711 lines
26 KiB
C++
711 lines
26 KiB
C++
#include <catch2/catch.hpp>
|
|
|
|
#include "libslic3r/Point.hpp"
|
|
#include "libslic3r/BoundingBox.hpp"
|
|
#include "libslic3r/Polygon.hpp"
|
|
#include "libslic3r/Polyline.hpp"
|
|
#include "libslic3r/Line.hpp"
|
|
#include "libslic3r/Geometry.hpp"
|
|
#include "libslic3r/Geometry/Circle.hpp"
|
|
#include "libslic3r/Geometry/ConvexHull.hpp"
|
|
#include "libslic3r/ClipperUtils.hpp"
|
|
#include "libslic3r/ShortestPath.hpp"
|
|
|
|
//#include <random>
|
|
//#include "libnest2d/tools/benchmark.h"
|
|
#include "libslic3r/SVG.hpp"
|
|
|
|
#include "../libnest2d/printer_parts.hpp"
|
|
|
|
#include <unordered_set>
|
|
|
|
using namespace Slic3r;
|
|
|
|
TEST_CASE("Line::parallel_to", "[Geometry]"){
|
|
Line l{ { 100000, 0 }, { 0, 0 } };
|
|
Line l2{ { 200000, 0 }, { 0, 0 } };
|
|
REQUIRE(l.parallel_to(l));
|
|
REQUIRE(l.parallel_to(l2));
|
|
|
|
Line l3(l2);
|
|
l3.rotate(0.9 * EPSILON, { 0, 0 });
|
|
REQUIRE(l.parallel_to(l3));
|
|
|
|
Line l4(l2);
|
|
l4.rotate(1.1 * EPSILON, { 0, 0 });
|
|
REQUIRE(! l.parallel_to(l4));
|
|
|
|
// The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
|
|
Line l5{ { 20000, 0 }, { 0, 0 } };
|
|
l5.rotate(1.1 * EPSILON, { 0, 0 });
|
|
REQUIRE(l.parallel_to(l5));
|
|
|
|
l.rotate(1., { 0, 0 });
|
|
Point offset{ 342876, 97636249 };
|
|
l.translate(offset);
|
|
l3.rotate(1., { 0, 0 });
|
|
l3.translate(offset);
|
|
l4.rotate(1., { 0, 0 });
|
|
l4.translate(offset);
|
|
REQUIRE(l.parallel_to(l3));
|
|
REQUIRE(!l.parallel_to(l4));
|
|
}
|
|
|
|
TEST_CASE("Line::perpendicular_to", "[Geometry]") {
|
|
Line l{ { 100000, 0 }, { 0, 0 } };
|
|
Line l2{ { 0, 200000 }, { 0, 0 } };
|
|
REQUIRE(! l.perpendicular_to(l));
|
|
REQUIRE(l.perpendicular_to(l2));
|
|
|
|
Line l3(l2);
|
|
l3.rotate(0.9 * EPSILON, { 0, 0 });
|
|
REQUIRE(l.perpendicular_to(l3));
|
|
|
|
Line l4(l2);
|
|
l4.rotate(1.1 * EPSILON, { 0, 0 });
|
|
REQUIRE(! l.perpendicular_to(l4));
|
|
|
|
// The angle epsilon is so low that vectors shorter than 100um rotated by epsilon radians are not rotated at all.
|
|
Line l5{ { 0, 20000 }, { 0, 0 } };
|
|
l5.rotate(1.1 * EPSILON, { 0, 0 });
|
|
REQUIRE(l.perpendicular_to(l5));
|
|
|
|
l.rotate(1., { 0, 0 });
|
|
Point offset{ 342876, 97636249 };
|
|
l.translate(offset);
|
|
l3.rotate(1., { 0, 0 });
|
|
l3.translate(offset);
|
|
l4.rotate(1., { 0, 0 });
|
|
l4.translate(offset);
|
|
REQUIRE(l.perpendicular_to(l3));
|
|
REQUIRE(! l.perpendicular_to(l4));
|
|
}
|
|
|
|
TEST_CASE("Polygon::contains works properly", "[Geometry]"){
|
|
// this test was failing on Windows (GH #1950)
|
|
Slic3r::Polygon polygon(std::vector<Point>({
|
|
Point(207802834,-57084522),
|
|
Point(196528149,-37556190),
|
|
Point(173626821,-25420928),
|
|
Point(171285751,-21366123),
|
|
Point(118673592,-21366123),
|
|
Point(116332562,-25420928),
|
|
Point(93431208,-37556191),
|
|
Point(82156517,-57084523),
|
|
Point(129714478,-84542120),
|
|
Point(160244873,-84542120)
|
|
}));
|
|
Point point(95706562, -57294774);
|
|
REQUIRE(polygon.contains(point));
|
|
}
|
|
|
|
SCENARIO("Intersections of line segments", "[Geometry]"){
|
|
GIVEN("Integer coordinates"){
|
|
Line line1(Point(5,15),Point(30,15));
|
|
Line line2(Point(10,20), Point(10,10));
|
|
THEN("The intersection is valid"){
|
|
Point point;
|
|
line1.intersection(line2,&point);
|
|
REQUIRE(Point(10,15) == point);
|
|
}
|
|
}
|
|
|
|
GIVEN("Scaled coordinates"){
|
|
Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
|
|
Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
|
|
THEN("There is still an intersection"){
|
|
Point point;
|
|
REQUIRE(line1.intersection(line2,&point));
|
|
}
|
|
}
|
|
}
|
|
|
|
SCENARIO("polygon_is_convex works") {
|
|
GIVEN("A square of dimension 10") {
|
|
WHEN("Polygon is convex clockwise") {
|
|
Polygon cw_square { { {0, 0}, {0,10}, {10,10}, {10,0} } };
|
|
THEN("it is not convex") {
|
|
REQUIRE(! polygon_is_convex(cw_square));
|
|
}
|
|
}
|
|
WHEN("Polygon is convex counter-clockwise") {
|
|
Polygon ccw_square { { {0, 0}, {10,0}, {10,10}, {0,10} } };
|
|
THEN("it is convex") {
|
|
REQUIRE(polygon_is_convex(ccw_square));
|
|
}
|
|
}
|
|
}
|
|
GIVEN("A concave polygon") {
|
|
Polygon concave = { {0,0}, {10,0}, {10,10}, {0,10}, {0,6}, {4,6}, {4,4}, {0,4} };
|
|
THEN("It is not convex") {
|
|
REQUIRE(! polygon_is_convex(concave));
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
|
|
Slic3r::Polyline polyline;
|
|
polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)});
|
|
REQUIRE(polyline.lines().at(0).a == Point(0,0));
|
|
REQUIRE(polyline.lines().at(0).b == Point(10,0));
|
|
REQUIRE(polyline.lines().at(1).a == Point(10,0));
|
|
REQUIRE(polyline.lines().at(1).b == Point(20,0));
|
|
}
|
|
|
|
TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
|
|
Slic3r::Polygon polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)}));
|
|
Slic3r::Polyline split = polygon.split_at_index(1);
|
|
REQUIRE(split.points[0]==Point(10,0));
|
|
REQUIRE(split.points[1]==Point(5,5));
|
|
REQUIRE(split.points[2]==Point(0,0));
|
|
REQUIRE(split.points[3]==Point(10,0));
|
|
}
|
|
|
|
|
|
TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){
|
|
BoundingBox bb(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)}));
|
|
bb.scale(2);
|
|
REQUIRE(bb.min == Point(0,2));
|
|
REQUIRE(bb.max == Point(40,4));
|
|
}
|
|
|
|
|
|
TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
|
|
Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
|
|
Slic3r::Polygon area = offset(tmp,5).at(0);
|
|
REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
|
|
}
|
|
|
|
SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
|
|
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
|
|
Vec2d expected_center(-6, 0);
|
|
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
|
|
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
|
|
|
|
WHEN("Circle fit is called on the entire array") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample);
|
|
THEN("A center point of -6,0 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the first four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
|
THEN("A center point of -6,0 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the middle four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
|
THEN("A center point of -6,0 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
}
|
|
GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
|
|
Vec2d expected_center(-3, 9);
|
|
Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524),
|
|
Vec2d(0, 6.0),
|
|
Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
|
|
|
|
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});
|
|
|
|
|
|
WHEN("Circle fit is called on the entire array") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample);
|
|
THEN("A center point of 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the first four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
|
THEN("A center point of 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the middle four points") {
|
|
Vec2d result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
|
THEN("A center point of 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
}
|
|
GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
|
|
Point expected_center { Point::new_scale(-3, 9)};
|
|
Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524),
|
|
Point::new_scale(0, 6.0),
|
|
Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};
|
|
|
|
std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});
|
|
|
|
|
|
WHEN("Circle fit is called on the entire array") {
|
|
Point result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample);
|
|
THEN("A center point of scaled 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the first four points") {
|
|
Point result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample.cbegin(), sample.cbegin()+4);
|
|
THEN("A center point of scaled 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
WHEN("Circle fit is called on the middle four points") {
|
|
Point result_center(0,0);
|
|
result_center = Geometry::circle_center_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
|
|
THEN("A center point of scaled 3,9 is returned.") {
|
|
REQUIRE(is_approx(result_center, expected_center));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("smallest_enclosing_circle_welzl", "[Geometry]") {
|
|
// Some random points in plane.
|
|
Points pts {
|
|
{ 89243, 4359 }, { 763465, 59687 }, { 3245, 734987 }, { 2459867, 987634 }, { 759866, 67843982 }, { 9754687, 9834658 }, { 87235089, 743984373 },
|
|
{ 65874456, 2987546 }, { 98234524, 657654873 }, { 786243598, 287934765 }, { 824356, 734265 }, { 82576449, 7864534 }, { 7826345, 3984765 }
|
|
};
|
|
|
|
const auto c = Slic3r::Geometry::smallest_enclosing_circle_welzl(pts);
|
|
// The radius returned is inflated by SCALED_EPSILON, thus all points should be inside.
|
|
bool all_inside = std::all_of(pts.begin(), pts.end(), [c](const Point &pt){ return c.contains(pt.cast<double>()); });
|
|
auto c2(c);
|
|
c2.radius -= SCALED_EPSILON * 2.1;
|
|
auto num_on_boundary = std::count_if(pts.begin(), pts.end(), [c2](const Point& pt) { return ! c2.contains(pt.cast<double>(), SCALED_EPSILON); });
|
|
|
|
REQUIRE(all_inside);
|
|
REQUIRE(num_on_boundary == 3);
|
|
}
|
|
|
|
SCENARIO("Path chaining", "[Geometry]") {
|
|
GIVEN("A path") {
|
|
std::vector<Point> points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
|
|
THEN("Chained with no diagonals (thus 26 units long)") {
|
|
std::vector<Points::size_type> indices = chain_points(points);
|
|
for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
|
|
double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
|
|
REQUIRE(std::abs(dist-26) <= EPSILON);
|
|
}
|
|
}
|
|
}
|
|
GIVEN("Gyroid infill end points") {
|
|
Polylines polylines = {
|
|
{ {28122608, 3221037}, {27919139, 56036027} },
|
|
{ {33642863, 3400772}, {30875220, 56450360} },
|
|
{ {34579315, 3599827}, {35049758, 55971572} },
|
|
{ {26483070, 3374004}, {23971830, 55763598} },
|
|
{ {38931405, 4678879}, {38740053, 55077714} },
|
|
{ {20311895, 5015778}, {20079051, 54551952} },
|
|
{ {16463068, 6773342}, {18823514, 53992958} },
|
|
{ {44433771, 7424951}, {42629462, 53346059} },
|
|
{ {15697614, 7329492}, {15350896, 52089991} },
|
|
{ {48085792, 10147132}, {46435427, 50792118} },
|
|
{ {48828819, 10972330}, {49126582, 48368374} },
|
|
{ {9654526, 12656711}, {10264020, 47691584} },
|
|
{ {5726905, 18648632}, {8070762, 45082416} },
|
|
{ {54818187, 39579970}, {52974912, 43271272} },
|
|
{ {4464342, 37371742}, {5027890, 39106220} },
|
|
{ {54139746, 18417661}, {55177987, 38472580} },
|
|
{ {56527590, 32058461}, {56316456, 34067185} },
|
|
{ {3303988, 29215290}, {3569863, 32985633} },
|
|
{ {56255666, 25025857}, {56478310, 27144087} },
|
|
{ {4300034, 22805361}, {3667946, 25752601} },
|
|
{ {8266122, 14250611}, {6244813, 17751595} },
|
|
{ {12177955, 9886741}, {10703348, 11491900} }
|
|
};
|
|
Polylines chained = chain_polylines(polylines);
|
|
THEN("Chained taking the shortest path") {
|
|
double connection_length = 0.;
|
|
for (size_t i = 1; i < chained.size(); ++i) {
|
|
const Polyline &pl1 = chained[i - 1];
|
|
const Polyline &pl2 = chained[i];
|
|
connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm();
|
|
}
|
|
REQUIRE(connection_length < 85206000.);
|
|
}
|
|
}
|
|
GIVEN("Loop pieces") {
|
|
Point a { 2185796, 19058485 };
|
|
Point b { 3957902, 18149382 };
|
|
Point c { 2912841, 18790564 };
|
|
Point d { 2831848, 18832390 };
|
|
Point e { 3179601, 18627769 };
|
|
Point f { 3137952, 18653370 };
|
|
Polylines polylines = { { a, b },
|
|
{ c, d },
|
|
{ e, f },
|
|
{ d, a },
|
|
{ f, c },
|
|
{ b, e } };
|
|
Polylines chained = chain_polylines(polylines, &a);
|
|
THEN("Connected without a gap") {
|
|
for (size_t i = 0; i < chained.size(); ++i) {
|
|
const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
|
|
const Polyline &pl2 = chained[i];
|
|
REQUIRE(pl1.points.back() == pl2.points.front());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SCENARIO("Line distances", "[Geometry]"){
|
|
GIVEN("A line"){
|
|
Line line(Point(0, 0), Point(20, 0));
|
|
THEN("Points on the line segment have 0 distance"){
|
|
REQUIRE(line.distance_to(Point(0, 0)) == 0);
|
|
REQUIRE(line.distance_to(Point(20, 0)) == 0);
|
|
REQUIRE(line.distance_to(Point(10, 0)) == 0);
|
|
|
|
}
|
|
THEN("Points off the line have the appropriate distance"){
|
|
REQUIRE(line.distance_to(Point(10, 10)) == 10);
|
|
REQUIRE(line.distance_to(Point(50, 0)) == 30);
|
|
}
|
|
}
|
|
}
|
|
|
|
SCENARIO("Polygon convex/concave detection", "[Geometry]"){
|
|
GIVEN(("A Square with dimension 100")){
|
|
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
|
Point(100,100),
|
|
Point(200,100),
|
|
Point(200,200),
|
|
Point(100,200)}));
|
|
THEN("It has 4 convex points counterclockwise"){
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
|
}
|
|
THEN("It has 4 concave points clockwise"){
|
|
square.make_clockwise();
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 4);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 0);
|
|
}
|
|
}
|
|
GIVEN("A Square with an extra colinearvertex"){
|
|
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
|
Point(150,100),
|
|
Point(200,100),
|
|
Point(200,200),
|
|
Point(100,200),
|
|
Point(100,100)}));
|
|
THEN("It has 4 convex points counterclockwise"){
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
|
}
|
|
}
|
|
GIVEN("A Square with an extra collinear vertex in different order"){
|
|
auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
|
|
Point(200,200),
|
|
Point(100,200),
|
|
Point(100,100),
|
|
Point(150,100),
|
|
Point(200,100)}));
|
|
THEN("It has 4 convex points counterclockwise"){
|
|
REQUIRE(square.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(square.convex_points(PI*2/3).size() == 4);
|
|
}
|
|
}
|
|
|
|
GIVEN("A triangle"){
|
|
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
|
Point(16000170,26257364),
|
|
Point(714223,461012),
|
|
Point(31286371,461008)
|
|
}));
|
|
THEN("it has three convex vertices"){
|
|
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
|
}
|
|
}
|
|
|
|
GIVEN("A triangle with an extra collinear point"){
|
|
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
|
Point(16000170,26257364),
|
|
Point(714223,461012),
|
|
Point(20000000,461012),
|
|
Point(31286371,461012)
|
|
}));
|
|
THEN("it has three convex vertices"){
|
|
REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
|
|
REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
|
|
}
|
|
}
|
|
GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
|
|
// Two concave vertices of this polygon have angle = PI*4/3, so this test fails
|
|
// if epsilon is not used.
|
|
auto polygon = Slic3r::Polygon(std::vector<Point>({
|
|
Point(60246458,14802768),Point(64477191,12360001),
|
|
Point(63727343,11060995),Point(64086449,10853608),
|
|
Point(66393722,14850069),Point(66034704,15057334),
|
|
Point(65284646,13758387),Point(61053864,16200839),
|
|
Point(69200258,30310849),Point(62172547,42483120),
|
|
Point(61137680,41850279),Point(67799985,30310848),
|
|
Point(51399866,1905506),Point(38092663,1905506),
|
|
Point(38092663,692699),Point(52100125,692699)
|
|
}));
|
|
THEN("the correct number of points are detected"){
|
|
REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
|
|
REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
|
|
auto triangle = Slic3r::Polygon(std::vector<Point>({
|
|
Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
|
|
}));
|
|
REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
|
|
}
|
|
|
|
SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
|
|
GIVEN(("square")){
|
|
Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
|
|
Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
|
|
SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
|
|
}
|
|
SECTION("arrange returns expected number of positions") {
|
|
Pointfs positions;
|
|
Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
|
|
REQUIRE(positions.size() == 4);
|
|
}
|
|
SECTION("directions_parallel") {
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0));
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0));
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
|
|
REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
|
|
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
|
|
REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
|
|
}
|
|
}
|
|
|
|
TEST_CASE("Convex polygon intersection on two disjoint squares", "[Geometry][Rotcalip]") {
|
|
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
|
|
A.scale(1. / SCALING_FACTOR);
|
|
|
|
Polygon B = A;
|
|
B.translate(20 / SCALING_FACTOR, 0);
|
|
|
|
bool is_inters = Geometry::convex_polygons_intersect(A, B);
|
|
|
|
REQUIRE(is_inters == false);
|
|
}
|
|
|
|
TEST_CASE("Convex polygon intersection on two intersecting squares", "[Geometry][Rotcalip]") {
|
|
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
|
|
A.scale(1. / SCALING_FACTOR);
|
|
|
|
Polygon B = A;
|
|
B.translate(5 / SCALING_FACTOR, 5 / SCALING_FACTOR);
|
|
|
|
bool is_inters = Geometry::convex_polygons_intersect(A, B);
|
|
|
|
REQUIRE(is_inters == true);
|
|
}
|
|
|
|
TEST_CASE("Convex polygon intersection on two squares touching one edge", "[Geometry][Rotcalip]") {
|
|
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
|
|
A.scale(1. / SCALING_FACTOR);
|
|
|
|
Polygon B = A;
|
|
B.translate(10 / SCALING_FACTOR, 0);
|
|
|
|
bool is_inters = Geometry::convex_polygons_intersect(A, B);
|
|
|
|
REQUIRE(is_inters == false);
|
|
}
|
|
|
|
TEST_CASE("Convex polygon intersection on two squares touching one vertex", "[Geometry][Rotcalip]") {
|
|
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
|
|
A.scale(1. / SCALING_FACTOR);
|
|
|
|
Polygon B = A;
|
|
B.translate(10 / SCALING_FACTOR, 10 / SCALING_FACTOR);
|
|
|
|
SVG svg{std::string("one_vertex_touch") + ".svg"};
|
|
svg.draw(A, "blue");
|
|
svg.draw(B, "green");
|
|
svg.Close();
|
|
|
|
bool is_inters = Geometry::convex_polygons_intersect(A, B);
|
|
|
|
REQUIRE(is_inters == false);
|
|
}
|
|
|
|
TEST_CASE("Convex polygon intersection on two overlapping squares", "[Geometry][Rotcalip]") {
|
|
Polygon A{{0, 0}, {10, 0}, {10, 10}, {0, 10}};
|
|
A.scale(1. / SCALING_FACTOR);
|
|
|
|
Polygon B = A;
|
|
|
|
bool is_inters = Geometry::convex_polygons_intersect(A, B);
|
|
|
|
REQUIRE(is_inters == true);
|
|
}
|
|
|
|
//// Only for benchmarking
|
|
//static Polygon gen_convex_poly(std::mt19937_64 &rg, size_t point_cnt)
|
|
//{
|
|
// std::uniform_int_distribution<coord_t> dist(0, 100);
|
|
|
|
// Polygon out;
|
|
// out.points.reserve(point_cnt);
|
|
|
|
// coord_t tr = dist(rg) * 2 / SCALING_FACTOR;
|
|
|
|
// for (size_t i = 0; i < point_cnt; ++i)
|
|
// out.points.emplace_back(tr + dist(rg) / SCALING_FACTOR,
|
|
// tr + dist(rg) / SCALING_FACTOR);
|
|
|
|
// return Geometry::convex_hull(out.points);
|
|
//}
|
|
//TEST_CASE("Convex polygon intersection test on random polygons", "[Geometry]") {
|
|
// constexpr size_t TEST_CNT = 1000;
|
|
// constexpr size_t POINT_CNT = 1000;
|
|
|
|
// auto seed = std::random_device{}();
|
|
//// unsigned long seed = 2525634386;
|
|
// std::mt19937_64 rg{seed};
|
|
// Benchmark bench;
|
|
|
|
// auto tests = reserve_vector<std::pair<Polygon, Polygon>>(TEST_CNT);
|
|
// auto results = reserve_vector<bool>(TEST_CNT);
|
|
// auto expects = reserve_vector<bool>(TEST_CNT);
|
|
|
|
// for (size_t i = 0; i < TEST_CNT; ++i) {
|
|
// tests.emplace_back(gen_convex_poly(rg, POINT_CNT), gen_convex_poly(rg, POINT_CNT));
|
|
// }
|
|
|
|
// bench.start();
|
|
// for (const auto &test : tests)
|
|
// results.emplace_back(Geometry::convex_polygons_intersect(test.first, test.second));
|
|
// bench.stop();
|
|
|
|
// std::cout << "Test time: " << bench.getElapsedSec() << std::endl;
|
|
|
|
// bench.start();
|
|
// for (const auto &test : tests)
|
|
// expects.emplace_back(!intersection(test.first, test.second).empty());
|
|
// bench.stop();
|
|
|
|
// std::cout << "Clipper time: " << bench.getElapsedSec() << std::endl;
|
|
|
|
// REQUIRE(results.size() == expects.size());
|
|
|
|
// auto seedstr = std::to_string(seed);
|
|
// for (size_t i = 0; i < results.size(); ++i) {
|
|
// // std::cout << expects[i] << " ";
|
|
|
|
// if (results[i] != expects[i]) {
|
|
// SVG svg{std::string("fail_seed") + seedstr + "_" + std::to_string(i) + ".svg"};
|
|
// svg.draw(tests[i].first, "blue");
|
|
// svg.draw(tests[i].second, "green");
|
|
// svg.Close();
|
|
|
|
// // std::cout << std::endl;
|
|
// }
|
|
// REQUIRE(results[i] == expects[i]);
|
|
// }
|
|
// std::cout << std::endl;
|
|
|
|
//}
|
|
|
|
struct Pair
|
|
{
|
|
size_t first, second;
|
|
bool operator==(const Pair &b) const { return first == b.first && second == b.second; }
|
|
};
|
|
|
|
template<> struct std::hash<Pair> {
|
|
size_t operator()(const Pair &c) const
|
|
{
|
|
return c.first * PRINTER_PART_POLYGONS.size() + c.second;
|
|
}
|
|
};
|
|
|
|
TEST_CASE("Convex polygon intersection test prusa polygons", "[Geometry][Rotcalip]") {
|
|
|
|
// Overlap of the same polygon should always be an intersection
|
|
for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) {
|
|
Polygon P = PRINTER_PART_POLYGONS[i];
|
|
P = Geometry::convex_hull(P.points);
|
|
bool res = Geometry::convex_polygons_intersect(P, P);
|
|
if (!res) {
|
|
SVG svg{std::string("fail_self") + std::to_string(i) + ".svg"};
|
|
svg.draw(P, "green");
|
|
svg.Close();
|
|
}
|
|
REQUIRE(res == true);
|
|
}
|
|
|
|
std::unordered_set<Pair> combos;
|
|
for (size_t i = 0; i < PRINTER_PART_POLYGONS.size(); ++i) {
|
|
for (size_t j = 0; j < PRINTER_PART_POLYGONS.size(); ++j) {
|
|
if (i != j) {
|
|
size_t a = std::min(i, j), b = std::max(i, j);
|
|
combos.insert(Pair{a, b});
|
|
}
|
|
}
|
|
}
|
|
|
|
// All disjoint
|
|
for (const auto &combo : combos) {
|
|
Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second];
|
|
A = Geometry::convex_hull(A.points);
|
|
B = Geometry::convex_hull(B.points);
|
|
|
|
auto bba = A.bounding_box();
|
|
auto bbb = B.bounding_box();
|
|
|
|
A.translate(-bba.center());
|
|
B.translate(-bbb.center());
|
|
|
|
B.translate(bba.size() + bbb.size());
|
|
|
|
bool res = Geometry::convex_polygons_intersect(A, B);
|
|
bool ref = !intersection(A, B).empty();
|
|
|
|
if (res != ref) {
|
|
SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
|
|
svg.draw(A, "blue");
|
|
svg.draw(B, "green");
|
|
svg.Close();
|
|
}
|
|
|
|
REQUIRE(res == ref);
|
|
}
|
|
|
|
// All intersecting
|
|
for (const auto &combo : combos) {
|
|
Polygon A = PRINTER_PART_POLYGONS[combo.first], B = PRINTER_PART_POLYGONS[combo.second];
|
|
A = Geometry::convex_hull(A.points);
|
|
B = Geometry::convex_hull(B.points);
|
|
|
|
auto bba = A.bounding_box();
|
|
auto bbb = B.bounding_box();
|
|
|
|
A.translate(-bba.center());
|
|
B.translate(-bbb.center());
|
|
|
|
bool res = Geometry::convex_polygons_intersect(A, B);
|
|
bool ref = !intersection(A, B).empty();
|
|
|
|
if (res != ref) {
|
|
SVG svg{std::string("fail") + std::to_string(combo.first) + "_" + std::to_string(combo.second) + ".svg"};
|
|
svg.draw(A, "blue");
|
|
svg.draw(B, "green");
|
|
svg.Close();
|
|
}
|
|
|
|
REQUIRE(res == ref);
|
|
}
|
|
}
|