has been shrunk,
// so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill).
shell = offset(offset_ex(union_ex(shell), - 0.5f * min_perimeter_infill_spacing), 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare);
if (shell.empty())
continue;
#else
// Ensure each region is at least 3x infill line width wide, so it could be filled in.
// float margin = float(infill_line_spacing) * 3.f;
float margin = float(infill_line_spacing) * 1.5f;
// we use a higher miterLimit here to handle areas with acute angles
// in those cases, the default miterLimit would cut the corner and we'd
// get a triangle in $too_narrow; if we grow it below then the shell
// would have a different shape from the external surface and we'd still
// have the same angle, so the next shell would be grown even more and so on.
Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true);
if (! too_narrow.empty()) {
// grow the collapsing parts and add the extra area to the neighbor layer
// as well as to our original surfaces so that we support this
// additional area in the next shell too
// make sure our grown surfaces don't exceed the fill area
polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal));
}
#endif
ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
// Source shell.
svg.draw(union_ex(shell_before, true));
// Shell trimmed to the internal surfaces.
svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05));
// Regularized infill region.
svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
svg.Close();
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Trim the internal & internalvoid by the shell.
Slic3r::ExPolygons new_internal = diff_ex(
to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)),
shell,
false
);
Slic3r::ExPolygons new_internal_void = diff_ex(
to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)),
shell,
false
);
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
{
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
// Assign resulting internal surfaces to layer.
const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
layerm->fill_surfaces.append(new_internal, stInternal);
layerm->fill_surfaces.append(new_internal_void, stInternalVoid);
layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
} // for each layer
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end";
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final");
layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final");
}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
} // for each region
// Write the profiler measurements to file
// PROFILE_UPDATE();
// PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str());
}
/* This method applies bridge flow to the first internal solid layer above
sparse infill */
void PrintObject::bridge_over_infill()
{
BOOST_LOG_TRIVIAL(info) << "Bridge over infill..." << log_memory_info();
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const PrintRegion &region = *m_print->regions()[region_id];
// skip bridging in case there are no voids
if (region.config().fill_density.value == 100) continue;
// get bridge flow
Flow bridge_flow = region.flow(
frSolidInfill,
-1, // layer height, not relevant for bridge flow
true, // bridge
false, // first layer
-1, // custom width, not relevant for bridge flow
*this
);
for (LayerPtrs::iterator layer_it = m_layers.begin(); layer_it != m_layers.end(); ++ layer_it) {
// skip first layer
if (layer_it == m_layers.begin())
continue;
Layer* layer = *layer_it;
LayerRegion* layerm = layer->m_regions[region_id];
// extract the stInternalSolid surfaces that might be transformed into bridges
Polygons internal_solid;
layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
// check whether the lower area is deep enough for absorbing the extra flow
// (for obvious physical reasons but also for preventing the bridge extrudates
// from overflowing in 3D preview)
ExPolygons to_bridge;
{
Polygons to_bridge_pp = internal_solid;
// iterate through lower layers spanned by bridge_flow
double bottom_z = layer->print_z - bridge_flow.height;
for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
const Layer* lower_layer = m_layers[i];
// stop iterating if layer is lower than bottom_z
if (lower_layer->print_z < bottom_z) break;
// iterate through regions and collect internal surfaces
Polygons lower_internal;
for (LayerRegion *lower_layerm : lower_layer->m_regions)
lower_layerm->fill_surfaces.filter_by_type(stInternal, &lower_internal);
// intersect such lower internal surfaces with the candidate solid surfaces
to_bridge_pp = intersection(to_bridge_pp, lower_internal);
}
// there's no point in bridging too thin/short regions
//FIXME Vojtech: The offset2 function is not a geometric offset,
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
{
float min_width = float(bridge_flow.scaled_width()) * 3.f;
to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
}
if (to_bridge_pp.empty()) continue;
// convert into ExPolygons
to_bridge = union_ex(to_bridge_pp);
}
#ifdef SLIC3R_DEBUG
printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
#endif
// compute the remaning internal solid surfaces as difference
ExPolygons not_to_bridge = diff_ex(internal_solid, to_polygons(to_bridge), true);
to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true);
// build the new collection of fill_surfaces
layerm->fill_surfaces.remove_type(stInternalSolid);
for (ExPolygon &ex : to_bridge)
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex));
for (ExPolygon &ex : not_to_bridge)
layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex));
/*
# exclude infill from the layers below if needed
# see discussion at https://github.com/alexrj/Slic3r/issues/240
# Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
if (0) {
my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
my @new_surfaces = ();
# subtract the area from all types of surfaces
foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
push @new_surfaces, map $group->[0]->clone(expolygon => $_),
@{diff_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
push @new_surfaces, map Slic3r::Surface->new(
expolygon => $_,
surface_type => stInternalVoid,
), @{intersection_ex(
[ map $_->p, @$group ],
[ map @$_, @$to_bridge ],
)};
}
$lower_layerm->fill_surfaces->clear;
$lower_layerm->fill_surfaces->append($_) for @new_surfaces;
}
$excess -= $self->get_layer($i)->height;
}
}
*/
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
m_print->throw_if_canceled();
}
}
}
static void clamp_exturder_to_default(ConfigOptionInt &opt, size_t num_extruders)
{
if (opt.value > (int)num_extruders)
// assign the default extruder
opt.value = 1;
}
PrintObjectConfig PrintObject::object_config_from_model_object(const PrintObjectConfig &default_object_config, const ModelObject &object, size_t num_extruders)
{
PrintObjectConfig config = default_object_config;
normalize_and_apply_config(config, object.config);
// Clamp invalid extruders to the default extruder (with index 1).
clamp_exturder_to_default(config.support_material_extruder, num_extruders);
clamp_exturder_to_default(config.support_material_interface_extruder, num_extruders);
return config;
}
PrintRegionConfig PrintObject::region_config_from_model_volume(const PrintRegionConfig &default_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders)
{
PrintRegionConfig config = default_region_config;
normalize_and_apply_config(config, volume.get_object()->config);
if (layer_range_config != nullptr)
normalize_and_apply_config(config, *layer_range_config);
normalize_and_apply_config(config, volume.config);
if (! volume.material_id().empty())
normalize_and_apply_config(config, volume.material()->config);
// Clamp invalid extruders to the default extruder (with index 1).
clamp_exturder_to_default(config.infill_extruder, num_extruders);
clamp_exturder_to_default(config.perimeter_extruder, num_extruders);
clamp_exturder_to_default(config.solid_infill_extruder, num_extruders);
return config;
}
void PrintObject::update_slicing_parameters()
{
if (! m_slicing_params.valid)
m_slicing_params = SlicingParameters::create_from_config(
this->print()->config(), m_config, unscale<double>(this->height()), this->object_extruders());
}
SlicingParameters PrintObject::slicing_parameters(const DynamicPrintConfig& full_config, const ModelObject& model_object, float object_max_z)
{
PrintConfig print_config;
PrintObjectConfig object_config;
PrintRegionConfig default_region_config;
print_config.apply(full_config, true);
object_config.apply(full_config, true);
default_region_config.apply(full_config, true);
size_t num_extruders = print_config.nozzle_diameter.size();
object_config = object_config_from_model_object(object_config, model_object, num_extruders);
std::vector<unsigned int> object_extruders;
for (const ModelVolume* model_volume : model_object.volumes)
if (model_volume->is_model_part()) {
PrintRegion::collect_object_printing_extruders(
print_config,
region_config_from_model_volume(default_region_config, nullptr, *model_volume, num_extruders),
object_extruders);
for (const std::pair<const t_layer_height_range, DynamicPrintConfig> &range_and_config : model_object.layer_config_ranges)
if (range_and_config.second.has("perimeter_extruder") ||
range_and_config.second.has("infill_extruder") ||
range_and_config.second.has("solid_infill_extruder"))
PrintRegion::collect_object_printing_extruders(
print_config,
region_config_from_model_volume(default_region_config, &range_and_config.second, *model_volume, num_extruders),
object_extruders);
}
sort_remove_duplicates(object_extruders);
if (object_max_z <= 0.f)
object_max_z = (float)model_object.raw_bounding_box().size().z();
return SlicingParameters::create_from_config(print_config, object_config, object_max_z, object_extruders);
}
// returns 0-based indices of extruders used to print the object (without brim, support and other helper extrusions)
std::vector<unsigned int> PrintObject::object_extruders() const
{
std::vector<unsigned int> extruders;
extruders.reserve(this->region_volumes.size() * 3);
for (size_t idx_region = 0; idx_region < this->region_volumes.size(); ++ idx_region)
if (! this->region_volumes[idx_region].empty())
m_print->get_region(idx_region)->collect_object_printing_extruders(extruders);
sort_remove_duplicates(extruders);
return extruders;
}
bool PrintObject::update_layer_height_profile(const ModelObject &model_object, const SlicingParameters &slicing_parameters, std::vector<coordf_t> &layer_height_profile)
{
bool updated = false;
if (layer_height_profile.empty()) {
layer_height_profile = model_object.layer_height_profile;
updated = true;
}
// Verify the layer_height_profile.
if (! layer_height_profile.empty() &&
// Must not be of even length.
((layer_height_profile.size() & 1) != 0 ||
// Last entry must be at the top of the object.
std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_parameters.object_print_z_height()) > 1e-3))
layer_height_profile.clear();
if (layer_height_profile.empty()) {
//layer_height_profile = layer_height_profile_adaptive(slicing_parameters, model_object.layer_config_ranges, model_object.volumes);
layer_height_profile = layer_height_profile_from_ranges(slicing_parameters, model_object.layer_config_ranges);
updated = true;
}
return updated;
}
// 1) Decides Z positions of the layers,
// 2) Initializes layers and their regions
// 3) Slices the object meshes
// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
// 5) Applies size compensation (offsets the slices in XY plane)
// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
// Resulting expolygons of layer regions are marked as Internal.
//
// this should be idempotent
void PrintObject::_slice(const std::vector<coordf_t> &layer_height_profile)
{
BOOST_LOG_TRIVIAL(info) << "Slicing objects..." << log_memory_info();
m_typed_slices = false;
#ifdef SLIC3R_PROFILE
// Disable parallelization so the Shiny profiler works
static tbb::task_scheduler_init *tbb_init = nullptr;
tbb_init = new tbb::task_scheduler_init(1);
#endif
// 1) Initialize layers and their slice heights.
std::vector<float> slice_zs;
{
this->clear_layers();
// Object layers (pairs of bottom/top Z coordinate), without the raft.
std::vector<coordf_t> object_layers = generate_object_layers(m_slicing_params, layer_height_profile);
// Reserve object layers for the raft. Last layer of the raft is the contact layer.
int id = int(m_slicing_params.raft_layers());
slice_zs.reserve(object_layers.size());
Layer *prev = nullptr;
for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
coordf_t lo = object_layers[i_layer];
coordf_t hi = object_layers[i_layer + 1];
coordf_t slice_z = 0.5 * (lo + hi);
Layer *layer = this->add_layer(id ++, hi - lo, hi + m_slicing_params.object_print_z_min, slice_z);
slice_zs.push_back(float(slice_z));
if (prev != nullptr) {
prev->upper_layer = layer;
layer->lower_layer = prev;
}
// Make sure all layers contain layer region objects for all regions.
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id)
layer->add_region(this->print()->regions()[region_id]);
prev = layer;
}
}
// Count model parts and modifier meshes, check whether the model parts are of the same region.
int all_volumes_single_region = -2; // not set yet
bool has_z_ranges = false;
size_t num_volumes = 0;
size_t num_modifiers = 0;
for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
int last_volume_id = -1;
for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
const int volume_id = volume_and_range.second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_model_part()) {
if (last_volume_id == volume_id) {
has_z_ranges = true;
} else {
last_volume_id = volume_id;
if (all_volumes_single_region == -2)
// first model volume met
all_volumes_single_region = region_id;
else if (all_volumes_single_region != region_id)
// multiple volumes met and they are not equal
all_volumes_single_region = -1;
++ num_volumes;
}
} else if (model_volume->is_modifier())
++ num_modifiers;
}
}
assert(num_volumes > 0);
// Slice all non-modifier volumes.
bool clipped = false;
bool upscaled = false;
auto slicing_mode = this->print()->config().spiral_vase ? SlicingMode::PositiveLargestContour : SlicingMode::Regular;
if (! has_z_ranges && (! m_config.clip_multipart_objects.value || all_volumes_single_region >= 0)) {
// Cheap path: Slice regions without mutual clipping.
// The cheap path is possible if no clipping is allowed or if slicing volumes of just a single region.
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id;
// slicing in parallel
std::vector<ExPolygons> expolygons_by_layer = this->slice_region(region_id, slice_zs, slicing_mode);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end";
}
} else {
// Expensive path: Slice one volume after the other in the order they are presented at the user interface,
// clip the last volumes with the first.
// First slice the volumes.
struct SlicedVolume {
SlicedVolume(int volume_id, int region_id, std::vector<ExPolygons> &&expolygons_by_layer) :
volume_id(volume_id), region_id(region_id), expolygons_by_layer(std::move(expolygons_by_layer)) {}
int volume_id;
int region_id;
std::vector<ExPolygons> expolygons_by_layer;
};
std::vector<SlicedVolume> sliced_volumes;
sliced_volumes.reserve(num_volumes);
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
for (size_t i = 0; i < volumes_and_ranges.size(); ) {
int volume_id = volumes_and_ranges[i].second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_model_part()) {
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - volume " << volume_id;
// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges[i].first);
size_t j = i + 1;
for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j)
if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON)
ranges.back().second = volumes_and_ranges[j].first.second;
else
ranges.emplace_back(volumes_and_ranges[j].first);
// slicing in parallel
sliced_volumes.emplace_back(volume_id, (int)region_id, this->slice_volume(slice_zs, ranges, slicing_mode, *model_volume));
i = j;
} else
++ i;
}
}
// Second clip the volumes in the order they are presented at the user interface.
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, slice_zs.size()),
[this, &sliced_volumes, num_modifiers](const tbb::blocked_range<size_t>& range) {
float delta = float(scale_(m_config.xy_size_compensation.value));
// Only upscale together with clipping if there are no modifiers, as the modifiers shall be applied before upscaling
// (upscaling may grow the object outside of the modifier mesh).
bool upscale = delta > 0 && num_modifiers == 0;
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
// Trim volumes in a single layer, one by the other, possibly apply upscaling.
{
Polygons processed;
for (SlicedVolume &sliced_volume : sliced_volumes)
if (! sliced_volume.expolygons_by_layer.empty()) {
ExPolygons slices = std::move(sliced_volume.expolygons_by_layer[layer_id]);
if (upscale)
slices = offset_ex(std::move(slices), delta);
if (! processed.empty())
// Trim by the slices of already processed regions.
slices = diff_ex(to_polygons(std::move(slices)), processed);
if (size_t(&sliced_volume - &sliced_volumes.front()) + 1 < sliced_volumes.size())
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
sliced_volume.expolygons_by_layer[layer_id] = std::move(slices);
}
}
// Collect and union volumes of a single region.
for (int region_id = 0; region_id < (int)this->region_volumes.size(); ++ region_id) {
ExPolygons expolygons;
size_t num_volumes = 0;
for (SlicedVolume &sliced_volume : sliced_volumes)
if (sliced_volume.region_id == region_id && ! sliced_volume.expolygons_by_layer.empty() && ! sliced_volume.expolygons_by_layer[layer_id].empty()) {
++ num_volumes;
append(expolygons, std::move(sliced_volume.expolygons_by_layer[layer_id]));
}
if (num_volumes > 1)
// Merge the islands using a positive / negative offset.
expolygons = offset_ex(offset_ex(expolygons, float(scale_(EPSILON))), -float(scale_(EPSILON)));
m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons), stInternal);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - parallel clipping - end";
clipped = true;
upscaled = m_config.xy_size_compensation.value > 0 && num_modifiers == 0;
}
// Slice all modifier volumes.
if (this->region_volumes.size() > 1) {
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id;
// slicing in parallel
std::vector<ExPolygons> expolygons_by_layer = this->slice_modifiers(region_id, slice_zs);
m_print->throw_if_canceled();
if (expolygons_by_layer.empty())
continue;
// loop through the other regions and 'steal' the slices belonging to this one
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, &expolygons_by_layer, region_id](const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
for (size_t other_region_id = 0; other_region_id < this->region_volumes.size(); ++ other_region_id) {
if (region_id == other_region_id)
continue;
Layer *layer = m_layers[layer_id];
LayerRegion *layerm = layer->m_regions[region_id];
LayerRegion *other_layerm = layer->m_regions[other_region_id];
if (layerm == nullptr || other_layerm == nullptr || other_layerm->slices.empty() || expolygons_by_layer[layer_id].empty())
continue;
Polygons other_slices = to_polygons(other_layerm->slices);
ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id]));
if (my_parts.empty())
continue;
// Remove such parts from original region.
other_layerm->slices.set(diff_ex(other_slices, to_polygons(my_parts)), stInternal);
// Append new parts to our region.
layerm->slices.append(std::move(my_parts), stInternal);
}
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end";
}
}
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers";
while (! m_layers.empty()) {
const Layer *layer = m_layers.back();
if (! layer->empty())
goto end;
delete layer;
m_layers.pop_back();
if (! m_layers.empty())
m_layers.back()->upper_layer = nullptr;
}
m_print->throw_if_canceled();
end:
;
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
{
// Compensation value, scaled.
const float xy_compensation_scaled = float(scale_(m_config.xy_size_compensation.value));
const float elephant_foot_compensation_scaled = (m_config.raft_layers == 0) ?
// Only enable Elephant foot compensation if printing directly on the print bed.
float(scale_(m_config.elefant_foot_compensation.value)) :
0.f;
// Uncompensated slices for the first layer in case the Elephant foot compensation is applied.
ExPolygons lslices_1st_layer;
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, upscaled, clipped, xy_compensation_scaled, elephant_foot_compensation_scaled, &lslices_1st_layer]
(const tbb::blocked_range<size_t>& range) {
for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_id];
// Apply size compensation and perform clipping of multi-part objects.
float elfoot = (layer_id == 0) ? elephant_foot_compensation_scaled : 0.f;
if (layer->m_regions.size() == 1) {
assert(! upscaled);
assert(! clipped);
// Optimized version for a single region layer.
// Single region, growing or shrinking.
LayerRegion *layerm = layer->m_regions.front();
if (elfoot > 0) {
// Apply the elephant foot compensation and store the 1st layer slices without the Elephant foot compensation applied.
lslices_1st_layer = to_expolygons(std::move(layerm->slices.surfaces));
float delta = xy_compensation_scaled;
if (delta > elfoot) {
delta -= elfoot;
elfoot = 0.f;
} else if (delta > 0)
elfoot -= delta;
layerm->slices.set(
union_ex(
Slic3r::elephant_foot_compensation(
(delta == 0.f) ? lslices_1st_layer : offset_ex(lslices_1st_layer, delta),
layerm->flow(frExternalPerimeter), unscale<double>(elfoot))),
stInternal);
if (xy_compensation_scaled != 0.f)
lslices_1st_layer = offset_ex(std::move(lslices_1st_layer), xy_compensation_scaled);
} else if (xy_compensation_scaled != 0.f) {
// Apply the XY compensation.
layerm->slices.set(
offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), xy_compensation_scaled),
stInternal);
}
} else {
bool upscale = ! upscaled && xy_compensation_scaled > 0.f;
bool clip = ! clipped && m_config.clip_multipart_objects.value;
if (upscale || clip) {
// Multiple regions, growing or just clipping one region by the other.
// When clipping the regions, priority is given to the first regions.
Polygons processed;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
if (upscale)
slices = offset_ex(std::move(slices), xy_compensation_scaled);
if (region_id > 0 && clip)
// Trim by the slices of already processed regions.
slices = diff_ex(to_polygons(std::move(slices)), processed);
if (clip && (region_id + 1 < layer->m_regions.size()))
// Collect the already processed regions to trim the to be processed regions.
polygons_append(processed, slices);
layerm->slices.set(std::move(slices), stInternal);
}
}
if (xy_compensation_scaled < 0.f || elfoot > 0.f) {
// Apply the negative XY compensation.
Polygons trimming;
static const float eps = float(scale_(m_config.slice_closing_radius.value) * 1.5);
if (elfoot > 0.f) {
lslices_1st_layer = offset_ex(layer->merged(eps), std::min(xy_compensation_scaled, 0.f) - eps);
trimming = to_polygons(Slic3r::elephant_foot_compensation(lslices_1st_layer,
layer->m_regions.front()->flow(frExternalPerimeter), unscale<double>(elfoot)));
} else
trimming = offset(layer->merged(float(SCALED_EPSILON)), xy_compensation_scaled - float(SCALED_EPSILON));
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id)
layer->m_regions[region_id]->trim_surfaces(trimming);
}
}
// Merge all regions' slices to get islands, chain them by a shortest path.
layer->make_slices();
}
});
if (elephant_foot_compensation_scaled > 0.f) {
// The Elephant foot has been compensated, therefore the 1st layer's lslices are shrank with the Elephant foot compensation value.
// Store the uncompensated value there.
assert(! m_layers.empty());
assert(m_layers.front()->id() == 0);
m_layers.front()->lslices = std::move(lslices_1st_layer);
}
}
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
}
// To be used only if there are no layer span specific configurations applied, which would lead to z ranges being generated for this region.
std::vector<ExPolygons> PrintObject::slice_region(size_t region_id, const std::vector<float> &z, SlicingMode mode) const
{
std::vector<const ModelVolume*> volumes;
if (region_id < this->region_volumes.size()) {
for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second];
if (volume->is_model_part())
volumes.emplace_back(volume);
}
}
return this->slice_volumes(z, mode, volumes);
}
// Z ranges are not applicable to modifier meshes, therefore a sinle volume will be found in volume_and_range at most once.
std::vector<ExPolygons> PrintObject::slice_modifiers(size_t region_id, const std::vector<float> &slice_zs) const
{
std::vector<ExPolygons> out;
if (region_id < this->region_volumes.size())
{
std::vector<std::vector<t_layer_height_range>> volume_ranges;
const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
volume_ranges.reserve(volumes_and_ranges.size());
for (size_t i = 0; i < volumes_and_ranges.size(); ) {
int volume_id = volumes_and_ranges[i].second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_modifier()) {
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges[i].first);
size_t j = i + 1;
for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j) {
if (! ranges.empty() && std::abs(ranges.back().second - volumes_and_ranges[j].first.first) < EPSILON)
ranges.back().second = volumes_and_ranges[j].first.second;
else
ranges.emplace_back(volumes_and_ranges[j].first);
}
volume_ranges.emplace_back(std::move(ranges));
i = j;
} else
++ i;
}
if (! volume_ranges.empty())
{
bool equal_ranges = true;
for (size_t i = 1; i < volume_ranges.size(); ++ i) {
assert(! volume_ranges[i].empty());
if (volume_ranges.front() != volume_ranges[i]) {
equal_ranges = false;
break;
}
}
if (equal_ranges && volume_ranges.front().size() == 1 && volume_ranges.front().front() == t_layer_height_range(0, DBL_MAX)) {
// No modifier in this region was split to layer spans.
std::vector<const ModelVolume*> volumes;
for (const std::pair<t_layer_height_range, int> &volume_and_range : this->region_volumes[region_id]) {
const ModelVolume *volume = this->model_object()->volumes[volume_and_range.second];
if (volume->is_modifier())
volumes.emplace_back(volume);
}
out = this->slice_volumes(slice_zs, SlicingMode::Regular, volumes);
} else {
// Some modifier in this region was split to layer spans.
std::vector<char> merge;
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const std::vector<std::pair<t_layer_height_range, int>> &volumes_and_ranges = this->region_volumes[region_id];
for (size_t i = 0; i < volumes_and_ranges.size(); ) {
int volume_id = volumes_and_ranges[i].second;
const ModelVolume *model_volume = this->model_object()->volumes[volume_id];
if (model_volume->is_modifier()) {
BOOST_LOG_TRIVIAL(debug) << "Slicing modifiers - volume " << volume_id;
// Find the ranges of this volume. Ranges in volumes_and_ranges must not overlap for a single volume.
std::vector<t_layer_height_range> ranges;
ranges.emplace_back(volumes_and_ranges[i].first);
size_t j = i + 1;
for (; j < volumes_and_ranges.size() && volume_id == volumes_and_ranges[j].second; ++ j)
ranges.emplace_back(volumes_and_ranges[j].first);
// slicing in parallel
std::vector<ExPolygons> this_slices = this->slice_volume(slice_zs, ranges, SlicingMode::Regular, *model_volume);
if (out.empty()) {
out = std::move(this_slices);
merge.assign(out.size(), false);
} else {
for (size_t i = 0; i < out.size(); ++ i)
if (! this_slices[i].empty()) {
if (! out[i].empty()) {
append(out[i], this_slices[i]);
merge[i] = true;
} else
out[i] = std::move(this_slices[i]);
}
}
i = j;
} else
++ i;
}
}
for (size_t i = 0; i < merge.size(); ++ i)
if (merge[i])
out[i] = union_ex(out[i]);
}
}
}
return out;
}
std::vector<ExPolygons> PrintObject::slice_support_volumes(const ModelVolumeType &model_volume_type) const
{
std::vector<const ModelVolume*> volumes;
for (const ModelVolume *volume : this->model_object()->volumes)
if (volume->type() == model_volume_type)
volumes.emplace_back(volume);
std::vector<float> zs;
zs.reserve(this->layers().size());
for (const Layer *l : this->layers())
zs.emplace_back((float)l->slice_z);
return this->slice_volumes(zs, SlicingMode::Regular, volumes);
}
std::vector<ExPolygons> PrintObject::slice_volumes(const std::vector<float> &z, SlicingMode mode, const std::vector<const ModelVolume*> &volumes) const
{
std::vector<ExPolygons> layers;
if (! volumes.empty()) {
// Compose mesh.
//FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volumes.front()->mesh());
mesh.transform(volumes.front()->get_matrix(), true);
assert(mesh.repaired);
if (volumes.size() == 1 && mesh.repaired) {
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
stl_check_facets_exact(&mesh.stl);
}
for (size_t idx_volume = 1; idx_volume < volumes.size(); ++ idx_volume) {
const ModelVolume &model_volume = *volumes[idx_volume];
TriangleMesh vol_mesh(model_volume.mesh());
vol_mesh.transform(model_volume.get_matrix(), true);
mesh.merge(vol_mesh);
}
if (mesh.stl.stats.number_of_facets > 0) {
mesh.transform(m_trafo, true);
// apply XY shift
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// perform actual slicing
const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
// TriangleMeshSlicer needs shared vertices, also this calls the repair() function.
mesh.require_shared_vertices();
TriangleMeshSlicer mslicer;
mslicer.init(&mesh, callback);
mslicer.slice(z, mode, float(m_config.slice_closing_radius.value), &layers, callback);
m_print->throw_if_canceled();
}
}
return layers;
}
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, SlicingMode mode, const ModelVolume &volume) const
{
std::vector<ExPolygons> layers;
if (! z.empty()) {
// Compose mesh.
//FIXME better to split the mesh into separate shells, perform slicing over each shell separately and then to use a Boolean operation to merge them.
TriangleMesh mesh(volume.mesh());
mesh.transform(volume.get_matrix(), true);
if (mesh.repaired) {
//FIXME The admesh repair function may break the face connectivity, rather refresh it here as the slicing code relies on it.
stl_check_facets_exact(&mesh.stl);
}
if (mesh.stl.stats.number_of_facets > 0) {
mesh.transform(m_trafo, true);
// apply XY shift
mesh.translate(- unscale<float>(m_center_offset.x()), - unscale<float>(m_center_offset.y()), 0);
// perform actual slicing
TriangleMeshSlicer mslicer;
const Print *print = this->print();
auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
// TriangleMeshSlicer needs the shared vertices.
mesh.require_shared_vertices();
mslicer.init(&mesh, callback);
mslicer.slice(z, mode, float(m_config.slice_closing_radius.value), &layers, callback);
m_print->throw_if_canceled();
}
}
return layers;
}
// Filter the zs not inside the ranges. The ranges are closed at the botton and open at the top, they are sorted lexicographically and non overlapping.
std::vector<ExPolygons> PrintObject::slice_volume(const std::vector<float> &z, const std::vector<t_layer_height_range> &ranges, SlicingMode mode, const ModelVolume &volume) const
{
std::vector<ExPolygons> out;
if (! z.empty() && ! ranges.empty()) {
if (ranges.size() == 1 && z.front() >= ranges.front().first && z.back() < ranges.front().second) {
// All layers fit into a single range.
out = this->slice_volume(z, mode, volume);
} else {
std::vector<float> z_filtered;
std::vector<std::pair<size_t, size_t>> n_filtered;
z_filtered.reserve(z.size());
n_filtered.reserve(2 * ranges.size());
size_t i = 0;
for (const t_layer_height_range &range : ranges) {
for (; i < z.size() && z[i] < range.first; ++ i) ;
size_t first = i;
for (; i < z.size() && z[i] < range.second; ++ i)
z_filtered.emplace_back(z[i]);
if (i > first)
n_filtered.emplace_back(std::make_pair(first, i));
}
if (! n_filtered.empty()) {
std::vector<ExPolygons> layers = this->slice_volume(z_filtered, mode, volume);
out.assign(z.size(), ExPolygons());
i = 0;
for (const std::pair<size_t, size_t> &span : n_filtered)
for (size_t j = span.first; j < span.second; ++ j)
out[j] = std::move(layers[i ++]);
}
}
}
return out;
}
std::string PrintObject::_fix_slicing_errors()
{
// Collect layers with slicing errors.
// These layers will be fixed in parallel.
std::vector<size_t> buggy_layers;
buggy_layers.reserve(m_layers.size());
for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
if (m_layers[idx_layer]->slicing_errors)
buggy_layers.push_back(idx_layer);
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, buggy_layers.size()),
[this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
m_print->throw_if_canceled();
size_t idx_layer = buggy_layers[buggy_layer_idx];
Layer *layer = m_layers[idx_layer];
assert(layer->slicing_errors);
// Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
// BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
LayerRegion *layerm = layer->m_regions[region_id];
// Find the first valid layer below / above the current layer.
const Surfaces *upper_surfaces = nullptr;
const Surfaces *lower_surfaces = nullptr;
for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
if (! m_layers[j]->slicing_errors) {
upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
break;
}
for (int j = int(idx_layer) - 1; j >= 0; -- j)
if (! m_layers[j]->slicing_errors) {
lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
break;
}
// Collect outer contours and holes from the valid layers above & below.
Polygons outer;
outer.reserve(
((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
size_t num_holes = 0;
if (upper_surfaces)
for (const auto &surface : *upper_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
if (lower_surfaces)
for (const auto &surface : *lower_surfaces) {
outer.push_back(surface.expolygon.contour);
num_holes += surface.expolygon.holes.size();
}
Polygons holes;
holes.reserve(num_holes);
if (upper_surfaces)
for (const auto &surface : *upper_surfaces)
polygons_append(holes, surface.expolygon.holes);
if (lower_surfaces)
for (const auto &surface : *lower_surfaces)
polygons_append(holes, surface.expolygon.holes);
layerm->slices.set(diff_ex(union_(outer), holes, false), stInternal);
}
// Update layer slices after repairing the single regions.
layer->make_slices();
}
});
m_print->throw_if_canceled();
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
// remove empty layers from bottom
while (! m_layers.empty() && (m_layers.front()->lslices.empty() || m_layers.front()->empty())) {
delete m_layers.front();
m_layers.erase(m_layers.begin());
m_layers.front()->lower_layer = nullptr;
for (size_t i = 0; i < m_layers.size(); ++ i)
m_layers[i]->set_id(m_layers[i]->id() - 1);
}
return buggy_layers.empty() ? "" :
"The model has overlapping or self-intersecting facets. I tried to repair it, "
"however you might want to check the results or repair the input file and retry.\n";
}
// Simplify the sliced model, if "resolution" configuration parameter > 0.
// The simplification is problematic, because it simplifies the slices independent from each other,
// which makes the simplified discretization visible on the object surface.
void PrintObject::simplify_slices(double distance)
{
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
tbb::parallel_for(
tbb::blocked_range<size_t>(0, m_layers.size()),
[this, distance](const tbb::blocked_range<size_t>& range) {
for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
m_print->throw_if_canceled();
Layer *layer = m_layers[layer_idx];
for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
layer->m_regions[region_idx]->slices.simplify(distance);
{
ExPolygons simplified;
for (const ExPolygon &expoly : layer->lslices)
expoly.simplify(distance, &simplified);
layer->lslices = std::move(simplified);
}
}
});
BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
}
// Only active if config->infill_only_where_needed. This step trims the sparse infill,
// so it acts as an internal support. It maintains all other infill types intact.
// Here the internal surfaces and perimeters have to be supported by the sparse infill.
//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
// Also one wishes the perimeters to be supported by a full infill.
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::clip_fill_surfaces()
{
if (! m_config.infill_only_where_needed.value ||
! std::any_of(this->print()->regions().begin(), this->print()->regions().end(),
[](const PrintRegion *region) { return region->config().fill_density > 0; }))
return;
// We only want infill under ceilings; this is almost like an
// internal support material.
// Proceed top-down, skipping the bottom layer.
Polygons upper_internal;
for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
Layer *layer = m_layers[layer_id];
Layer *lower_layer = m_layers[layer_id - 1];
// Detect things that we need to support.
// Cummulative slices.
Polygons slices;
polygons_append(slices, layer->lslices);
// Cummulative fill surfaces.
Polygons fill_surfaces;
// Solid surfaces to be supported.
Polygons overhangs;
for (const LayerRegion *layerm : layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.is_solid())
polygons_append(overhangs, polygons);
polygons_append(fill_surfaces, std::move(polygons));
}
Polygons lower_layer_fill_surfaces;
Polygons lower_layer_internal_surfaces;
for (const LayerRegion *layerm : lower_layer->m_regions)
for (const Surface &surface : layerm->fill_surfaces.surfaces) {
Polygons polygons = to_polygons(surface.expolygon);
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(lower_layer_internal_surfaces, polygons);
polygons_append(lower_layer_fill_surfaces, std::move(polygons));
}
// We also need to support perimeters when there's at least one full unsupported loop
{
// Get perimeters area as the difference between slices and fill_surfaces
// Only consider the area that is not supported by lower perimeters
Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
// Only consider perimeter areas that are at least one extrusion width thick.
//FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
//Should the pw not be half of the current value?
float pw = FLT_MAX;
for (const LayerRegion *layerm : layer->m_regions)
pw = std::min(pw, (float)layerm->flow(frPerimeter).scaled_width());
// Append such thick perimeters to the areas that need support
polygons_append(overhangs, offset2(perimeters, -pw, +pw));
}
// Find new internal infill.
polygons_append(overhangs, std::move(upper_internal));
upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
// Apply new internal infill to regions.
for (LayerRegion *layerm : lower_layer->m_regions) {
if (layerm->region()->config().fill_density.value == 0)
continue;
SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
Polygons internal;
for (Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
polygons_append(internal, std::move(surface.expolygon));
layerm->fill_surfaces.remove_types(internal_surface_types, 2);
layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternalVoid);
// If there are voids it means that our internal infill is not adjacent to
// perimeters. In this case it would be nice to add a loop around infill to
// make it more robust and nicer. TODO.
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
#endif
}
m_print->throw_if_canceled();
}
}
void PrintObject::discover_horizontal_shells()
{
BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (size_t i = 0; i < m_layers.size(); ++ i) {
m_print->throw_if_canceled();
Layer *layer = m_layers[i];
LayerRegion *layerm = layer->regions()[region_id];
const PrintRegionConfig &region_config = layerm->region()->config();
if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
(i % region_config.solid_infill_every_layers) == 0) {
// Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
for (Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal)
surface.surface_type = type;
}
// If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
if (region_config.ensure_vertical_shell_thickness.value)
continue;
coordf_t print_z = layer->print_z;
coordf_t bottom_z = layer->bottom_z();
for (size_t idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
m_print->throw_if_canceled();
SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
int num_solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;
if (num_solid_layers == 0)
continue;
// Find slices of current type for current layer.
// Use slices instead of fill_surfaces, because they also include the perimeter area,
// which needs to be propagated in shells; we need to grow slices like we did for
// fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
// not work in some situations, as there won't be any grown region in the perimeter
// area (this was seen in a model where the top layer had one extra perimeter, thus
// its fill_surfaces were thinner than the lower layer's infill), however it's the best
// solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
// too much solid infill inside nearly-vertical slopes.
// Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
// (not covered by a layer above / below).
// This does not contain the areas covered by perimeters!
Polygons solid;
for (const Surface &surface : layerm->slices.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
// Infill areas (slices without the perimeters).
for (const Surface &surface : layerm->fill_surfaces.surfaces)
if (surface.surface_type == type)
polygons_append(solid, to_polygons(surface.expolygon));
if (solid.empty())
continue;
// Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == stTop) ? 'top' : 'bottom';
// Scatter top / bottom regions to other layers. Scattering process is inherently serial, it is difficult to parallelize without locking.
for (int n = (type == stTop) ? int(i) - 1 : int(i) + 1;
(type == stTop) ?
(n >= 0 && (int(i) - n < num_solid_layers ||
print_z - m_layers[n]->print_z < region_config.top_solid_min_thickness.value - EPSILON)) :
(n < int(m_layers.size()) && (n - int(i) < num_solid_layers ||
m_layers[n]->bottom_z() - bottom_z < region_config.bottom_solid_min_thickness.value - EPSILON));
(type == stTop) ? -- n : ++ n)
{
// Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
// Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
LayerRegion *neighbor_layerm = m_layers[n]->regions()[region_id];
// find intersection between neighbor and current layer's surfaces
// intersections have contours and holes
// we update $solid so that we limit the next neighbor layer to the areas that were
// found on this one - in other words, solid shells on one layer (for a given external surface)
// are always a subset of the shells found on the previous shell layer
// this approach allows for DWIM in hollow sloping vases, where we want bottom
// shells to be generated in the base but not in the walls (where there are many
// narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
// upper perimeter as an obstacle and shell will not be propagated to more upper layers
//FIXME How does it work for stInternalBRIDGE? This is set for sparse infill. Likely this does not work.
Polygons new_internal_solid;
{
Polygons internal;
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
polygons_append(internal, to_polygons(surface.expolygon));
new_internal_solid = intersection(solid, internal, true);
}
if (new_internal_solid.empty()) {
// No internal solid needed on this layer. In order to decide whether to continue
// searching on the next neighbor (thus enforcing the configured number of solid
// layers, use different strategies according to configured infill density:
if (region_config.fill_density.value == 0) {
// If user expects the object to be void (for example a hollow sloping vase),
// don't continue the search. In this case, we only generate the external solid
// shell if the object would otherwise show a hole (gap between perimeters of
// the two layers), and internal solid shells are a subset of the shells found
// on each previous layer.
goto EXTERNAL;
} else {
// If we have internal infill, we can generate internal solid shells freely.
continue;
}
}
if (region_config.fill_density.value == 0) {
// if we're printing a hollow object we discard any solid shell thinner
// than a perimeter width, since it's probably just crossing a sloping wall
// and it's not wanted in a hollow print even if it would make sense when
// obeying the solid shell count option strictly (DWIM!)
float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
Polygons too_narrow = diff(
new_internal_solid,
offset2(new_internal_solid, -margin, +margin, jtMiter, 5),
true);
// Trim the regularized region by the original region.
if (! too_narrow.empty())
new_internal_solid = solid = diff(new_internal_solid, too_narrow);
}
// make sure the new internal solid is wide enough, as it might get collapsed
// when spacing is added in Fill.pm
{
//FIXME Vojtech: Disable this and you will be sorry.
// https://github.com/prusa3d/PrusaSlicer/issues/26 bottom
float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
// we use a higher miterLimit here to handle areas with acute angles
// in those cases, the default miterLimit would cut the corner and we'd
// get a triangle in $too_narrow; if we grow it below then the shell
// would have a different shape from the external surface and we'd still
// have the same angle, so the next shell would be grown even more and so on.
Polygons too_narrow = diff(
new_internal_solid,
offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
true);
if (! too_narrow.empty()) {
// grow the collapsing parts and add the extra area to the neighbor layer
// as well as to our original surfaces so that we support this
// additional area in the next shell too
// make sure our grown surfaces don't exceed the fill area
Polygons internal;
for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
if (surface.is_internal() && !surface.is_bridge())
polygons_append(internal, to_polygons(surface.expolygon));
polygons_append(new_internal_solid,
intersection(
offset(too_narrow, +margin),
// Discard bridges as they are grown for anchoring and we can't
// remove such anchors. (This may happen when a bridge is being
// anchored onto a wall where little space remains after the bridge
// is grown, and that little space is an internal solid shell so
// it triggers this too_narrow logic.)
internal));
// see https://github.com/prusa3d/PrusaSlicer/pull/3426
// solid = new_internal_solid;
}
}
// internal-solid are the union of the existing internal-solid surfaces
// and new ones
SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
ExPolygons internal_solid = union_ex(new_internal_solid, false);
// assign new internal-solid surfaces to layer
neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
// subtract intersections from layer surfaces to get resulting internal surfaces
Polygons polygons_internal = to_polygons(std::move(internal_solid));
ExPolygons internal = diff_ex(
to_polygons(backup.filter_by_type(stInternal)),
polygons_internal,
true);
// assign resulting internal surfaces to layer
neighbor_layerm->fill_surfaces.append(internal, stInternal);
polygons_append(polygons_internal, to_polygons(std::move(internal)));
// assign top and bottom surfaces to layer
SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
backup.keep_types(surface_types_solid, 3);
std::vector<SurfacesPtr> top_bottom_groups;
backup.group(&top_bottom_groups);
for (SurfacesPtr &group : top_bottom_groups)
neighbor_layerm->fill_surfaces.append(
diff_ex(to_polygons(group), polygons_internal),
// Use an existing surface as a template, it carries the bridge angle etc.
*group.front());
}
EXTERNAL:;
} // foreach type (stTop, stBottom, stBottomBridge)
} // for each layer
} // for each region
#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
for (const Layer *layer : m_layers) {
const LayerRegion *layerm = layer->m_regions[region_id];
layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
} // for each layer
} // for each region
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
}
// combine fill surfaces across layers to honor the "infill every N layers" option
// Idempotence of this method is guaranteed by the fact that we don't remove things from
// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
void PrintObject::combine_infill()
{
// Work on each region separately.
for (size_t region_id = 0; region_id < this->region_volumes.size(); ++ region_id) {
const PrintRegion *region = this->print()->regions()[region_id];
const size_t every = region->config().infill_every_layers.value;
if (every < 2 || region->config().fill_density == 0.)
continue;
// Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
//FIXME limit the layer height to max_layer_height
double nozzle_diameter = std::min(
this->print()->config().nozzle_diameter.get_at(region->config().infill_extruder.value - 1),
this->print()->config().nozzle_diameter.get_at(region->config().solid_infill_extruder.value - 1));
// define the combinations
std::vector<size_t> combine(m_layers.size(), 0);
{
double current_height = 0.;
size_t num_layers = 0;
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
m_print->throw_if_canceled();
const Layer *layer = m_layers[layer_idx];
if (layer->id() == 0)
// Skip first print layer (which may not be first layer in array because of raft).
continue;
// Check whether the combination of this layer with the lower layers' buffer
// would exceed max layer height or max combined layer count.
if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
// Append combination to lower layer.
combine[layer_idx - 1] = num_layers;
current_height = 0.;
num_layers = 0;
}
current_height += layer->height;
++ num_layers;
}
// Append lower layers (if any) to uppermost layer.
combine[m_layers.size() - 1] = num_layers;
}
// loop through layers to which we have assigned layers to combine
for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
m_print->throw_if_canceled();
size_t num_layers = combine[layer_idx];
if (num_layers <= 1)
continue;
// Get all the LayerRegion objects to be combined.
std::vector<LayerRegion*> layerms;
layerms.reserve(num_layers);
for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
layerms.emplace_back(m_layers[i]->regions()[region_id]);
// We need to perform a multi-layer intersection, so let's split it in pairs.
// Initialize the intersection with the candidates of the lowest layer.
ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
// Start looping from the second layer and intersect the current intersection with it.
for (size_t i = 1; i < layerms.size(); ++ i)
intersection = intersection_ex(
to_polygons(intersection),
to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
false);
double area_threshold = layerms.front()->infill_area_threshold();
if (! intersection.empty() && area_threshold > 0.)
intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
[area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
intersection.end());
if (intersection.empty())
continue;
// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
// scalar(@$intersection),
// ($type == stInternal ? 'internal' : 'internal-solid'),
// $layer_idx-($every-1), $layer_idx;
// intersection now contains the regions that can be combined across the full amount of layers,
// so let's remove those areas from all layers.
Polygons intersection_with_clearance;
intersection_with_clearance.reserve(intersection.size());
float clearance_offset =
0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
// Because fill areas for rectilinear and honeycomb are grown
// later to overlap perimeters, we need to counteract that too.
((region->config().fill_pattern == ipRectilinear ||
region->config().fill_pattern == ipGrid ||
region->config().fill_pattern == ipLine ||
region->config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
layerms.back()->flow(frSolidInfill).scaled_width();
for (ExPolygon &expoly : intersection)
polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
for (LayerRegion *layerm : layerms) {
Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
layerm->fill_surfaces.remove_type(stInternal);
layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
if (layerm == layerms.back()) {
// Apply surfaces back with adjusted depth to the uppermost layer.
Surface templ(stInternal, ExPolygon());
templ.thickness = 0.;
for (LayerRegion *layerm2 : layerms)
templ.thickness += layerm2->layer()->height;
templ.thickness_layers = (unsigned short)layerms.size();
layerm->fill_surfaces.append(intersection, templ);
} else {
// Save void surfaces.
layerm->fill_surfaces.append(
intersection_ex(internal, intersection_with_clearance, false),
stInternalVoid);
}
}
}
}
}
void PrintObject::_generate_support_material()
{
PrintObjectSupportMaterial support_material(this, m_slicing_params);
support_material.generate(*this);
}
} // namespace Slic3r