0558b53493
The XS was left only for the unit / integration tests, and it links libslic3r only. No wxWidgets are allowed to be used from Perl starting from now.
480 lines
23 KiB
C++
480 lines
23 KiB
C++
#include "PerimeterGenerator.hpp"
|
||
#include "ClipperUtils.hpp"
|
||
#include "ExtrusionEntityCollection.hpp"
|
||
#include <cmath>
|
||
#include <cassert>
|
||
|
||
namespace Slic3r {
|
||
|
||
void PerimeterGenerator::process()
|
||
{
|
||
// other perimeters
|
||
this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
|
||
coord_t perimeter_width = this->perimeter_flow.scaled_width();
|
||
coord_t perimeter_spacing = this->perimeter_flow.scaled_spacing();
|
||
|
||
// external perimeters
|
||
this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
|
||
coord_t ext_perimeter_width = this->ext_perimeter_flow.scaled_width();
|
||
coord_t ext_perimeter_spacing = this->ext_perimeter_flow.scaled_spacing();
|
||
coord_t ext_perimeter_spacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
|
||
|
||
// overhang perimeters
|
||
this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
|
||
|
||
// solid infill
|
||
coord_t solid_infill_spacing = this->solid_infill_flow.scaled_spacing();
|
||
|
||
// Calculate the minimum required spacing between two adjacent traces.
|
||
// This should be equal to the nominal flow spacing but we experiment
|
||
// with some tolerance in order to avoid triggering medial axis when
|
||
// some squishing might work. Loops are still spaced by the entire
|
||
// flow spacing; this only applies to collapsing parts.
|
||
// For ext_min_spacing we use the ext_perimeter_spacing calculated for two adjacent
|
||
// external loops (which is the correct way) instead of using ext_perimeter_spacing2
|
||
// which is the spacing between external and internal, which is not correct
|
||
// and would make the collapsing (thus the details resolution) dependent on
|
||
// internal flow which is unrelated.
|
||
coord_t min_spacing = perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||
coord_t ext_min_spacing = ext_perimeter_spacing * (1 - INSET_OVERLAP_TOLERANCE);
|
||
|
||
// prepare grown lower layer slices for overhang detection
|
||
if (this->lower_slices != NULL && this->config->overhangs) {
|
||
// We consider overhang any part where the entire nozzle diameter is not supported by the
|
||
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
|
||
// in the current layer
|
||
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
|
||
this->_lower_slices_p = offset(*this->lower_slices, float(scale_(+nozzle_diameter/2)));
|
||
}
|
||
|
||
// we need to process each island separately because we might have different
|
||
// extra perimeters for each one
|
||
for (const Surface &surface : this->slices->surfaces) {
|
||
// detect how many perimeters must be generated for this island
|
||
int loop_number = this->config->perimeters + surface.extra_perimeters - 1; // 0-indexed loops
|
||
ExPolygons last = union_ex(surface.expolygon.simplify_p(SCALED_RESOLUTION));
|
||
ExPolygons gaps;
|
||
if (loop_number >= 0) {
|
||
// In case no perimeters are to be generated, loop_number will equal to -1.
|
||
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
|
||
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
|
||
ThickPolylines thin_walls;
|
||
// we loop one time more than needed in order to find gaps after the last perimeter was applied
|
||
for (int i = 0;; ++ i) { // outer loop is 0
|
||
// Calculate next onion shell of perimeters.
|
||
ExPolygons offsets;
|
||
if (i == 0) {
|
||
// the minimum thickness of a single loop is:
|
||
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
|
||
offsets = this->config->thin_walls ?
|
||
offset2_ex(
|
||
last,
|
||
-(ext_perimeter_width / 2 + ext_min_spacing / 2 - 1),
|
||
+(ext_min_spacing / 2 - 1)) :
|
||
offset_ex(last, - ext_perimeter_width / 2);
|
||
// look for thin walls
|
||
if (this->config->thin_walls) {
|
||
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
|
||
// (actually, something larger than that still may exist due to mitering or other causes)
|
||
coord_t min_width = scale_(this->ext_perimeter_flow.nozzle_diameter / 3);
|
||
ExPolygons expp = offset2_ex(
|
||
// medial axis requires non-overlapping geometry
|
||
diff_ex(to_polygons(last),
|
||
offset(offsets, ext_perimeter_width / 2),
|
||
true),
|
||
- min_width / 2, min_width / 2);
|
||
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
|
||
for (ExPolygon &ex : expp)
|
||
ex.medial_axis(ext_perimeter_width + ext_perimeter_spacing2, min_width, &thin_walls);
|
||
}
|
||
} else {
|
||
//FIXME Is this offset correct if the line width of the inner perimeters differs
|
||
// from the line width of the infill?
|
||
coord_t distance = (i == 1) ? ext_perimeter_spacing2 : perimeter_spacing;
|
||
offsets = this->config->thin_walls ?
|
||
// This path will ensure, that the perimeters do not overfill, as in
|
||
// prusa3d/Slic3r GH #32, but with the cost of rounding the perimeters
|
||
// excessively, creating gaps, which then need to be filled in by the not very
|
||
// reliable gap fill algorithm.
|
||
// Also the offset2(perimeter, -x, x) may sometimes lead to a perimeter, which is larger than
|
||
// the original.
|
||
offset2_ex(last,
|
||
- (distance + min_spacing / 2 - 1),
|
||
min_spacing / 2 - 1) :
|
||
// If "detect thin walls" is not enabled, this paths will be entered, which
|
||
// leads to overflows, as in prusa3d/Slic3r GH #32
|
||
offset_ex(last, - distance);
|
||
// look for gaps
|
||
if (this->config->gap_fill_speed.value > 0 && this->config->fill_density.value > 0)
|
||
// not using safety offset here would "detect" very narrow gaps
|
||
// (but still long enough to escape the area threshold) that gap fill
|
||
// won't be able to fill but we'd still remove from infill area
|
||
append(gaps, diff_ex(
|
||
offset(last, -0.5 * distance),
|
||
offset(offsets, 0.5 * distance + 10))); // safety offset
|
||
}
|
||
if (offsets.empty()) {
|
||
// Store the number of loops actually generated.
|
||
loop_number = i - 1;
|
||
// No region left to be filled in.
|
||
last.clear();
|
||
break;
|
||
} else if (i > loop_number) {
|
||
// If i > loop_number, we were looking just for gaps.
|
||
break;
|
||
}
|
||
for (const ExPolygon &expolygon : offsets) {
|
||
contours[i].emplace_back(PerimeterGeneratorLoop(expolygon.contour, i, true));
|
||
if (! expolygon.holes.empty()) {
|
||
holes[i].reserve(holes[i].size() + expolygon.holes.size());
|
||
for (const Polygon &hole : expolygon.holes)
|
||
holes[i].emplace_back(PerimeterGeneratorLoop(hole, i, false));
|
||
}
|
||
}
|
||
last = std::move(offsets);
|
||
}
|
||
|
||
// nest loops: holes first
|
||
for (int d = 0; d <= loop_number; ++ d) {
|
||
PerimeterGeneratorLoops &holes_d = holes[d];
|
||
// loop through all holes having depth == d
|
||
for (int i = 0; i < (int)holes_d.size(); ++ i) {
|
||
const PerimeterGeneratorLoop &loop = holes_d[i];
|
||
// find the hole loop that contains this one, if any
|
||
for (int t = d + 1; t <= loop_number; ++ t) {
|
||
for (int j = 0; j < (int)holes[t].size(); ++ j) {
|
||
PerimeterGeneratorLoop &candidate_parent = holes[t][j];
|
||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||
candidate_parent.children.push_back(loop);
|
||
holes_d.erase(holes_d.begin() + i);
|
||
-- i;
|
||
goto NEXT_LOOP;
|
||
}
|
||
}
|
||
}
|
||
// if no hole contains this hole, find the contour loop that contains it
|
||
for (int t = loop_number; t >= 0; -- t) {
|
||
for (int j = 0; j < (int)contours[t].size(); ++ j) {
|
||
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||
candidate_parent.children.push_back(loop);
|
||
holes_d.erase(holes_d.begin() + i);
|
||
-- i;
|
||
goto NEXT_LOOP;
|
||
}
|
||
}
|
||
}
|
||
NEXT_LOOP: ;
|
||
}
|
||
}
|
||
// nest contour loops
|
||
for (int d = loop_number; d >= 1; -- d) {
|
||
PerimeterGeneratorLoops &contours_d = contours[d];
|
||
// loop through all contours having depth == d
|
||
for (int i = 0; i < (int)contours_d.size(); ++ i) {
|
||
const PerimeterGeneratorLoop &loop = contours_d[i];
|
||
// find the contour loop that contains it
|
||
for (int t = d - 1; t >= 0; -- t) {
|
||
for (int j = 0; j < contours[t].size(); ++ j) {
|
||
PerimeterGeneratorLoop &candidate_parent = contours[t][j];
|
||
if (candidate_parent.polygon.contains(loop.polygon.first_point())) {
|
||
candidate_parent.children.push_back(loop);
|
||
contours_d.erase(contours_d.begin() + i);
|
||
-- i;
|
||
goto NEXT_CONTOUR;
|
||
}
|
||
}
|
||
}
|
||
NEXT_CONTOUR: ;
|
||
}
|
||
}
|
||
// at this point, all loops should be in contours[0]
|
||
ExtrusionEntityCollection entities = this->_traverse_loops(contours.front(), thin_walls);
|
||
// if brim will be printed, reverse the order of perimeters so that
|
||
// we continue inwards after having finished the brim
|
||
// TODO: add test for perimeter order
|
||
if (this->config->external_perimeters_first ||
|
||
(this->layer_id == 0 && this->print_config->brim_width.value > 0))
|
||
entities.reverse();
|
||
// append perimeters for this slice as a collection
|
||
if (! entities.empty())
|
||
this->loops->append(entities);
|
||
} // for each loop of an island
|
||
|
||
// fill gaps
|
||
if (! gaps.empty()) {
|
||
// collapse
|
||
double min = 0.2 * perimeter_width * (1 - INSET_OVERLAP_TOLERANCE);
|
||
double max = 2. * perimeter_spacing;
|
||
ExPolygons gaps_ex = diff_ex(
|
||
//FIXME offset2 would be enough and cheaper.
|
||
offset2_ex(gaps, -min/2, +min/2),
|
||
offset2_ex(gaps, -max/2, +max/2),
|
||
true);
|
||
ThickPolylines polylines;
|
||
for (const ExPolygon &ex : gaps_ex)
|
||
ex.medial_axis(max, min, &polylines);
|
||
if (! polylines.empty()) {
|
||
ExtrusionEntityCollection gap_fill = this->_variable_width(polylines,
|
||
erGapFill, this->solid_infill_flow);
|
||
this->gap_fill->append(gap_fill.entities);
|
||
/* Make sure we don't infill narrow parts that are already gap-filled
|
||
(we only consider this surface's gaps to reduce the diff() complexity).
|
||
Growing actual extrusions ensures that gaps not filled by medial axis
|
||
are not subtracted from fill surfaces (they might be too short gaps
|
||
that medial axis skips but infill might join with other infill regions
|
||
and use zigzag). */
|
||
//FIXME Vojtech: This grows by a rounded extrusion width, not by line spacing,
|
||
// therefore it may cover the area, but no the volume.
|
||
last = diff_ex(to_polygons(last), gap_fill.polygons_covered_by_width(10.f));
|
||
}
|
||
}
|
||
|
||
// create one more offset to be used as boundary for fill
|
||
// we offset by half the perimeter spacing (to get to the actual infill boundary)
|
||
// and then we offset back and forth by half the infill spacing to only consider the
|
||
// non-collapsing regions
|
||
coord_t inset =
|
||
(loop_number < 0) ? 0 :
|
||
(loop_number == 0) ?
|
||
// one loop
|
||
ext_perimeter_spacing / 2 :
|
||
// two or more loops?
|
||
perimeter_spacing / 2;
|
||
// only apply infill overlap if we actually have one perimeter
|
||
if (inset > 0)
|
||
inset -= scale_(this->config->get_abs_value("infill_overlap", unscale<double>(inset + solid_infill_spacing / 2)));
|
||
// simplify infill contours according to resolution
|
||
Polygons pp;
|
||
for (ExPolygon &ex : last)
|
||
ex.simplify_p(SCALED_RESOLUTION, &pp);
|
||
// collapse too narrow infill areas
|
||
coord_t min_perimeter_infill_spacing = solid_infill_spacing * (1. - INSET_OVERLAP_TOLERANCE);
|
||
// append infill areas to fill_surfaces
|
||
this->fill_surfaces->append(
|
||
offset2_ex(
|
||
union_ex(pp),
|
||
- inset - min_perimeter_infill_spacing / 2,
|
||
min_perimeter_infill_spacing / 2),
|
||
stInternal);
|
||
} // for each island
|
||
}
|
||
|
||
ExtrusionEntityCollection PerimeterGenerator::_traverse_loops(
|
||
const PerimeterGeneratorLoops &loops, ThickPolylines &thin_walls) const
|
||
{
|
||
// loops is an arrayref of ::Loop objects
|
||
// turn each one into an ExtrusionLoop object
|
||
ExtrusionEntityCollection coll;
|
||
for (PerimeterGeneratorLoops::const_iterator loop = loops.begin();
|
||
loop != loops.end(); ++loop) {
|
||
bool is_external = loop->is_external();
|
||
|
||
ExtrusionRole role;
|
||
ExtrusionLoopRole loop_role;
|
||
role = is_external ? erExternalPerimeter : erPerimeter;
|
||
if (loop->is_internal_contour()) {
|
||
// Note that we set loop role to ContourInternalPerimeter
|
||
// also when loop is both internal and external (i.e.
|
||
// there's only one contour loop).
|
||
loop_role = elrContourInternalPerimeter;
|
||
} else {
|
||
loop_role = elrDefault;
|
||
}
|
||
|
||
// detect overhanging/bridging perimeters
|
||
ExtrusionPaths paths;
|
||
if (this->config->overhangs && this->layer_id > 0
|
||
&& !(this->object_config->support_material && this->object_config->support_material_contact_distance.value == 0)) {
|
||
// get non-overhang paths by intersecting this loop with the grown lower slices
|
||
extrusion_paths_append(
|
||
paths,
|
||
intersection_pl(loop->polygon, this->_lower_slices_p),
|
||
role,
|
||
is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm,
|
||
is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width,
|
||
this->layer_height);
|
||
|
||
// get overhang paths by checking what parts of this loop fall
|
||
// outside the grown lower slices (thus where the distance between
|
||
// the loop centerline and original lower slices is >= half nozzle diameter
|
||
extrusion_paths_append(
|
||
paths,
|
||
diff_pl(loop->polygon, this->_lower_slices_p),
|
||
erOverhangPerimeter,
|
||
this->_mm3_per_mm_overhang,
|
||
this->overhang_flow.width,
|
||
this->overhang_flow.height);
|
||
|
||
// reapply the nearest point search for starting point
|
||
// We allow polyline reversal because Clipper may have randomly
|
||
// reversed polylines during clipping.
|
||
paths = (ExtrusionPaths)ExtrusionEntityCollection(paths).chained_path();
|
||
} else {
|
||
ExtrusionPath path(role);
|
||
path.polyline = loop->polygon.split_at_first_point();
|
||
path.mm3_per_mm = is_external ? this->_ext_mm3_per_mm : this->_mm3_per_mm;
|
||
path.width = is_external ? this->ext_perimeter_flow.width : this->perimeter_flow.width;
|
||
path.height = this->layer_height;
|
||
paths.push_back(path);
|
||
}
|
||
|
||
coll.append(ExtrusionLoop(paths, loop_role));
|
||
}
|
||
|
||
// append thin walls to the nearest-neighbor search (only for first iteration)
|
||
if (!thin_walls.empty()) {
|
||
ExtrusionEntityCollection tw = this->_variable_width
|
||
(thin_walls, erExternalPerimeter, this->ext_perimeter_flow);
|
||
|
||
coll.append(tw.entities);
|
||
thin_walls.clear();
|
||
}
|
||
|
||
// sort entities into a new collection using a nearest-neighbor search,
|
||
// preserving the original indices which are useful for detecting thin walls
|
||
ExtrusionEntityCollection sorted_coll;
|
||
coll.chained_path(&sorted_coll, false, erMixed, &sorted_coll.orig_indices);
|
||
|
||
// traverse children and build the final collection
|
||
ExtrusionEntityCollection entities;
|
||
for (std::vector<size_t>::const_iterator idx = sorted_coll.orig_indices.begin();
|
||
idx != sorted_coll.orig_indices.end();
|
||
++idx) {
|
||
|
||
if (*idx >= loops.size()) {
|
||
// this is a thin wall
|
||
// let's get it from the sorted collection as it might have been reversed
|
||
size_t i = idx - sorted_coll.orig_indices.begin();
|
||
entities.append(*sorted_coll.entities[i]);
|
||
} else {
|
||
const PerimeterGeneratorLoop &loop = loops[*idx];
|
||
ExtrusionLoop eloop = *dynamic_cast<ExtrusionLoop*>(coll.entities[*idx]);
|
||
|
||
ExtrusionEntityCollection children = this->_traverse_loops(loop.children, thin_walls);
|
||
if (loop.is_contour) {
|
||
eloop.make_counter_clockwise();
|
||
entities.append(children.entities);
|
||
entities.append(eloop);
|
||
} else {
|
||
eloop.make_clockwise();
|
||
entities.append(eloop);
|
||
entities.append(children.entities);
|
||
}
|
||
}
|
||
}
|
||
return entities;
|
||
}
|
||
|
||
static inline ExtrusionPaths thick_polyline_to_extrusion_paths(const ThickPolyline &thick_polyline, ExtrusionRole role, Flow &flow, const float tolerance)
|
||
{
|
||
ExtrusionPaths paths;
|
||
ExtrusionPath path(role);
|
||
ThickLines lines = thick_polyline.thicklines();
|
||
|
||
for (int i = 0; i < (int)lines.size(); ++i) {
|
||
const ThickLine& line = lines[i];
|
||
|
||
const coordf_t line_len = line.length();
|
||
if (line_len < SCALED_EPSILON) continue;
|
||
|
||
double thickness_delta = fabs(line.a_width - line.b_width);
|
||
if (thickness_delta > tolerance) {
|
||
const unsigned short segments = ceil(thickness_delta / tolerance);
|
||
const coordf_t seg_len = line_len / segments;
|
||
Points pp;
|
||
std::vector<coordf_t> width;
|
||
{
|
||
pp.push_back(line.a);
|
||
width.push_back(line.a_width);
|
||
for (size_t j = 1; j < segments; ++j) {
|
||
pp.push_back((line.a.cast<double>() + (line.b - line.a).cast<double>().normalized() * (j * seg_len)).cast<coord_t>());
|
||
|
||
coordf_t w = line.a_width + (j*seg_len) * (line.b_width-line.a_width) / line_len;
|
||
width.push_back(w);
|
||
width.push_back(w);
|
||
}
|
||
pp.push_back(line.b);
|
||
width.push_back(line.b_width);
|
||
|
||
assert(pp.size() == segments + 1);
|
||
assert(width.size() == segments*2);
|
||
}
|
||
|
||
// delete this line and insert new ones
|
||
lines.erase(lines.begin() + i);
|
||
for (size_t j = 0; j < segments; ++j) {
|
||
ThickLine new_line(pp[j], pp[j+1]);
|
||
new_line.a_width = width[2*j];
|
||
new_line.b_width = width[2*j+1];
|
||
lines.insert(lines.begin() + i + j, new_line);
|
||
}
|
||
|
||
-- i;
|
||
continue;
|
||
}
|
||
|
||
const double w = fmax(line.a_width, line.b_width);
|
||
if (path.polyline.points.empty()) {
|
||
path.polyline.append(line.a);
|
||
path.polyline.append(line.b);
|
||
// Convert from spacing to extrusion width based on the extrusion model
|
||
// of a square extrusion ended with semi circles.
|
||
flow.width = unscale<float>(w) + flow.height * (1. - 0.25 * PI);
|
||
#ifdef SLIC3R_DEBUG
|
||
printf(" filling %f gap\n", flow.width);
|
||
#endif
|
||
path.mm3_per_mm = flow.mm3_per_mm();
|
||
path.width = flow.width;
|
||
path.height = flow.height;
|
||
} else {
|
||
thickness_delta = fabs(scale_(flow.width) - w);
|
||
if (thickness_delta <= tolerance) {
|
||
// the width difference between this line and the current flow width is
|
||
// within the accepted tolerance
|
||
path.polyline.append(line.b);
|
||
} else {
|
||
// we need to initialize a new line
|
||
paths.emplace_back(std::move(path));
|
||
path = ExtrusionPath(role);
|
||
-- i;
|
||
}
|
||
}
|
||
}
|
||
if (path.polyline.is_valid())
|
||
paths.emplace_back(std::move(path));
|
||
return paths;
|
||
}
|
||
|
||
ExtrusionEntityCollection PerimeterGenerator::_variable_width(const ThickPolylines &polylines, ExtrusionRole role, Flow flow) const
|
||
{
|
||
// This value determines granularity of adaptive width, as G-code does not allow
|
||
// variable extrusion within a single move; this value shall only affect the amount
|
||
// of segments, and any pruning shall be performed before we apply this tolerance.
|
||
ExtrusionEntityCollection coll;
|
||
const double tolerance = scale_(0.05);
|
||
for (const ThickPolyline &p : polylines) {
|
||
ExtrusionPaths paths = thick_polyline_to_extrusion_paths(p, role, flow, tolerance);
|
||
// Append paths to collection.
|
||
if (! paths.empty()) {
|
||
if (paths.front().first_point() == paths.back().last_point())
|
||
coll.append(ExtrusionLoop(std::move(paths)));
|
||
else
|
||
coll.append(std::move(paths));
|
||
}
|
||
}
|
||
return coll;
|
||
}
|
||
|
||
bool PerimeterGeneratorLoop::is_internal_contour() const
|
||
{
|
||
// An internal contour is a contour containing no other contours
|
||
if (! this->is_contour)
|
||
return false;
|
||
for (const PerimeterGeneratorLoop &loop : this->children)
|
||
if (loop.is_contour)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
}
|