PrusaSlicer-NonPlainar/src/libslic3r/PrintApply.cpp
Vojtech Bubnik 409e1c5cc8 Some fixes after preceding merge. Moved mmu_segmented_region_max_width
from PrintConfig to PrintObjectConfig.
2021-05-26 16:14:52 +02:00

1331 lines
72 KiB
C++

#include "Model.hpp"
#include "Print.hpp"
namespace Slic3r {
// Add or remove support modifier ModelVolumes from model_object_dst to match the ModelVolumes of model_object_new
// in the exact order and with the same IDs.
// It is expected, that the model_object_dst already contains the non-support volumes of model_object_new in the correct order.
// Friend to ModelVolume to allow copying.
// static is not accepted by gcc if declared as a friend of ModelObject.
/* static */ void model_volume_list_update_supports(ModelObject &model_object_dst, const ModelObject &model_object_new)
{
typedef std::pair<const ModelVolume*, bool> ModelVolumeWithStatus;
std::vector<ModelVolumeWithStatus> old_volumes;
old_volumes.reserve(model_object_dst.volumes.size());
for (const ModelVolume *model_volume : model_object_dst.volumes)
old_volumes.emplace_back(ModelVolumeWithStatus(model_volume, false));
auto model_volume_lower = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() < mv2.first->id(); };
auto model_volume_equal = [](const ModelVolumeWithStatus &mv1, const ModelVolumeWithStatus &mv2){ return mv1.first->id() == mv2.first->id(); };
std::sort(old_volumes.begin(), old_volumes.end(), model_volume_lower);
model_object_dst.volumes.clear();
model_object_dst.volumes.reserve(model_object_new.volumes.size());
for (const ModelVolume *model_volume_src : model_object_new.volumes) {
ModelVolumeWithStatus key(model_volume_src, false);
auto it = std::lower_bound(old_volumes.begin(), old_volumes.end(), key, model_volume_lower);
if (it != old_volumes.end() && model_volume_equal(*it, key)) {
// The volume was found in the old list. Just copy it.
assert(! it->second); // not consumed yet
it->second = true;
ModelVolume *model_volume_dst = const_cast<ModelVolume*>(it->first);
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
assert((model_volume_dst->is_support_modifier() && model_volume_src->is_support_modifier()) || model_volume_dst->type() == model_volume_src->type());
model_object_dst.volumes.emplace_back(model_volume_dst);
if (model_volume_dst->is_support_modifier()) {
// For support modifiers, the type may have been switched from blocker to enforcer and vice versa.
model_volume_dst->set_type(model_volume_src->type());
model_volume_dst->set_transformation(model_volume_src->get_transformation());
}
assert(model_volume_dst->get_matrix().isApprox(model_volume_src->get_matrix()));
} else {
// The volume was not found in the old list. Create a new copy.
assert(model_volume_src->is_support_modifier());
model_object_dst.volumes.emplace_back(new ModelVolume(*model_volume_src));
model_object_dst.volumes.back()->set_model_object(&model_object_dst);
}
}
// Release the non-consumed old volumes (those were deleted from the new list).
for (ModelVolumeWithStatus &mv_with_status : old_volumes)
if (! mv_with_status.second)
delete mv_with_status.first;
}
static inline void model_volume_list_copy_configs(ModelObject &model_object_dst, const ModelObject &model_object_src, const ModelVolumeType type)
{
size_t i_src, i_dst;
for (i_src = 0, i_dst = 0; i_src < model_object_src.volumes.size() && i_dst < model_object_dst.volumes.size();) {
const ModelVolume &mv_src = *model_object_src.volumes[i_src];
ModelVolume &mv_dst = *model_object_dst.volumes[i_dst];
if (mv_src.type() != type) {
++ i_src;
continue;
}
if (mv_dst.type() != type) {
++ i_dst;
continue;
}
assert(mv_src.id() == mv_dst.id());
// Copy the ModelVolume data.
mv_dst.name = mv_src.name;
mv_dst.config.assign_config(mv_src.config);
assert(mv_dst.supported_facets.id() == mv_src.supported_facets.id());
mv_dst.supported_facets.assign(mv_src.supported_facets);
assert(mv_dst.seam_facets.id() == mv_src.seam_facets.id());
mv_dst.seam_facets.assign(mv_src.seam_facets);
assert(mv_dst.mmu_segmentation_facets.id() == mv_src.mmu_segmentation_facets.id());
mv_dst.mmu_segmentation_facets.assign(mv_src.mmu_segmentation_facets);
//FIXME what to do with the materials?
// mv_dst.m_material_id = mv_src.m_material_id;
++ i_src;
++ i_dst;
}
}
static inline void layer_height_ranges_copy_configs(t_layer_config_ranges &lr_dst, const t_layer_config_ranges &lr_src)
{
assert(lr_dst.size() == lr_src.size());
auto it_src = lr_src.cbegin();
for (auto &kvp_dst : lr_dst) {
const auto &kvp_src = *it_src ++;
assert(std::abs(kvp_dst.first.first - kvp_src.first.first ) <= EPSILON);
assert(std::abs(kvp_dst.first.second - kvp_src.first.second) <= EPSILON);
// Layer heights are allowed do differ in case the layer height table is being overriden by the smooth profile.
// assert(std::abs(kvp_dst.second.option("layer_height")->getFloat() - kvp_src.second.option("layer_height")->getFloat()) <= EPSILON);
kvp_dst.second = kvp_src.second;
}
}
static inline bool transform3d_lower(const Transform3d &lhs, const Transform3d &rhs)
{
typedef Transform3d::Scalar T;
const T *lv = lhs.data();
const T *rv = rhs.data();
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv) {
if (*lv < *rv)
return true;
else if (*lv > *rv)
return false;
}
return false;
}
static inline bool transform3d_equal(const Transform3d &lhs, const Transform3d &rhs)
{
typedef Transform3d::Scalar T;
const T *lv = lhs.data();
const T *rv = rhs.data();
for (size_t i = 0; i < 16; ++ i, ++ lv, ++ rv)
if (*lv != *rv)
return false;
return true;
}
struct PrintObjectTrafoAndInstances
{
Transform3d trafo;
PrintInstances instances;
bool operator<(const PrintObjectTrafoAndInstances &rhs) const { return transform3d_lower(this->trafo, rhs.trafo); }
};
// Generate a list of trafos and XY offsets for instances of a ModelObject
static std::vector<PrintObjectTrafoAndInstances> print_objects_from_model_object(const ModelObject &model_object)
{
std::set<PrintObjectTrafoAndInstances> trafos;
PrintObjectTrafoAndInstances trafo;
for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) {
trafo.trafo = model_instance->get_matrix();
auto shift = Point::new_scale(trafo.trafo.data()[12], trafo.trafo.data()[13]);
// Reset the XY axes of the transformation.
trafo.trafo.data()[12] = 0;
trafo.trafo.data()[13] = 0;
// Search or insert a trafo.
auto it = trafos.emplace(trafo).first;
const_cast<PrintObjectTrafoAndInstances&>(*it).instances.emplace_back(PrintInstance{ nullptr, model_instance, shift });
}
return std::vector<PrintObjectTrafoAndInstances>(trafos.begin(), trafos.end());
}
// Compare just the layer ranges and their layer heights, not the associated configs.
// Ignore the layer heights if check_layer_heights is false.
static bool layer_height_ranges_equal(const t_layer_config_ranges &lr1, const t_layer_config_ranges &lr2, bool check_layer_height)
{
if (lr1.size() != lr2.size())
return false;
auto it2 = lr2.begin();
for (const auto &kvp1 : lr1) {
const auto &kvp2 = *it2 ++;
if (std::abs(kvp1.first.first - kvp2.first.first ) > EPSILON ||
std::abs(kvp1.first.second - kvp2.first.second) > EPSILON ||
(check_layer_height && std::abs(kvp1.second.option("layer_height")->getFloat() - kvp2.second.option("layer_height")->getFloat()) > EPSILON))
return false;
}
return true;
}
// Returns true if va == vb when all CustomGCode items that are not ToolChangeCode are ignored.
static bool custom_per_printz_gcodes_tool_changes_differ(const std::vector<CustomGCode::Item> &va, const std::vector<CustomGCode::Item> &vb)
{
auto it_a = va.begin();
auto it_b = vb.begin();
while (it_a != va.end() || it_b != vb.end()) {
if (it_a != va.end() && it_a->type != CustomGCode::ToolChange) {
// Skip any CustomGCode items, which are not tool changes.
++ it_a;
continue;
}
if (it_b != vb.end() && it_b->type != CustomGCode::ToolChange) {
// Skip any CustomGCode items, which are not tool changes.
++ it_b;
continue;
}
if (it_a == va.end() || it_b == vb.end())
// va or vb contains more Tool Changes than the other.
return true;
assert(it_a->type == CustomGCode::ToolChange);
assert(it_b->type == CustomGCode::ToolChange);
if (*it_a != *it_b)
// The two Tool Changes differ.
return true;
++ it_a;
++ it_b;
}
// There is no change in custom Tool Changes.
return false;
}
// Collect changes to print config, account for overrides of extruder retract values by filament presets.
static t_config_option_keys print_config_diffs(
const PrintConfig &current_config,
const DynamicPrintConfig &new_full_config,
DynamicPrintConfig &filament_overrides)
{
const std::vector<std::string> &extruder_retract_keys = print_config_def.extruder_retract_keys();
const std::string filament_prefix = "filament_";
t_config_option_keys print_diff;
for (const t_config_option_key &opt_key : current_config.keys()) {
const ConfigOption *opt_old = current_config.option(opt_key);
assert(opt_old != nullptr);
const ConfigOption *opt_new = new_full_config.option(opt_key);
// assert(opt_new != nullptr);
if (opt_new == nullptr)
//FIXME This may happen when executing some test cases.
continue;
const ConfigOption *opt_new_filament = std::binary_search(extruder_retract_keys.begin(), extruder_retract_keys.end(), opt_key) ? new_full_config.option(filament_prefix + opt_key) : nullptr;
if (opt_new_filament != nullptr && ! opt_new_filament->is_nil()) {
// An extruder retract override is available at some of the filament presets.
if (*opt_old != *opt_new || opt_new->overriden_by(opt_new_filament)) {
auto opt_copy = opt_new->clone();
opt_copy->apply_override(opt_new_filament);
if (*opt_old == *opt_copy)
delete opt_copy;
else {
filament_overrides.set_key_value(opt_key, opt_copy);
print_diff.emplace_back(opt_key);
}
}
} else if (*opt_new != *opt_old)
print_diff.emplace_back(opt_key);
}
return print_diff;
}
// Prepare for storing of the full print config into new_full_config to be exported into the G-code and to be used by the PlaceholderParser.
static t_config_option_keys full_print_config_diffs(const DynamicPrintConfig &current_full_config, const DynamicPrintConfig &new_full_config)
{
t_config_option_keys full_config_diff;
for (const t_config_option_key &opt_key : new_full_config.keys()) {
const ConfigOption *opt_old = current_full_config.option(opt_key);
const ConfigOption *opt_new = new_full_config.option(opt_key);
if (opt_old == nullptr || *opt_new != *opt_old)
full_config_diff.emplace_back(opt_key);
}
return full_config_diff;
}
// Repository for solving partial overlaps of ModelObject::layer_config_ranges.
// Here the const DynamicPrintConfig* point to the config in ModelObject::layer_config_ranges.
class LayerRanges
{
public:
struct LayerRange {
t_layer_height_range layer_height_range;
// Config is owned by the associated ModelObject.
const DynamicPrintConfig* config { nullptr };
bool operator<(const LayerRange &rhs) const throw() { return this->layer_height_range < rhs.layer_height_range; }
};
LayerRanges() = default;
LayerRanges(const t_layer_config_ranges &in) { this->assign(in); }
// Convert input config ranges into continuous non-overlapping sorted vector of intervals and their configs.
void assign(const t_layer_config_ranges &in) {
m_ranges.clear();
m_ranges.reserve(in.size());
// Input ranges are sorted lexicographically. First range trims the other ranges.
coordf_t last_z = 0;
for (const std::pair<const t_layer_height_range, ModelConfig> &range : in)
if (range.first.second > last_z) {
coordf_t min_z = std::max(range.first.first, 0.);
if (min_z > last_z + EPSILON) {
m_ranges.push_back({ t_layer_height_range(last_z, min_z) });
last_z = min_z;
}
if (range.first.second > last_z + EPSILON) {
const DynamicPrintConfig *cfg = &range.second.get();
m_ranges.push_back({ t_layer_height_range(last_z, range.first.second), cfg });
last_z = range.first.second;
}
}
if (m_ranges.empty())
m_ranges.push_back({ t_layer_height_range(0, DBL_MAX) });
else if (m_ranges.back().config == nullptr)
m_ranges.back().layer_height_range.second = DBL_MAX;
else
m_ranges.push_back({ t_layer_height_range(m_ranges.back().layer_height_range.second, DBL_MAX) });
}
const DynamicPrintConfig* config(const t_layer_height_range &range) const {
auto it = std::lower_bound(m_ranges.begin(), m_ranges.end(), LayerRange{ { range.first - EPSILON, range.second - EPSILON } });
// #ys_FIXME_COLOR
// assert(it != m_ranges.end());
// assert(it == m_ranges.end() || std::abs(it->first.first - range.first ) < EPSILON);
// assert(it == m_ranges.end() || std::abs(it->first.second - range.second) < EPSILON);
if (it == m_ranges.end() ||
std::abs(it->layer_height_range.first - range.first) > EPSILON ||
std::abs(it->layer_height_range.second - range.second) > EPSILON )
return nullptr; // desired range doesn't found
return it == m_ranges.end() ? nullptr : it->config;
}
std::vector<LayerRange>::const_iterator begin() const { return m_ranges.cbegin(); }
std::vector<LayerRange>::const_iterator end () const { return m_ranges.cend(); }
size_t size () const { return m_ranges.size(); }
private:
// Layer ranges with their config overrides and list of volumes with their snug bounding boxes in a given layer range.
std::vector<LayerRange> m_ranges;
};
// To track Model / ModelObject updates between the front end and back end, including layer height ranges, their configs,
// and snug bounding boxes of ModelVolumes.
struct ModelObjectStatus {
enum Status {
Unknown,
Old,
New,
Moved,
Deleted,
};
enum class PrintObjectRegionsStatus {
Invalid,
Valid,
PartiallyValid,
};
ModelObjectStatus(ObjectID id, Status status = Unknown) : id(id), status(status) {}
~ModelObjectStatus() { if (print_object_regions) print_object_regions->ref_cnt_dec(); }
// Key of the set.
ObjectID id;
// Status of this ModelObject with id on apply().
Status status;
// PrintObjects to be generated for this ModelObject including their base transformation.
std::vector<PrintObjectTrafoAndInstances> print_instances;
// Regions shared by the associated PrintObjects.
PrintObjectRegions *print_object_regions { nullptr };
// Status of the above.
PrintObjectRegionsStatus print_object_regions_status { PrintObjectRegionsStatus::Invalid };
// Search by id.
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
};
struct ModelObjectStatusDB
{
void add(const ModelObject &model_object, const ModelObjectStatus::Status status) {
db.emplace(model_object.id(), status);
}
bool add_if_new(const ModelObject &model_object, const ModelObjectStatus::Status status) {
auto it = db.find(ModelObjectStatus(model_object.id()));
assert(it != db.end());
if (it == db.end()) {
db.emplace_hint(it, model_object.id(), status);
return true;
}
return false;
}
const ModelObjectStatus& get(const ModelObject &model_object) {
auto it = db.find(ModelObjectStatus(model_object.id()));
assert(it != db.end());
return *it;
}
const ModelObjectStatus& reuse(const ModelObject &model_object) {
const ModelObjectStatus &result = this->get(model_object);
assert(result.status != ModelObjectStatus::Deleted);
return result;
}
std::set<ModelObjectStatus> db;
};
struct PrintObjectStatus {
enum Status {
Unknown,
Deleted,
Reused,
New
};
PrintObjectStatus(PrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ObjectID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ObjectID id;
// Pointer to the old PrintObject
PrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
class PrintObjectStatusDB {
public:
using iterator = std::multiset<PrintObjectStatus>::iterator;
using const_iterator = std::multiset<PrintObjectStatus>::const_iterator;
PrintObjectStatusDB(const PrintObjectPtrs &print_objects) {
for (PrintObject *print_object : print_objects)
m_db.emplace(PrintObjectStatus(print_object));
}
struct iterator_range : std::pair<const_iterator, const_iterator>
{
using std::pair<const_iterator, const_iterator>::pair;
iterator_range(const std::pair<const_iterator, const_iterator> in) : std::pair<const_iterator, const_iterator>(in) {}
const_iterator begin() throw() { return this->first; }
const_iterator end() throw() { return this->second; }
};
iterator_range get_range(const ModelObject &model_object) const {
return m_db.equal_range(PrintObjectStatus(model_object.id()));
}
iterator_range get_range(const ModelObjectStatus &model_object_status) const {
return m_db.equal_range(PrintObjectStatus(model_object_status.id));
}
size_t count(const ModelObject &model_object) {
return m_db.count(PrintObjectStatus(model_object.id()));
}
std::multiset<PrintObjectStatus>::iterator begin() { return m_db.begin(); }
std::multiset<PrintObjectStatus>::iterator end() { return m_db.end(); }
void clear() {
m_db.clear();
}
private:
std::multiset<PrintObjectStatus> m_db;
};
static inline bool model_volume_solid_or_modifier(const ModelVolume &mv)
{
ModelVolumeType type = mv.type();
return type == ModelVolumeType::MODEL_PART || type == ModelVolumeType::NEGATIVE_VOLUME || type == ModelVolumeType::PARAMETER_MODIFIER;
}
static inline Transform3f trafo_for_bbox(const Transform3d &object_trafo, const Transform3d &volume_trafo)
{
Transform3d m = object_trafo * volume_trafo;
m.translation().x() = 0.;
m.translation().y() = 0.;
return m.cast<float>();
}
static inline bool trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(const Transform3d &t1, const Transform3d &t2)
{
if (std::abs(t1.translation().z() - t2.translation().z()) > EPSILON)
// One of the object is higher than the other above the build plate (or below the build plate).
return false;
Matrix3d m1 = t1.matrix().block<3, 3>(0, 0);
Matrix3d m2 = t2.matrix().block<3, 3>(0, 0);
Matrix3d m = m2.inverse() * m1;
Vec3d z = m.block<3, 1>(0, 2);
if (std::abs(z.x()) > EPSILON || std::abs(z.y()) > EPSILON || std::abs(z.z() - 1.) > EPSILON)
// Z direction or length changed.
return false;
// Z still points in the same direction and it has the same length.
Vec3d x = m.block<3, 1>(0, 0);
Vec3d y = m.block<3, 1>(0, 1);
if (std::abs(x.z()) > EPSILON || std::abs(y.z()) > EPSILON)
return false;
double lx2 = x.squaredNorm();
double ly2 = y.squaredNorm();
if (lx2 - 1. > EPSILON * EPSILON || ly2 - 1. > EPSILON * EPSILON)
return false;
// Verify whether the vectors x, y are still perpendicular.
double d = x.dot(y);
return std::abs(d * d) < EPSILON * lx2 * ly2;
}
static BoundingBoxf3 transformed_its_bbox2d(const indexed_triangle_set &its, const Transform3f &m, float offset)
{
BoundingBoxf3 bbox;
for (const stl_triangle_vertex_indices &tri : its.indices)
for (int i = 0; i < 3; ++ i)
bbox.merge((m * its.vertices[tri(i)]).cast<double>());
bbox.min.x() -= offset;
bbox.min.y() -= offset;
bbox.min.x() += offset;
bbox.min.y() += offset;
return bbox;
}
static void transformed_its_bboxes_in_z_ranges(
const indexed_triangle_set &its,
const Transform3f &m,
const std::vector<t_layer_height_range> &z_ranges,
std::vector<BoundingBoxf3> &bboxes,
const float offset)
{
bboxes.assign(z_ranges.size(), BoundingBoxf3());
for (const stl_triangle_vertex_indices &tri : its.indices) {
const Vec3f pts[3] = { m * its.vertices[tri(0)], m * its.vertices[tri(1)], m * its.vertices[tri(2)] };
for (size_t irange = 0; irange < z_ranges.size(); ++ irange) {
const t_layer_height_range &z_range = z_ranges[irange];
BoundingBoxf3 &bbox = bboxes[irange];
int iprev = 2;
for (int iedge = 0; iedge < 3; ++ iedge) {
const Vec3f *p1 = &pts[iprev];
const Vec3f *p2 = &pts[iedge];
// Sort the edge points by Z.
if (p1->z() > p2->z())
std::swap(p1, p2);
if (p2->z() <= z_range.first || p1->z() >= z_range.second) {
// Out of this slab.
} else if (p1->z() < z_range.first) {
if (p1->z() > z_range.second) {
// Two intersections.
float zspan = p2->z() - p1->z();
float t1 = (z_range.first - p1->z()) / zspan;
float t2 = (z_range.second - p1->z()) / zspan;
Vec2f p = to_2d(*p1);
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge((to_3d((p + v * t1).eval(), float(z_range.first))).cast<double>());
bbox.merge((to_3d((p + v * t2).eval(), float(z_range.second))).cast<double>());
} else {
// Single intersection with the lower limit.
float t = (z_range.first - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge((to_3d((to_2d(*p1) + v * t).eval(), float(z_range.first))).cast<double>());
bbox.merge(p2->cast<double>());
}
} else if (p2->z() > z_range.second) {
// Single intersection with the upper limit.
float t = (z_range.second - p1->z()) / (p2->z() - p1->z());
Vec2f v(p2->x() - p1->x(), p2->y() - p1->y());
bbox.merge((to_3d((to_2d(*p1) + v * t).eval(), float(z_range.second)).cast<double>()));
bbox.merge(p1->cast<double>());
} else {
// Both points are inside.
bbox.merge(p1->cast<double>());
bbox.merge(p2->cast<double>());
}
iprev = iedge;
}
}
}
for (BoundingBoxf3 &bbox : bboxes) {
bbox.min.x() -= offset;
bbox.min.y() -= offset;
bbox.min.x() += offset;
bbox.min.y() += offset;
}
}
// Last PrintObject for this print_object_regions has been fully invalidated (deleted).
// Keep print_object_regions, but delete those volumes, which were either removed from new_volumes, or which rotated or scaled, so they need
// their bounding boxes to be recalculated.
void print_objects_regions_invalidate_keep_some_volumes(PrintObjectRegions &print_object_regions, ModelVolumePtrs old_volumes, ModelVolumePtrs new_volumes)
{
assert(old_volumes.size() == print_object_regions.cached_volume_ids.size());
print_object_regions.all_regions.clear();
model_volumes_sort_by_id(old_volumes);
model_volumes_sort_by_id(new_volumes);
size_t last = 0;
size_t i_old = 0;
for (size_t i_new = 0; i_new < new_volumes.size(); ++ i_new) {
for (; i_old < old_volumes.size(); ++ i_old)
if (old_volumes[i_old]->id() >= new_volumes[i_new]->id())
break;
if (i_old == old_volumes.size())
break;
if (old_volumes[i_old]->id() == new_volumes[i_new]->id() && old_volumes[i_old]->get_matrix().isApprox(new_volumes[i_new]->get_matrix())) {
// Reuse the volume.
print_object_regions.cached_volume_ids[last ++] = print_object_regions.cached_volume_ids[i_old];
} else {
// Don't reuse the volume.
}
}
print_object_regions.cached_volume_ids.erase(print_object_regions.cached_volume_ids.begin() + last, print_object_regions.cached_volume_ids.end());
}
const BoundingBoxf3* find_volume_extents(const PrintObjectRegions::LayerRangeRegions &layer_range, const ModelVolume &volume)
{
auto it = lower_bound_by_predicate(layer_range.volumes.begin(), layer_range.volumes.end(), [&volume](const PrintObjectRegions::VolumeExtents &l){ return l.volume_id < volume.id(); });
return it != layer_range.volumes.end() && it->volume_id == volume.id() ? &it->bbox : nullptr;
}
PrintRegionConfig region_config_from_model_volume(const PrintRegionConfig &default_or_parent_region_config, const DynamicPrintConfig *layer_range_config, const ModelVolume &volume, size_t num_extruders);
void print_region_ref_inc(PrintRegion &r) { ++ r.m_ref_cnt; }
void print_region_ref_reset(PrintRegion &r) { r.m_ref_cnt = 0; }
int print_region_ref_cnt(const PrintRegion &r) { return r.m_ref_cnt; }
// Verify whether the PrintRegions of a PrintObject are still valid, possibly after updating the region configs.
// Before region configs are updated, callback_invalidate() is called to possibly stop background processing.
// Returns false if this object needs to be resliced because regions were merged or split.
bool verify_update_print_object_regions(
ModelVolumePtrs model_volumes,
const PrintRegionConfig &default_region_config,
size_t num_extruders,
const std::vector<unsigned int> &painting_extruders,
PrintObjectRegions &print_object_regions,
const std::function<void(const PrintRegionConfig&, const PrintRegionConfig&, const t_config_option_keys&)> &callback_invalidate)
{
// Sort by ModelVolume ID.
model_volumes_sort_by_id(model_volumes);
for (std::unique_ptr<PrintRegion> &region : print_object_regions.all_regions)
print_region_ref_reset(*region);
// Verify and / or update PrintRegions produced by ModelVolumes, layer range modifiers, modifier volumes.
for (PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges)
for (PrintObjectRegions::VolumeRegion &region : layer_range.volume_regions)
if (region.model_volume->is_model_part() || region.model_volume->is_modifier()) {
auto it_model_volume = lower_bound_by_predicate(model_volumes.begin(), model_volumes.end(), [&region](const ModelVolume *l){ return l->id() < region.model_volume->id(); });
assert(it_model_volume != model_volumes.end() && (*it_model_volume)->id() == region.model_volume->id());
PrintRegionConfig cfg = region.parent == -1 ?
region_config_from_model_volume(default_region_config, layer_range.config, **it_model_volume, num_extruders) :
region_config_from_model_volume(layer_range.volume_regions[region.parent].region->config(), nullptr, **it_model_volume, num_extruders);
if (cfg != region.region->config()) {
// Region configuration changed.
if (print_region_ref_cnt(*region.region) == 0) {
// Region is referenced for the first time. Just change its parameters.
// Stop the background process before assigning new configuration to the regions.
t_config_option_keys diff = region.region->config().diff(cfg);
callback_invalidate(region.region->config(), cfg, diff);
region.region->config_apply_only(cfg, diff, false);
} else {
// Region is referenced multiple times, thus the region is being split. We need to reslice.
return false;
}
}
print_region_ref_inc(*region.region);
}
// Verify and / or update PrintRegions produced by color painting.
for (const PrintObjectRegions::LayerRangeRegions &layer_range : print_object_regions.layer_ranges) {
size_t painted_region_idx = 0;
for (unsigned int painted_extruder_id : painting_extruders)
for (int parent_region_id = 0; parent_region_id < int(layer_range.volume_regions.size()); ++ parent_region_id) {
const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
const PrintObjectRegions::PaintedRegion &region = layer_range.painted_regions[painted_region_idx ++];
PrintRegionConfig cfg = parent_region.region->config();
cfg.perimeter_extruder.value = painted_extruder_id;
cfg.infill_extruder.value = painted_extruder_id;
if (cfg != region.region->config()) {
// Region configuration changed.
if (print_region_ref_cnt(*region.region) == 0) {
// Region is referenced for the first time. Just change its parameters.
// Stop the background process before assigning new configuration to the regions.
t_config_option_keys diff = region.region->config().diff(cfg);
callback_invalidate(region.region->config(), cfg, diff);
region.region->config_apply_only(cfg, diff, false);
} else {
// Region is referenced multiple times, thus the region is being split. We need to reslice.
return false;
}
}
print_region_ref_inc(*region.region);
}
}
// Lastly verify, whether some regions were not merged.
{
std::vector<const PrintRegion*> regions;
regions.reserve(print_object_regions.all_regions.size());
for (std::unique_ptr<PrintRegion> &region : print_object_regions.all_regions) {
assert(print_region_ref_cnt(*region) > 0);
regions.emplace_back(&(*region.get()));
}
std::sort(regions.begin(), regions.end(), [](const PrintRegion *l, const PrintRegion *r){ return l->config_hash() < r->config_hash(); });
for (size_t i = 0; i < regions.size(); ++ i) {
size_t hash = regions[i]->config_hash();
size_t j = i;
for (++ j; j < regions.size() && regions[j]->config_hash() == hash; ++ j)
if (regions[i]->config() == regions[j]->config()) {
// Regions were merged. We need to reslice.
return false;
}
}
}
return true;
}
// Update caches of volume bounding boxes.
void update_volume_bboxes(
std::vector<PrintObjectRegions::LayerRangeRegions> &layer_ranges,
std::vector<ObjectID> &cached_volume_ids,
ModelVolumePtrs model_volumes,
const Transform3d &object_trafo,
const float offset)
{
// output will be sorted by the order of model_volumes sorted by their ObjectIDs.
model_volumes_sort_by_id(model_volumes);
if (layer_ranges.size() == 1) {
PrintObjectRegions::LayerRangeRegions &layer_range = layer_ranges.front();
std::vector<PrintObjectRegions::VolumeExtents> volumes_old(std::move(layer_range.volumes));
layer_range.volumes.reserve(model_volumes.size());
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_solid_or_modifier(*model_volume)) {
if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) {
auto it = lower_bound_by_predicate(volumes_old.begin(), volumes_old.end(), [model_volume](PrintObjectRegions::VolumeExtents &l) { return l.volume_id < model_volume->id(); });
if (it != volumes_old.end() && it->volume_id == model_volume->id())
layer_range.volumes.emplace_back(*it);
} else
layer_range.volumes.push_back({ model_volume->id(),
transformed_its_bbox2d(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), offset) });
}
} else {
std::vector<std::vector<PrintObjectRegions::VolumeExtents>> volumes_old;
if (cached_volume_ids.empty())
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
layer_range.volumes.clear();
else {
volumes_old.reserve(layer_ranges.size());
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
volumes_old.emplace_back(std::move(layer_range.volumes));
}
std::vector<BoundingBoxf3> bboxes;
std::vector<t_layer_height_range> ranges;
ranges.reserve(layer_ranges.size());
for (const PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) {
t_layer_height_range r = layer_range.layer_height_range;
r.first -= EPSILON;
r.second += EPSILON;
ranges.emplace_back(r);
}
for (const ModelVolume *model_volume : model_volumes)
if (model_volume_solid_or_modifier(*model_volume)) {
if (std::binary_search(cached_volume_ids.begin(), cached_volume_ids.end(), model_volume->id())) {
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges) {
const auto &vold = volumes_old[&layer_range - layer_ranges.data()];
auto it = lower_bound_by_predicate(vold.begin(), vold.end(), [model_volume](const PrintObjectRegions::VolumeExtents &l) { return l.volume_id < model_volume->id(); });
if (it != vold.end() && it->volume_id == model_volume->id())
layer_range.volumes.emplace_back(*it);
}
} else {
transformed_its_bboxes_in_z_ranges(model_volume->mesh().its, trafo_for_bbox(object_trafo, model_volume->get_matrix(false)), ranges, bboxes, offset);
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges)
layer_range.volumes.push_back({ model_volume->id(), bboxes[&layer_range - layer_ranges.data()] });
}
}
}
cached_volume_ids.clear();
cached_volume_ids.reserve(model_volumes.size());
for (const ModelVolume *v : model_volumes)
cached_volume_ids.emplace_back(v->id());
}
// Either a fresh PrintObject, or PrintObject regions were invalidated (merged, split).
// Generate PrintRegions from scratch.
static PrintObjectRegions* generate_print_object_regions(
PrintObjectRegions *print_object_regions_old,
const ModelVolumePtrs &model_volumes,
const LayerRanges &model_layer_ranges,
const PrintRegionConfig &default_region_config,
const Transform3d &trafo,
size_t num_extruders,
const float xy_size_compensation,
const std::vector<unsigned int> &painting_extruders)
{
// Reuse the old object or generate a new one.
auto out = print_object_regions_old ? std::unique_ptr<PrintObjectRegions>(print_object_regions_old) : std::make_unique<PrintObjectRegions>();
auto &all_regions = out->all_regions;
auto &layer_ranges_regions = out->layer_ranges;
all_regions.clear();
bool reuse_old = print_object_regions_old && !print_object_regions_old->layer_ranges.empty();
if (reuse_old) {
// Reuse old bounding boxes of some ModelVolumes and their ranges.
// Verify that the old ranges match the new ranges.
assert(model_layer_ranges.size() == layer_ranges_regions.size());
for (const auto &range : model_layer_ranges) {
PrintObjectRegions::LayerRangeRegions &r = layer_ranges_regions[&range - &*model_layer_ranges.begin()];
assert(range.layer_height_range == r.layer_height_range);
// If model::assign_copy() is called, layer_ranges_regions is copied thus the pointers to configs are lost.
r.config = range.config;
r.volume_regions.clear();
r.painted_regions.clear();
}
} else {
out->trafo_bboxes = trafo;
layer_ranges_regions.reserve(model_layer_ranges.size());
for (const auto &range : model_layer_ranges)
layer_ranges_regions.push_back({ range.layer_height_range, range.config });
}
update_volume_bboxes(layer_ranges_regions, out->cached_volume_ids, model_volumes, out->trafo_bboxes, std::max(0.f, xy_size_compensation));
std::vector<PrintRegion*> region_set;
auto get_create_region = [&region_set, &all_regions](PrintRegionConfig &&config) -> PrintRegion* {
size_t hash = config.hash();
auto it = Slic3r::lower_bound_by_predicate(region_set.begin(), region_set.end(), [&config, hash](const PrintRegion* l) {
return l->config_hash() < hash || (l->config_hash() == hash && l->config() < config); });
if (it != region_set.end() && (*it)->config_hash() == hash && (*it)->config() == config)
return *it;
// Insert into a sorted array, it has O(n) complexity, but the calling algorithm has an O(n^2*log(n)) complexity anyways.
all_regions.emplace_back(std::make_unique<PrintRegion>(std::move(config), hash, int(all_regions.size())));
PrintRegion *region = all_regions.back().get();
region_set.emplace(it, region);
return region;
};
// Chain the regions in the order they are stored in the volumes list.
for (int volume_id = 0; volume_id < int(model_volumes.size()); ++ volume_id) {
const ModelVolume &volume = *model_volumes[volume_id];
if (model_volume_solid_or_modifier(volume)) {
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions)
if (const BoundingBoxf3 *bbox = find_volume_extents(layer_range, volume); bbox) {
if (volume.is_model_part()) {
// Add a model volume, assign an existing region or generate a new one.
layer_range.volume_regions.push_back({
&volume, -1,
get_create_region(region_config_from_model_volume(default_region_config, layer_range.config, volume, num_extruders)),
bbox
});
} else if (volume.is_negative_volume()) {
// Add a negative (subtractor) volume. Such volume has neither region nor parent volume assigned.
layer_range.volume_regions.push_back({ &volume, -1, nullptr, bbox });
} else {
assert(volume.is_modifier());
// Modifiers may be chained one over the other. Check for overlap, merge DynamicPrintConfigs.
for (int parent_region_id = int(layer_range.volume_regions.size()) - 1; parent_region_id >= 0; -- parent_region_id)
if (const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
parent_region.model_volume->is_model_part() || parent_region.model_volume->is_modifier()) {
const BoundingBoxf3 *parent_bbox = find_volume_extents(layer_range, *parent_region.model_volume);
assert(parent_bbox != nullptr);
if (parent_bbox->overlap(*bbox))
layer_range.volume_regions.push_back({
&volume, parent_region_id,
get_create_region(region_config_from_model_volume(parent_region.region->config(), nullptr, volume, num_extruders)),
bbox
});
}
}
}
}
}
// Finally add painting regions.
for (PrintObjectRegions::LayerRangeRegions &layer_range : layer_ranges_regions)
for (unsigned int painted_extruder_id : painting_extruders)
for (int parent_region_id = 0; parent_region_id < int(layer_range.volume_regions.size()); ++ parent_region_id)
if (const PrintObjectRegions::VolumeRegion &parent_region = layer_range.volume_regions[parent_region_id];
parent_region.model_volume->is_model_part() || parent_region.model_volume->is_modifier()) {
PrintRegionConfig cfg = parent_region.region->config();
cfg.perimeter_extruder.value = painted_extruder_id;
cfg.infill_extruder.value = painted_extruder_id;
layer_range.painted_regions.push_back({ painted_extruder_id, parent_region_id, get_create_region(std::move(cfg))});
}
return out.release();
}
Print::ApplyStatus Print::apply(const Model &model, DynamicPrintConfig new_full_config)
{
#ifdef _DEBUG
check_model_ids_validity(model);
#endif /* _DEBUG */
// Normalize the config.
new_full_config.option("print_settings_id", true);
new_full_config.option("filament_settings_id", true);
new_full_config.option("printer_settings_id", true);
new_full_config.option("physical_printer_settings_id", true);
new_full_config.normalize_fdm();
// Find modified keys of the various configs. Resolve overrides extruder retract values by filament profiles.
DynamicPrintConfig filament_overrides;
t_config_option_keys print_diff = print_config_diffs(m_config, new_full_config, filament_overrides);
t_config_option_keys full_config_diff = full_print_config_diffs(m_full_print_config, new_full_config);
// Collect changes to object and region configs.
t_config_option_keys object_diff = m_default_object_config.diff(new_full_config);
t_config_option_keys region_diff = m_default_region_config.diff(new_full_config);
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
auto update_apply_status = [&apply_status](bool invalidated)
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
if (! (print_diff.empty() && object_diff.empty() && region_diff.empty()))
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
// The following call may stop the background processing.
if (! print_diff.empty())
update_apply_status(this->invalidate_state_by_config_options(new_full_config, print_diff));
// Apply variables to placeholder parser. The placeholder parser is used by G-code export,
// which should be stopped if print_diff is not empty.
size_t num_extruders = m_config.nozzle_diameter.size();
bool num_extruders_changed = false;
if (! full_config_diff.empty()) {
update_apply_status(this->invalidate_step(psGCodeExport));
// Set the profile aliases for the PrintBase::output_filename()
m_placeholder_parser.set("print_preset", new_full_config.option("print_settings_id")->clone());
m_placeholder_parser.set("filament_preset", new_full_config.option("filament_settings_id")->clone());
m_placeholder_parser.set("printer_preset", new_full_config.option("printer_settings_id")->clone());
m_placeholder_parser.set("physical_printer_preset", new_full_config.option("physical_printer_settings_id")->clone());
// We want the filament overrides to be applied over their respective extruder parameters by the PlaceholderParser.
// see "Placeholders do not respect filament overrides." GH issue #3649
m_placeholder_parser.apply_config(filament_overrides);
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_config.apply_only(new_full_config, print_diff, true);
//FIXME use move semantics once ConfigBase supports it.
m_config.apply(filament_overrides);
// Handle changes to object config defaults
m_default_object_config.apply_only(new_full_config, object_diff, true);
// Handle changes to regions config defaults
m_default_region_config.apply_only(new_full_config, region_diff, true);
m_full_print_config = std::move(new_full_config);
if (num_extruders != m_config.nozzle_diameter.size()) {
num_extruders = m_config.nozzle_diameter.size();
num_extruders_changed = true;
}
}
ModelObjectStatusDB model_object_status_db;
// 1) Synchronize model objects.
bool print_regions_reshuffled = false;
if (model.id() != m_model.id()) {
// Kill everything, initialize from scratch.
// Stop background processing.
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
for (PrintObject *object : m_objects) {
model_object_status_db.add(*object->model_object(), ModelObjectStatus::Deleted);
update_apply_status(object->invalidate_all_steps());
delete object;
}
m_objects.clear();
print_regions_reshuffled = true;
m_model.assign_copy(model);
for (const ModelObject *model_object : m_model.objects)
model_object_status_db.add(*model_object, ModelObjectStatus::New);
} else {
if (m_model.custom_gcode_per_print_z != model.custom_gcode_per_print_z) {
update_apply_status(num_extruders_changed ||
// Tool change G-codes are applied as color changes for a single extruder printer, no need to invalidate tool ordering.
//FIXME The tool ordering may be invalidated unnecessarily if the custom_gcode_per_print_z.mode is not applicable
// to the active print / model state, and then it is reset, so it is being applicable, but empty, thus the effect is the same.
(num_extruders > 1 && custom_per_printz_gcodes_tool_changes_differ(m_model.custom_gcode_per_print_z.gcodes, model.custom_gcode_per_print_z.gcodes)) ?
// The Tool Ordering and the Wipe Tower are no more valid.
this->invalidate_steps({ psWipeTower, psGCodeExport }) :
// There is no change in Tool Changes stored in custom_gcode_per_print_z, therefore there is no need to update Tool Ordering.
this->invalidate_step(psGCodeExport));
m_model.custom_gcode_per_print_z = model.custom_gcode_per_print_z;
}
if (model_object_list_equal(m_model, model)) {
// The object list did not change.
for (const ModelObject *model_object : m_model.objects)
model_object_status_db.add(*model_object, ModelObjectStatus::Old);
} else if (model_object_list_extended(m_model, model)) {
// Add new objects. Their volumes and configs will be synchronized later.
update_apply_status(this->invalidate_step(psGCodeExport));
for (const ModelObject *model_object : m_model.objects)
model_object_status_db.add(*model_object, ModelObjectStatus::Old);
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
model_object_status_db.add(*model.objects[i], ModelObjectStatus::New);
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
m_model.objects.back()->set_model(&m_model);
}
} else {
// Reorder the objects, add new objects.
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
this->call_cancel_callback();
update_apply_status(this->invalidate_step(psGCodeExport));
// Second create a new list of objects.
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
m_model.objects.clear();
m_model.objects.reserve(model.objects.size());
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
for (const ModelObject *mobj : model.objects) {
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
// New ModelObject added.
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
m_model.objects.back()->set_model(&m_model);
model_object_status_db.add(*mobj, ModelObjectStatus::New);
} else {
// Existing ModelObject re-added (possibly moved in the list).
m_model.objects.emplace_back(*it);
model_object_status_db.add(*mobj, ModelObjectStatus::Moved);
}
}
bool deleted_any = false;
for (ModelObject *&model_object : model_objects_old)
if (model_object_status_db.add_if_new(*model_object, ModelObjectStatus::Deleted))
deleted_any = true;
else
// Do not delete this ModelObject instance.
model_object = nullptr;
if (deleted_any) {
// Delete PrintObjects of the deleted ModelObjects.
PrintObjectPtrs print_objects_old = std::move(m_objects);
m_objects.clear();
m_objects.reserve(print_objects_old.size());
for (PrintObject *print_object : print_objects_old) {
const ModelObjectStatus &status = model_object_status_db.get(*print_object->model_object());
if (status.status == ModelObjectStatus::Deleted) {
update_apply_status(print_object->invalidate_all_steps());
delete print_object;
} else
m_objects.emplace_back(print_object);
}
for (ModelObject *model_object : model_objects_old)
delete model_object;
print_regions_reshuffled = true;
}
}
}
// 2) Map print objects including their transformation matrices.
PrintObjectStatusDB print_object_status_db(m_objects);
// 3) Synchronize ModelObjects & PrintObjects.
const std::initializer_list<ModelVolumeType> solid_or_modifier_types { ModelVolumeType::MODEL_PART, ModelVolumeType::NEGATIVE_VOLUME, ModelVolumeType::PARAMETER_MODIFIER };
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(model_object));
const ModelObject &model_object_new = *model.objects[idx_model_object];
if (model_object_status.status == ModelObjectStatus::New)
// PrintObject instances will be added in the next loop.
continue;
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(model_object_status.status == ModelObjectStatus::Old || model_object_status.status == ModelObjectStatus::Moved);
// Check whether a model part volume was added or removed, their transformations or order changed.
// Only volume IDs, volume types, transformation matrices and their order are checked, configuration and other parameters are NOT checked.
bool solid_or_modifier_differ = model_volume_list_changed(model_object, model_object_new, solid_or_modifier_types);
bool supports_differ = model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_BLOCKER) ||
model_volume_list_changed(model_object, model_object_new, ModelVolumeType::SUPPORT_ENFORCER);
bool layer_height_ranges_differ = ! layer_height_ranges_equal(model_object.layer_config_ranges, model_object_new.layer_config_ranges, model_object_new.layer_height_profile.empty());
bool model_origin_translation_differ = model_object.origin_translation != model_object_new.origin_translation;
auto print_objects_range = print_object_status_db.get_range(model_object);
assert(print_objects_range.begin() != print_objects_range.end());
// All PrintObjects in print_objects_range shall point to the same prints_objects_regions
model_object_status.print_object_regions = print_objects_range.begin()->print_object->m_shared_regions;
model_object_status.print_object_regions->ref_cnt_inc();
if (solid_or_modifier_differ || model_origin_translation_differ || layer_height_ranges_differ ||
! model_object.layer_height_profile.timestamp_matches(model_object_new.layer_height_profile)) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
model_object_status.print_object_regions_status = model_origin_translation_differ || layer_height_ranges_differ ?
// Drop print_objects_regions.
ModelObjectStatus::PrintObjectRegionsStatus::Invalid :
// Reuse bounding boxes of print_objects_regions for ModelVolumes with unmodified transformation.
ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid;
for (const PrintObjectStatus &print_object_status : print_objects_range) {
update_apply_status(print_object_status.print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(print_object_status).status = PrintObjectStatus::Deleted;
}
if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid)
// Drop everything from PrintObjectRegions but those VolumeExtents (of their particular ModelVolumes) that are still valid.
print_objects_regions_invalidate_keep_some_volumes(*model_object_status.print_object_regions, model_object.volumes, model_object_new.volumes);
else
model_object_status.print_object_regions->clear();
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else {
model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::Valid;
if (supports_differ || model_custom_supports_data_changed(model_object, model_object_new)) {
// First stop background processing before shuffling or deleting the ModelVolumes in the ModelObject's list.
if (supports_differ) {
this->call_cancel_callback();
update_apply_status(false);
}
// Invalidate just the supports step.
for (const PrintObjectStatus &print_object_status : print_objects_range)
update_apply_status(print_object_status.print_object->invalidate_step(posSupportMaterial));
if (supports_differ) {
// Copy just the support volumes.
model_volume_list_update_supports(model_object, model_object_new);
}
} else if (model_custom_seam_data_changed(model_object, model_object_new)) {
update_apply_status(this->invalidate_step(psGCodeExport));
}
}
if (! solid_or_modifier_differ) {
// Synchronize Object's config.
bool object_config_changed = ! model_object.config.timestamp_matches(model_object_new.config);
if (object_config_changed)
model_object.config.assign_config(model_object_new.config);
if (! object_diff.empty() || object_config_changed || num_extruders_changed) {
PrintObjectConfig new_config = PrintObject::object_config_from_model_object(m_default_object_config, model_object, num_extruders);
for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(model_object)) {
t_config_option_keys diff = print_object_status.print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(print_object_status.print_object->invalidate_state_by_config_options(print_object_status.print_object->config(), new_config, diff));
print_object_status.print_object->config_apply_only(new_config, diff, true);
}
}
}
// Synchronize (just copy) the remaining data of ModelVolumes (name, config, custom supports data).
//FIXME What to do with m_material_id?
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::MODEL_PART);
model_volume_list_copy_configs(model_object /* dst */, model_object_new /* src */, ModelVolumeType::PARAMETER_MODIFIER);
layer_height_ranges_copy_configs(model_object.layer_config_ranges /* dst */, model_object_new.layer_config_ranges /* src */);
// Copy the ModelObject name, input_file and instances. The instances will be compared against PrintObject instances in the next step.
model_object.name = model_object_new.name;
model_object.input_file = model_object_new.input_file;
// Only refresh ModelInstances if there is any change.
if (model_object.instances.size() != model_object_new.instances.size() ||
! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(), [](auto l, auto r){ return l->id() == r->id(); })) {
// G-code generator accesses model_object.instances to generate sequential print ordering matching the Plater object list.
update_apply_status(this->invalidate_step(psGCodeExport));
model_object.clear_instances();
model_object.instances.reserve(model_object_new.instances.size());
for (const ModelInstance *model_instance : model_object_new.instances) {
model_object.instances.emplace_back(new ModelInstance(*model_instance));
model_object.instances.back()->set_model_object(&model_object);
}
} else if (! std::equal(model_object.instances.begin(), model_object.instances.end(), model_object_new.instances.begin(),
[](auto l, auto r){ return l->print_volume_state == r->print_volume_state && l->printable == r->printable &&
l->get_transformation().get_matrix().isApprox(r->get_transformation().get_matrix()); })) {
// If some of the instances changed, the bounding box of the updated ModelObject is likely no more valid.
// This is safe as the ModelObject's bounding box is only accessed from this function, which is called from the main thread only.
model_object.invalidate_bounding_box();
// Synchronize the content of instances.
auto new_instance = model_object_new.instances.begin();
for (auto old_instance = model_object.instances.begin(); old_instance != model_object.instances.end(); ++ old_instance, ++ new_instance) {
(*old_instance)->set_transformation((*new_instance)->get_transformation());
(*old_instance)->print_volume_state = (*new_instance)->print_volume_state;
(*old_instance)->printable = (*new_instance)->printable;
}
}
}
}
// 4) Generate PrintObjects from ModelObjects and their instances.
{
PrintObjectPtrs print_objects_new;
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
bool new_objects = false;
// Walk over all new model objects and check, whether there are matching PrintObjects.
for (ModelObject *model_object : m_model.objects) {
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(*model_object));
model_object_status.print_instances = print_objects_from_model_object(*model_object);
std::vector<const PrintObjectStatus*> old;
old.reserve(print_object_status_db.count(*model_object));
for (const PrintObjectStatus &print_object_status : print_object_status_db.get_range(*model_object))
if (print_object_status.status != PrintObjectStatus::Deleted)
old.emplace_back(&print_object_status);
// Generate a list of trafos and XY offsets for instances of a ModelObject
// Producing the config for PrintObject on demand, caching it at print_object_last.
const PrintObject *print_object_last = nullptr;
auto print_object_apply_config = [this, &print_object_last, model_object, num_extruders](PrintObject *print_object) {
print_object->config_apply(print_object_last ?
print_object_last->config() :
PrintObject::object_config_from_model_object(m_default_object_config, *model_object, num_extruders));
print_object_last = print_object;
};
if (old.empty()) {
// Simple case, just generate new instances.
for (PrintObjectTrafoAndInstances &print_instances : model_object_status.print_instances) {
PrintObject *print_object = new PrintObject(this, model_object, print_instances.trafo, std::move(print_instances.instances));
print_object_apply_config(print_object);
print_objects_new.emplace_back(print_object);
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
new_objects = true;
}
continue;
}
// Complex case, try to merge the two lists.
// Sort the old lexicographically by their trafos.
std::sort(old.begin(), old.end(), [](const PrintObjectStatus *lhs, const PrintObjectStatus *rhs){ return transform3d_lower(lhs->trafo, rhs->trafo); });
// Merge the old / new lists.
auto it_old = old.begin();
for (PrintObjectTrafoAndInstances &new_instances : model_object_status.print_instances) {
for (; it_old != old.end() && transform3d_lower((*it_old)->trafo, new_instances.trafo); ++ it_old);
if (it_old == old.end() || ! transform3d_equal((*it_old)->trafo, new_instances.trafo)) {
// This is a new instance (or a set of instances with the same trafo). Just add it.
PrintObject *print_object = new PrintObject(this, model_object, new_instances.trafo, std::move(new_instances.instances));
print_object_apply_config(print_object);
print_objects_new.emplace_back(print_object);
// print_object_status.emplace(PrintObjectStatus(print_object, PrintObjectStatus::New));
new_objects = true;
if (it_old != old.end())
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Deleted;
} else {
// The PrintObject already exists and the copies differ.
PrintBase::ApplyStatus status = (*it_old)->print_object->set_instances(std::move(new_instances.instances));
if (status != PrintBase::APPLY_STATUS_UNCHANGED)
update_apply_status(status == PrintBase::APPLY_STATUS_INVALIDATED);
print_objects_new.emplace_back((*it_old)->print_object);
const_cast<PrintObjectStatus*>(*it_old)->status = PrintObjectStatus::Reused;
}
}
}
if (m_objects != print_objects_new) {
this->call_cancel_callback();
update_apply_status(this->invalidate_all_steps());
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
bool deleted_objects = false;
for (const PrintObjectStatus &pos : print_object_status_db)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
deleted_objects = true;
}
if (new_objects || deleted_objects)
update_apply_status(this->invalidate_steps({ psSkirt, psBrim, psWipeTower, psGCodeExport }));
if (new_objects)
update_apply_status(false);
print_regions_reshuffled = true;
}
print_object_status_db.clear();
}
// All regions now have distinct settings.
// Check whether applying the new region config defaults we would get different regions,
// update regions or create regions from scratch.
const std::vector<unsigned int> painting_extruders;
for (auto it_print_object = m_objects.begin(); it_print_object != m_objects.end();) {
// Find the range of PrintObjects sharing the same associated ModelObject.
auto it_print_object_end = it_print_object;
PrintObject &print_object = *(*it_print_object);
const ModelObject &model_object = *print_object.model_object();
ModelObjectStatus &model_object_status = const_cast<ModelObjectStatus&>(model_object_status_db.reuse(model_object));
PrintObjectRegions *print_object_regions = model_object_status.print_object_regions;
for (++ it_print_object_end; it_print_object_end != m_objects.end() && (*it_print_object)->model_object() == (*it_print_object_end)->model_object(); ++ it_print_object_end)
assert((*it_print_object_end)->m_shared_regions == nullptr || (*it_print_object_end)->m_shared_regions == print_object_regions);
if (print_object_regions == nullptr) {
print_object_regions = new PrintObjectRegions{};
model_object_status.print_object_regions = print_object_regions;
print_object_regions->ref_cnt_inc();
}
if (model_object_status.print_object_regions_status == ModelObjectStatus::PrintObjectRegionsStatus::Valid) {
// Verify that the trafo for regions & volume bounding boxes thus for regions is still applicable.
if (print_object_regions && ! trafos_differ_in_rotation_by_z_and_mirroring_by_xy_only(print_object_regions->trafo_bboxes, model_object_status.print_instances.front().trafo))
print_object_regions->clear();
if (print_object_regions &&
verify_update_print_object_regions(
print_object.model_object()->volumes,
m_default_region_config,
num_extruders,
painting_extruders,
*print_object_regions,
[&print_object, &update_apply_status](const PrintRegionConfig &old_config, const PrintRegionConfig &new_config, const t_config_option_keys &diff_keys) {
update_apply_status(print_object.invalidate_state_by_config_options(old_config, new_config, diff_keys));
})) {
// Regions are valid, just keep them.
} else {
// Regions were reshuffled.
for (auto it = it_print_object; it != it_print_object_end; ++ it)
if ((*it)->m_shared_regions != nullptr) {
assert(print_object_regions == (*it)->m_shared_regions);
update_apply_status((*it)->invalidate_all_steps());
}
// At least reuse layer ranges and bounding boxes of ModelVolumes.
model_object_status.print_object_regions_status = ModelObjectStatus::PrintObjectRegionsStatus::PartiallyValid;
print_regions_reshuffled = true;
}
}
if (print_object_regions == nullptr || model_object_status.print_object_regions_status != ModelObjectStatus::PrintObjectRegionsStatus::Valid) {
// Layer ranges with their associated configurations. Remove overlaps between the ranges
// and create the regions from scratch.
print_object_regions = generate_print_object_regions(
print_object_regions,
print_object.model_object()->volumes,
LayerRanges(print_object.model_object()->layer_config_ranges),
m_default_region_config,
model_object_status.print_instances.front().trafo,
num_extruders,
float(print_object.config().xy_size_compensation.value),
painting_extruders);
}
for (auto it = it_print_object; it != it_print_object_end; ++it)
if ((*it)->m_shared_regions)
assert((*it)->m_shared_regions == print_object_regions);
else {
(*it)->m_shared_regions = print_object_regions;
print_object_regions->ref_cnt_inc();
}
it_print_object = it_print_object_end;
}
if (print_regions_reshuffled) {
// Update Print::m_print_regions from objects.
struct cmp { bool operator() (const PrintRegion *l, const PrintRegion *r) const { return l->config_hash() == r->config_hash() && l->config() == r->config(); } };
std::set<const PrintRegion*, cmp> region_set;
m_print_regions.clear();
PrintObjectRegions *print_object_regions = nullptr;
for (PrintObject *print_object : m_objects)
if (print_object_regions != print_object->m_shared_regions) {
print_object_regions = print_object->m_shared_regions;
for (std::unique_ptr<Slic3r::PrintRegion> &print_region : print_object_regions->all_regions)
if (auto it = region_set.find(print_region.get()); it == region_set.end()) {
int print_region_id = int(m_print_regions.size());
m_print_regions.emplace_back(print_region.get());
print_region->m_print_region_id = print_region_id;
} else {
print_region->m_print_region_id = (*it)->print_region_id();
}
}
}
// Update SlicingParameters for each object where the SlicingParameters is not valid.
// If it is not valid, then it is ensured that PrintObject.m_slicing_params is not in use
// (posSlicing and posSupportMaterial was invalidated).
for (PrintObject *object : m_objects)
object->update_slicing_parameters();
#ifdef _DEBUG
check_model_ids_equal(m_model, model);
#endif /* _DEBUG */
return static_cast<ApplyStatus>(apply_status);
}
} // namespace Slic3r