PrusaSlicer-NonPlainar/src/libslic3r/BoundingBox.cpp
Vojtech Bubnik 37c5fe9923 Refactoring of adaptive cubic / support cubic:
1) Octree is built directly from the triangle mesh by checking
   overlap of a triangle with an octree cell. This shall produce
   a tighter octree with less dense cells.
2) The same method is used for both the adaptive / support cubic infill,
   where for the support cubic infill the non-overhang triangles are
   ignored.
The AABB tree is no more used.
3) Optimized extraction of continuous infill lines in O(1) instead of O(n^2)
2020-09-17 18:39:28 +02:00

281 lines
9.2 KiB
C++

#include "BoundingBox.hpp"
#include <algorithm>
#include <assert.h>
#include <Eigen/Dense>
namespace Slic3r {
template BoundingBoxBase<Point>::BoundingBoxBase(const std::vector<Point> &points);
template BoundingBoxBase<Vec2d>::BoundingBoxBase(const std::vector<Vec2d> &points);
template BoundingBox3Base<Vec3d>::BoundingBox3Base(const std::vector<Vec3d> &points);
void BoundingBox::polygon(Polygon* polygon) const
{
polygon->points.clear();
polygon->points.resize(4);
polygon->points[0](0) = this->min(0);
polygon->points[0](1) = this->min(1);
polygon->points[1](0) = this->max(0);
polygon->points[1](1) = this->min(1);
polygon->points[2](0) = this->max(0);
polygon->points[2](1) = this->max(1);
polygon->points[3](0) = this->min(0);
polygon->points[3](1) = this->max(1);
}
Polygon BoundingBox::polygon() const
{
Polygon p;
this->polygon(&p);
return p;
}
BoundingBox BoundingBox::rotated(double angle) const
{
BoundingBox out;
out.merge(this->min.rotated(angle));
out.merge(this->max.rotated(angle));
out.merge(Point(this->min(0), this->max(1)).rotated(angle));
out.merge(Point(this->max(0), this->min(1)).rotated(angle));
return out;
}
BoundingBox BoundingBox::rotated(double angle, const Point &center) const
{
BoundingBox out;
out.merge(this->min.rotated(angle, center));
out.merge(this->max.rotated(angle, center));
out.merge(Point(this->min(0), this->max(1)).rotated(angle, center));
out.merge(Point(this->max(0), this->min(1)).rotated(angle, center));
return out;
}
template <class PointClass> void
BoundingBoxBase<PointClass>::scale(double factor)
{
this->min *= factor;
this->max *= factor;
}
template void BoundingBoxBase<Point>::scale(double factor);
template void BoundingBoxBase<Vec2d>::scale(double factor);
template void BoundingBoxBase<Vec3d>::scale(double factor);
template <class PointClass> void
BoundingBoxBase<PointClass>::merge(const PointClass &point)
{
if (this->defined) {
this->min = this->min.cwiseMin(point);
this->max = this->max.cwiseMax(point);
} else {
this->min = point;
this->max = point;
this->defined = true;
}
}
template void BoundingBoxBase<Point>::merge(const Point &point);
template void BoundingBoxBase<Vec2f>::merge(const Vec2f &point);
template void BoundingBoxBase<Vec2d>::merge(const Vec2d &point);
template <class PointClass> void
BoundingBoxBase<PointClass>::merge(const std::vector<PointClass> &points)
{
this->merge(BoundingBoxBase(points));
}
template void BoundingBoxBase<Point>::merge(const Points &points);
template void BoundingBoxBase<Vec2d>::merge(const Pointfs &points);
template <class PointClass> void
BoundingBoxBase<PointClass>::merge(const BoundingBoxBase<PointClass> &bb)
{
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1));
if (bb.defined) {
if (this->defined) {
this->min = this->min.cwiseMin(bb.min);
this->max = this->max.cwiseMax(bb.max);
} else {
this->min = bb.min;
this->max = bb.max;
this->defined = true;
}
}
}
template void BoundingBoxBase<Point>::merge(const BoundingBoxBase<Point> &bb);
template void BoundingBoxBase<Vec2f>::merge(const BoundingBoxBase<Vec2f> &bb);
template void BoundingBoxBase<Vec2d>::merge(const BoundingBoxBase<Vec2d> &bb);
template <class PointClass> void
BoundingBox3Base<PointClass>::merge(const PointClass &point)
{
if (this->defined) {
this->min = this->min.cwiseMin(point);
this->max = this->max.cwiseMax(point);
} else {
this->min = point;
this->max = point;
this->defined = true;
}
}
template void BoundingBox3Base<Vec3f>::merge(const Vec3f &point);
template void BoundingBox3Base<Vec3d>::merge(const Vec3d &point);
template <class PointClass> void
BoundingBox3Base<PointClass>::merge(const std::vector<PointClass> &points)
{
this->merge(BoundingBox3Base(points));
}
template void BoundingBox3Base<Vec3d>::merge(const Pointf3s &points);
template <class PointClass> void
BoundingBox3Base<PointClass>::merge(const BoundingBox3Base<PointClass> &bb)
{
assert(bb.defined || bb.min(0) >= bb.max(0) || bb.min(1) >= bb.max(1) || bb.min(2) >= bb.max(2));
if (bb.defined) {
if (this->defined) {
this->min = this->min.cwiseMin(bb.min);
this->max = this->max.cwiseMax(bb.max);
} else {
this->min = bb.min;
this->max = bb.max;
this->defined = true;
}
}
}
template void BoundingBox3Base<Vec3d>::merge(const BoundingBox3Base<Vec3d> &bb);
template <class PointClass> PointClass
BoundingBoxBase<PointClass>::size() const
{
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1));
}
template Point BoundingBoxBase<Point>::size() const;
template Vec2f BoundingBoxBase<Vec2f>::size() const;
template Vec2d BoundingBoxBase<Vec2d>::size() const;
template <class PointClass> PointClass
BoundingBox3Base<PointClass>::size() const
{
return PointClass(this->max(0) - this->min(0), this->max(1) - this->min(1), this->max(2) - this->min(2));
}
template Vec3f BoundingBox3Base<Vec3f>::size() const;
template Vec3d BoundingBox3Base<Vec3d>::size() const;
template <class PointClass> double BoundingBoxBase<PointClass>::radius() const
{
assert(this->defined);
double x = this->max(0) - this->min(0);
double y = this->max(1) - this->min(1);
return 0.5 * sqrt(x*x+y*y);
}
template double BoundingBoxBase<Point>::radius() const;
template double BoundingBoxBase<Vec2d>::radius() const;
template <class PointClass> double BoundingBox3Base<PointClass>::radius() const
{
double x = this->max(0) - this->min(0);
double y = this->max(1) - this->min(1);
double z = this->max(2) - this->min(2);
return 0.5 * sqrt(x*x+y*y+z*z);
}
template double BoundingBox3Base<Vec3d>::radius() const;
template <class PointClass> void
BoundingBoxBase<PointClass>::offset(coordf_t delta)
{
PointClass v(delta, delta);
this->min -= v;
this->max += v;
}
template void BoundingBoxBase<Point>::offset(coordf_t delta);
template void BoundingBoxBase<Vec2d>::offset(coordf_t delta);
template <class PointClass> void
BoundingBox3Base<PointClass>::offset(coordf_t delta)
{
PointClass v(delta, delta, delta);
this->min -= v;
this->max += v;
}
template void BoundingBox3Base<Vec3d>::offset(coordf_t delta);
template <class PointClass> PointClass
BoundingBoxBase<PointClass>::center() const
{
return (this->min + this->max) / 2;
}
template Point BoundingBoxBase<Point>::center() const;
template Vec2f BoundingBoxBase<Vec2f>::center() const;
template Vec2d BoundingBoxBase<Vec2d>::center() const;
template <class PointClass> PointClass
BoundingBox3Base<PointClass>::center() const
{
return (this->min + this->max) / 2;
}
template Vec3f BoundingBox3Base<Vec3f>::center() const;
template Vec3d BoundingBox3Base<Vec3d>::center() const;
template <class PointClass> coordf_t
BoundingBox3Base<PointClass>::max_size() const
{
PointClass s = size();
return std::max(s(0), std::max(s(1), s(2)));
}
template coordf_t BoundingBox3Base<Vec3f>::max_size() const;
template coordf_t BoundingBox3Base<Vec3d>::max_size() const;
// Align a coordinate to a grid. The coordinate may be negative,
// the aligned value will never be bigger than the original one.
static inline coord_t _align_to_grid(const coord_t coord, const coord_t spacing) {
// Current C++ standard defines the result of integer division to be rounded to zero,
// for both positive and negative numbers. Here we want to round down for negative
// numbers as well.
coord_t aligned = (coord < 0) ?
((coord - spacing + 1) / spacing) * spacing :
(coord / spacing) * spacing;
assert(aligned <= coord);
return aligned;
}
void BoundingBox::align_to_grid(const coord_t cell_size)
{
if (this->defined) {
min(0) = _align_to_grid(min(0), cell_size);
min(1) = _align_to_grid(min(1), cell_size);
}
}
BoundingBoxf3 BoundingBoxf3::transformed(const Transform3d& matrix) const
{
typedef Eigen::Matrix<double, 3, 8, Eigen::DontAlign> Vertices;
Vertices src_vertices;
src_vertices(0, 0) = min(0); src_vertices(1, 0) = min(1); src_vertices(2, 0) = min(2);
src_vertices(0, 1) = max(0); src_vertices(1, 1) = min(1); src_vertices(2, 1) = min(2);
src_vertices(0, 2) = max(0); src_vertices(1, 2) = max(1); src_vertices(2, 2) = min(2);
src_vertices(0, 3) = min(0); src_vertices(1, 3) = max(1); src_vertices(2, 3) = min(2);
src_vertices(0, 4) = min(0); src_vertices(1, 4) = min(1); src_vertices(2, 4) = max(2);
src_vertices(0, 5) = max(0); src_vertices(1, 5) = min(1); src_vertices(2, 5) = max(2);
src_vertices(0, 6) = max(0); src_vertices(1, 6) = max(1); src_vertices(2, 6) = max(2);
src_vertices(0, 7) = min(0); src_vertices(1, 7) = max(1); src_vertices(2, 7) = max(2);
Vertices dst_vertices = matrix * src_vertices.colwise().homogeneous();
Vec3d v_min(dst_vertices(0, 0), dst_vertices(1, 0), dst_vertices(2, 0));
Vec3d v_max = v_min;
for (int i = 1; i < 8; ++i)
{
for (int j = 0; j < 3; ++j)
{
v_min(j) = std::min(v_min(j), dst_vertices(j, i));
v_max(j) = std::max(v_max(j), dst_vertices(j, i));
}
}
return BoundingBoxf3(v_min, v_max);
}
}