PrusaSlicer-NonPlainar/src/slic3r/GUI/PresetHints.cpp
bubnikv a378bb7bed Removed some obsolete Perl bindings.
Removed libslic3r from the default include paths for all modules but
libslic3r. Now headers from libslic3r need to be included with an
explicit path (libslic3r/libslic3r.h etc)
Split the localization macros into I18N.{cpp,h}
2018-11-26 14:41:58 +01:00

280 lines
16 KiB
C++

#include <cassert>
#include "libslic3r/Flow.hpp"
#include "libslic3r/libslic3r.h"
#include "PresetBundle.hpp"
#include "PresetHints.hpp"
#include <boost/algorithm/string/predicate.hpp>
#include <wx/intl.h>
#include "GUI.hpp"
#include "I18N.hpp"
namespace Slic3r {
#define MIN_BUF_LENGTH 4096
std::string PresetHints::cooling_description(const Preset &preset)
{
std::string out;
char buf[MIN_BUF_LENGTH/*4096*/];
if (preset.config.opt_bool("cooling", 0)) {
int slowdown_below_layer_time = preset.config.opt_int("slowdown_below_layer_time", 0);
int min_fan_speed = preset.config.opt_int("min_fan_speed", 0);
int max_fan_speed = preset.config.opt_int("max_fan_speed", 0);
int min_print_speed = int(preset.config.opt_float("min_print_speed", 0) + 0.5);
int fan_below_layer_time = preset.config.opt_int("fan_below_layer_time", 0);
sprintf(buf, _CHB(L("If estimated layer time is below ~%ds, fan will run at %d%% and print speed will be reduced so that no less than %ds are spent on that layer (however, speed will never be reduced below %dmm/s).")),
slowdown_below_layer_time, max_fan_speed, slowdown_below_layer_time, min_print_speed);
out += buf;
if (fan_below_layer_time > slowdown_below_layer_time) {
sprintf(buf, _CHB(L("\nIf estimated layer time is greater, but still below ~%ds, fan will run at a proportionally decreasing speed between %d%% and %d%%.")),
fan_below_layer_time, max_fan_speed, min_fan_speed);
out += buf;
}
out += _CHB(L("\nDuring the other layers, fan "));
} else {
out = _CHB(L("Fan "));
}
if (preset.config.opt_bool("fan_always_on", 0)) {
int disable_fan_first_layers = preset.config.opt_int("disable_fan_first_layers", 0);
int min_fan_speed = preset.config.opt_int("min_fan_speed", 0);
sprintf(buf, _CHB(L("will always run at %d%% ")), min_fan_speed);
out += buf;
if (disable_fan_first_layers > 1) {
sprintf(buf, _CHB(L("except for the first %d layers")), disable_fan_first_layers);
out += buf;
}
else if (disable_fan_first_layers == 1)
out += _CHB(L("except for the first layer"));
} else
out += _CHB(L("will be turned off."));
return out;
}
static const ConfigOptionFloatOrPercent& first_positive(const ConfigOptionFloatOrPercent *v1, const ConfigOptionFloatOrPercent &v2, const ConfigOptionFloatOrPercent &v3)
{
return (v1 != nullptr && v1->value > 0) ? *v1 : ((v2.value > 0) ? v2 : v3);
}
std::string PresetHints::maximum_volumetric_flow_description(const PresetBundle &preset_bundle)
{
// Find out, to which nozzle index is the current filament profile assigned.
int idx_extruder = 0;
int num_extruders = (int)preset_bundle.filament_presets.size();
for (; idx_extruder < num_extruders; ++ idx_extruder)
if (preset_bundle.filament_presets[idx_extruder] == preset_bundle.filaments.get_selected_preset().name)
break;
if (idx_extruder == num_extruders)
// The current filament preset is not active for any extruder.
idx_extruder = -1;
const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config;
const DynamicPrintConfig &filament_config = preset_bundle.filaments.get_edited_preset().config;
const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config;
// Current printer values.
float nozzle_diameter = (float)printer_config.opt_float("nozzle_diameter", idx_extruder);
// Print config values
double layer_height = print_config.opt_float("layer_height");
double first_layer_height = print_config.get_abs_value("first_layer_height", layer_height);
double support_material_speed = print_config.opt_float("support_material_speed");
double support_material_interface_speed = print_config.get_abs_value("support_material_interface_speed", support_material_speed);
double bridge_speed = print_config.opt_float("bridge_speed");
double bridge_flow_ratio = print_config.opt_float("bridge_flow_ratio");
double perimeter_speed = print_config.opt_float("perimeter_speed");
double external_perimeter_speed = print_config.get_abs_value("external_perimeter_speed", perimeter_speed);
double gap_fill_speed = print_config.opt_float("gap_fill_speed");
double infill_speed = print_config.opt_float("infill_speed");
double small_perimeter_speed = print_config.get_abs_value("small_perimeter_speed", perimeter_speed);
double solid_infill_speed = print_config.get_abs_value("solid_infill_speed", infill_speed);
double top_solid_infill_speed = print_config.get_abs_value("top_solid_infill_speed", solid_infill_speed);
// Maximum print speed when auto-speed is enabled by setting any of the above speed values to zero.
double max_print_speed = print_config.opt_float("max_print_speed");
// Maximum volumetric speed allowed for the print profile.
double max_volumetric_speed = print_config.opt_float("max_volumetric_speed");
const auto &extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("extrusion_width");
const auto &external_perimeter_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("external_perimeter_extrusion_width");
const auto &first_layer_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("first_layer_extrusion_width");
const auto &infill_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("infill_extrusion_width");
const auto &perimeter_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("perimeter_extrusion_width");
const auto &solid_infill_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("solid_infill_extrusion_width");
const auto &support_material_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("support_material_extrusion_width");
const auto &top_infill_extrusion_width = *print_config.option<ConfigOptionFloatOrPercent>("top_infill_extrusion_width");
const auto &first_layer_speed = *print_config.option<ConfigOptionFloatOrPercent>("first_layer_speed");
// Index of an extruder assigned to a feature. If set to 0, an active extruder will be used for a multi-material print.
// If different from idx_extruder, it will not be taken into account for this hint.
auto feature_extruder_active = [idx_extruder, num_extruders](int i) {
return i <= 0 || i > num_extruders || idx_extruder == -1 || idx_extruder == i - 1;
};
bool perimeter_extruder_active = feature_extruder_active(print_config.opt_int("perimeter_extruder"));
bool infill_extruder_active = feature_extruder_active(print_config.opt_int("infill_extruder"));
bool solid_infill_extruder_active = feature_extruder_active(print_config.opt_int("solid_infill_extruder"));
bool support_material_extruder_active = feature_extruder_active(print_config.opt_int("support_material_extruder"));
bool support_material_interface_extruder_active = feature_extruder_active(print_config.opt_int("support_material_interface_extruder"));
// Current filament values
double filament_diameter = filament_config.opt_float("filament_diameter", 0);
double filament_crossection = M_PI * 0.25 * filament_diameter * filament_diameter;
double extrusion_multiplier = filament_config.opt_float("extrusion_multiplier", 0);
// The following value will be annotated by this hint, so it does not take part in the calculation.
// double filament_max_volumetric_speed = filament_config.opt_float("filament_max_volumetric_speed", 0);
std::string out;
for (size_t idx_type = (first_layer_extrusion_width.value == 0) ? 1 : 0; idx_type < 3; ++ idx_type) {
// First test the maximum volumetric extrusion speed for non-bridging extrusions.
bool first_layer = idx_type == 0;
bool bridging = idx_type == 2;
const ConfigOptionFloatOrPercent *first_layer_extrusion_width_ptr = (first_layer && first_layer_extrusion_width.value > 0) ?
&first_layer_extrusion_width : nullptr;
const float lh = float(first_layer ? first_layer_height : layer_height);
const float bfr = bridging ? bridge_flow_ratio : 0.f;
double max_flow = 0.;
std::string max_flow_extrusion_type;
auto limit_by_first_layer_speed = [&first_layer_speed, first_layer](double speed_normal, double speed_max) {
if (first_layer && first_layer_speed.value > 0)
// Apply the first layer limit.
speed_normal = first_layer_speed.get_abs_value(speed_normal);
return (speed_normal > 0.) ? speed_normal : speed_max;
};
if (perimeter_extruder_active) {
double external_perimeter_rate = Flow::new_from_config_width(frExternalPerimeter,
first_positive(first_layer_extrusion_width_ptr, external_perimeter_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed :
limit_by_first_layer_speed(std::max(external_perimeter_speed, small_perimeter_speed), max_print_speed));
if (max_flow < external_perimeter_rate) {
max_flow = external_perimeter_rate;
max_flow_extrusion_type = _CHB(L("external perimeters"));
}
double perimeter_rate = Flow::new_from_config_width(frPerimeter,
first_positive(first_layer_extrusion_width_ptr, perimeter_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed :
limit_by_first_layer_speed(std::max(perimeter_speed, small_perimeter_speed), max_print_speed));
if (max_flow < perimeter_rate) {
max_flow = perimeter_rate;
max_flow_extrusion_type = _CHB(L("perimeters"));
}
}
if (! bridging && infill_extruder_active) {
double infill_rate = Flow::new_from_config_width(frInfill,
first_positive(first_layer_extrusion_width_ptr, infill_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() * limit_by_first_layer_speed(infill_speed, max_print_speed);
if (max_flow < infill_rate) {
max_flow = infill_rate;
max_flow_extrusion_type = _CHB(L("infill"));
}
}
if (solid_infill_extruder_active) {
double solid_infill_rate = Flow::new_from_config_width(frInfill,
first_positive(first_layer_extrusion_width_ptr, solid_infill_extrusion_width, extrusion_width),
nozzle_diameter, lh, 0).mm3_per_mm() *
(bridging ? bridge_speed : limit_by_first_layer_speed(solid_infill_speed, max_print_speed));
if (max_flow < solid_infill_rate) {
max_flow = solid_infill_rate;
max_flow_extrusion_type = _CHB(L("solid infill"));
}
if (! bridging) {
double top_solid_infill_rate = Flow::new_from_config_width(frInfill,
first_positive(first_layer_extrusion_width_ptr, top_infill_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() * limit_by_first_layer_speed(top_solid_infill_speed, max_print_speed);
if (max_flow < top_solid_infill_rate) {
max_flow = top_solid_infill_rate;
max_flow_extrusion_type = _CHB(L("top solid infill"));
}
}
}
if (support_material_extruder_active) {
double support_material_rate = Flow::new_from_config_width(frSupportMaterial,
first_positive(first_layer_extrusion_width_ptr, support_material_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed : limit_by_first_layer_speed(support_material_speed, max_print_speed));
if (max_flow < support_material_rate) {
max_flow = support_material_rate;
max_flow_extrusion_type = _CHB(L("support"));
}
}
if (support_material_interface_extruder_active) {
double support_material_interface_rate = Flow::new_from_config_width(frSupportMaterialInterface,
first_positive(first_layer_extrusion_width_ptr, support_material_extrusion_width, extrusion_width),
nozzle_diameter, lh, bfr).mm3_per_mm() *
(bridging ? bridge_speed : limit_by_first_layer_speed(support_material_interface_speed, max_print_speed));
if (max_flow < support_material_interface_rate) {
max_flow = support_material_interface_rate;
max_flow_extrusion_type = _CHB(L("support interface"));
}
}
//FIXME handle gap_fill_speed
if (! out.empty())
out += "\n";
out += (first_layer ? _CHB(L("First layer volumetric")) : (bridging ? _CHB(L("Bridging volumetric")) : _CHB(L("Volumetric"))));
out += _CHB(L(" flow rate is maximized "));
bool limited_by_max_volumetric_speed = max_volumetric_speed > 0 && max_volumetric_speed < max_flow;
out += (limited_by_max_volumetric_speed ?
_CHB(L("by the print profile maximum")) :
(_CHB(L("when printing ")) + max_flow_extrusion_type))
+ _CHB(L(" with a volumetric rate "));
if (limited_by_max_volumetric_speed)
max_flow = max_volumetric_speed;
char buf[MIN_BUF_LENGTH/*2048*/];
sprintf(buf, _CHB(L("%3.2f mm³/s")), max_flow);
out += buf;
sprintf(buf, _CHB(L(" at filament speed %3.2f mm/s.")), max_flow / filament_crossection);
out += buf;
}
return out;
}
std::string PresetHints::recommended_thin_wall_thickness(const PresetBundle &preset_bundle)
{
const DynamicPrintConfig &print_config = preset_bundle.prints .get_edited_preset().config;
const DynamicPrintConfig &printer_config = preset_bundle.printers .get_edited_preset().config;
float layer_height = float(print_config.opt_float("layer_height"));
int num_perimeters = print_config.opt_int("perimeters");
bool thin_walls = print_config.opt_bool("thin_walls");
float nozzle_diameter = float(printer_config.opt_float("nozzle_diameter", 0));
std::string out;
if (layer_height <= 0.f){
out += _CHB(L("Recommended object thin wall thickness: Not available due to invalid layer height."));
return out;
}
Flow external_perimeter_flow = Flow::new_from_config_width(
frExternalPerimeter,
*print_config.opt<ConfigOptionFloatOrPercent>("external_perimeter_extrusion_width"),
nozzle_diameter, layer_height, false);
Flow perimeter_flow = Flow::new_from_config_width(
frPerimeter,
*print_config.opt<ConfigOptionFloatOrPercent>("perimeter_extrusion_width"),
nozzle_diameter, layer_height, false);
if (num_perimeters > 0) {
int num_lines = std::min(num_perimeters * 2, 10);
char buf[MIN_BUF_LENGTH/*256*/];
sprintf(buf, _CHB(L("Recommended object thin wall thickness for layer height %.2f and ")), layer_height);
out += buf;
// Start with the width of two closely spaced
double width = external_perimeter_flow.width + external_perimeter_flow.spacing();
for (int i = 2; i <= num_lines; thin_walls ? ++ i : i += 2) {
if (i > 2)
out += ", ";
sprintf(buf, _CHB(L("%d lines: %.2lf mm")), i, width);
out += buf;
width += perimeter_flow.spacing() * (thin_walls ? 1.f : 2.f);
}
}
return out;
}
}; // namespace Slic3r