PrusaSlicer-NonPlainar/src/libslic3r/TriangleMesh.cpp
Vojtech Bubnik eb6392dccd New slice_mesh() variant slicing with a single plane only, running
on a single thread only (not parallelized).
The new slice_mesh() is used to calculate contour of objects sunken
below the print bed.
2021-07-26 17:02:56 +02:00

1281 lines
46 KiB
C++

#include "Exception.hpp"
#include "TriangleMesh.hpp"
#include "TriangleMeshSlicer.hpp"
#include "MeshSplitImpl.hpp"
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "Point.hpp"
#include "Execution/ExecutionTBB.hpp"
#include "Execution/ExecutionSeq.hpp"
#include <libqhullcpp/Qhull.h>
#include <libqhullcpp/QhullFacetList.h>
#include <libqhullcpp/QhullVertexSet.h>
#include <cmath>
#include <deque>
#include <queue>
#include <vector>
#include <utility>
#include <algorithm>
#include <type_traits>
#include <boost/log/trivial.hpp>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <assert.h>
namespace Slic3r {
TriangleMesh::TriangleMesh(const Pointf3s &points, const std::vector<Vec3i> &facets) : repaired(false)
{
stl_file &stl = this->stl;
stl.stats.type = inmemory;
// count facets and allocate memory
stl.stats.number_of_facets = (uint32_t)facets.size();
stl.stats.original_num_facets = stl.stats.number_of_facets;
stl_allocate(&stl);
for (uint32_t i = 0; i < stl.stats.number_of_facets; ++ i) {
stl_facet facet;
facet.vertex[0] = points[facets[i](0)].cast<float>();
facet.vertex[1] = points[facets[i](1)].cast<float>();
facet.vertex[2] = points[facets[i](2)].cast<float>();
facet.extra[0] = 0;
facet.extra[1] = 0;
stl_normal normal;
stl_calculate_normal(normal, &facet);
stl_normalize_vector(normal);
facet.normal = normal;
stl.facet_start[i] = facet;
}
stl_get_size(&stl);
}
TriangleMesh::TriangleMesh(const indexed_triangle_set &M) : repaired(false)
{
stl.stats.type = inmemory;
// count facets and allocate memory
stl.stats.number_of_facets = uint32_t(M.indices.size());
stl.stats.original_num_facets = int(stl.stats.number_of_facets);
stl_allocate(&stl);
for (uint32_t i = 0; i < stl.stats.number_of_facets; ++ i) {
stl_facet facet;
facet.vertex[0] = M.vertices[size_t(M.indices[i](0))];
facet.vertex[1] = M.vertices[size_t(M.indices[i](1))];
facet.vertex[2] = M.vertices[size_t(M.indices[i](2))];
facet.extra[0] = 0;
facet.extra[1] = 0;
stl_normal normal;
stl_calculate_normal(normal, &facet);
stl_normalize_vector(normal);
facet.normal = normal;
stl.facet_start[i] = facet;
}
stl_get_size(&stl);
}
// #define SLIC3R_TRACE_REPAIR
void TriangleMesh::repair(bool update_shared_vertices)
{
if (this->repaired) {
if (update_shared_vertices)
this->require_shared_vertices();
return;
}
// admesh fails when repairing empty meshes
if (this->stl.stats.number_of_facets == 0)
return;
BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() started";
// checking exact
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_check_faces_exact";
#endif /* SLIC3R_TRACE_REPAIR */
assert(stl_validate(&this->stl));
stl_check_facets_exact(&stl);
assert(stl_validate(&this->stl));
stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge);
stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge);
stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge);
// checking nearby
//int last_edges_fixed = 0;
float tolerance = (float)stl.stats.shortest_edge;
float increment = (float)stl.stats.bounding_diameter / 10000.0f;
int iterations = 2;
if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) {
for (int i = 0; i < iterations; i++) {
if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) {
//printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations);
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_check_faces_nearby";
#endif /* SLIC3R_TRACE_REPAIR */
stl_check_facets_nearby(&stl, tolerance);
//printf(" Fixed %d edges.\n", stl.stats.edges_fixed - last_edges_fixed);
//last_edges_fixed = stl.stats.edges_fixed;
tolerance += increment;
} else {
break;
}
}
}
assert(stl_validate(&this->stl));
// remove_unconnected
if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) {
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_remove_unconnected_facets";
#endif /* SLIC3R_TRACE_REPAIR */
stl_remove_unconnected_facets(&stl);
assert(stl_validate(&this->stl));
}
// fill_holes
#if 0
// Don't fill holes, the current algorithm does more harm than good on complex holes.
// Rather let the slicing algorithm close gaps in 2D slices.
if (stl.stats.connected_facets_3_edge < stl.stats.number_of_facets) {
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_fill_holes";
#endif /* SLIC3R_TRACE_REPAIR */
stl_fill_holes(&stl);
stl_clear_error(&stl);
}
#endif
// normal_directions
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_directions";
#endif /* SLIC3R_TRACE_REPAIR */
stl_fix_normal_directions(&stl);
assert(stl_validate(&this->stl));
// normal_values
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_fix_normal_values";
#endif /* SLIC3R_TRACE_REPAIR */
stl_fix_normal_values(&stl);
assert(stl_validate(&this->stl));
// always calculate the volume and reverse all normals if volume is negative
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_calculate_volume";
#endif /* SLIC3R_TRACE_REPAIR */
stl_calculate_volume(&stl);
assert(stl_validate(&this->stl));
// neighbors
#ifdef SLIC3R_TRACE_REPAIR
BOOST_LOG_TRIVIAL(trace) << "\tstl_verify_neighbors";
#endif /* SLIC3R_TRACE_REPAIR */
stl_verify_neighbors(&stl);
assert(stl_validate(&this->stl));
this->repaired = true;
BOOST_LOG_TRIVIAL(debug) << "TriangleMesh::repair() finished";
// This call should be quite cheap, a lot of code requires the indexed_triangle_set data structure,
// and it is risky to generate such a structure once the meshes are shared. Do it now.
this->its.clear();
if (update_shared_vertices)
this->require_shared_vertices();
}
float TriangleMesh::volume()
{
if (this->stl.stats.volume == -1)
stl_calculate_volume(&this->stl);
return this->stl.stats.volume;
}
void TriangleMesh::check_topology()
{
// checking exact
stl_check_facets_exact(&stl);
stl.stats.facets_w_1_bad_edge = (stl.stats.connected_facets_2_edge - stl.stats.connected_facets_3_edge);
stl.stats.facets_w_2_bad_edge = (stl.stats.connected_facets_1_edge - stl.stats.connected_facets_2_edge);
stl.stats.facets_w_3_bad_edge = (stl.stats.number_of_facets - stl.stats.connected_facets_1_edge);
// checking nearby
//int last_edges_fixed = 0;
float tolerance = stl.stats.shortest_edge;
float increment = stl.stats.bounding_diameter / 10000.0;
int iterations = 2;
if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) {
for (int i = 0; i < iterations; i++) {
if (stl.stats.connected_facets_3_edge < (int)stl.stats.number_of_facets) {
//printf("Checking nearby. Tolerance= %f Iteration=%d of %d...", tolerance, i + 1, iterations);
stl_check_facets_nearby(&stl, tolerance);
//printf(" Fixed %d edges.\n", stl.stats.edges_fixed - last_edges_fixed);
//last_edges_fixed = stl.stats.edges_fixed;
tolerance += increment;
} else {
break;
}
}
}
}
void TriangleMesh::reset_repair_stats() {
this->stl.stats.degenerate_facets = 0;
this->stl.stats.edges_fixed = 0;
this->stl.stats.facets_removed = 0;
this->stl.stats.facets_added = 0;
this->stl.stats.facets_reversed = 0;
this->stl.stats.backwards_edges = 0;
this->stl.stats.normals_fixed = 0;
}
bool TriangleMesh::needed_repair() const
{
return this->stl.stats.degenerate_facets > 0
|| this->stl.stats.edges_fixed > 0
|| this->stl.stats.facets_removed > 0
|| this->stl.stats.facets_added > 0
|| this->stl.stats.facets_reversed > 0
|| this->stl.stats.backwards_edges > 0;
}
void TriangleMesh::WriteOBJFile(const char* output_file) const
{
its_write_obj(this->its, output_file);
}
void TriangleMesh::scale(float factor)
{
stl_scale(&(this->stl), factor);
for (stl_vertex& v : this->its.vertices)
v *= factor;
}
void TriangleMesh::scale(const Vec3d &versor)
{
stl_scale_versor(&this->stl, versor.cast<float>());
for (stl_vertex& v : this->its.vertices) {
v.x() *= versor.x();
v.y() *= versor.y();
v.z() *= versor.z();
}
}
void TriangleMesh::translate(float x, float y, float z)
{
if (x == 0.f && y == 0.f && z == 0.f)
return;
stl_translate_relative(&(this->stl), x, y, z);
stl_vertex shift(x, y, z);
for (stl_vertex& v : this->its.vertices)
v += shift;
}
void TriangleMesh::translate(const Vec3f &displacement)
{
translate(displacement(0), displacement(1), displacement(2));
}
void TriangleMesh::rotate(float angle, const Axis &axis)
{
if (angle == 0.f)
return;
// admesh uses degrees
angle = Slic3r::Geometry::rad2deg(angle);
if (axis == X) {
stl_rotate_x(&this->stl, angle);
its_rotate_x(this->its, angle);
} else if (axis == Y) {
stl_rotate_y(&this->stl, angle);
its_rotate_y(this->its, angle);
} else if (axis == Z) {
stl_rotate_z(&this->stl, angle);
its_rotate_z(this->its, angle);
}
}
void TriangleMesh::rotate(float angle, const Vec3d& axis)
{
if (angle == 0.f)
return;
Vec3d axis_norm = axis.normalized();
Transform3d m = Transform3d::Identity();
m.rotate(Eigen::AngleAxisd(angle, axis_norm));
stl_transform(&stl, m);
its_transform(its, m);
}
void TriangleMesh::mirror(const Axis &axis)
{
if (axis == X) {
stl_mirror_yz(&this->stl);
for (stl_vertex &v : this->its.vertices)
v(0) *= -1.0;
} else if (axis == Y) {
stl_mirror_xz(&this->stl);
for (stl_vertex &v : this->its.vertices)
v(1) *= -1.0;
} else if (axis == Z) {
stl_mirror_xy(&this->stl);
for (stl_vertex &v : this->its.vertices)
v(2) *= -1.0;
}
}
void TriangleMesh::transform(const Transform3d& t, bool fix_left_handed)
{
stl_transform(&stl, t);
its_transform(its, t);
if (fix_left_handed && t.matrix().block(0, 0, 3, 3).determinant() < 0.) {
// Left handed transformation is being applied. It is a good idea to flip the faces and their normals.
// As for the assert: the repair function would fix the normals, reversing would
// break them again. The caller should provide a mesh that does not need repair.
// The repair call is left here so things don't break more than they were.
assert(this->repaired);
this->repair(false);
stl_reverse_all_facets(&stl);
this->its.clear();
this->require_shared_vertices();
}
}
void TriangleMesh::transform(const Matrix3d& m, bool fix_left_handed)
{
stl_transform(&stl, m);
its_transform(its, m);
if (fix_left_handed && m.determinant() < 0.) {
// See comments in function above.
assert(this->repaired);
this->repair(false);
stl_reverse_all_facets(&stl);
this->its.clear();
this->require_shared_vertices();
}
}
void TriangleMesh::align_to_origin()
{
this->translate(
- this->stl.stats.min(0),
- this->stl.stats.min(1),
- this->stl.stats.min(2));
}
void TriangleMesh::rotate(double angle, Point* center)
{
if (angle == 0.)
return;
Vec2f c = center->cast<float>();
this->translate(-c(0), -c(1), 0);
stl_rotate_z(&this->stl, (float)angle);
its_rotate_z(this->its, (float)angle);
this->translate(c(0), c(1), 0);
}
/**
* Calculates whether or not the mesh is splittable.
*/
bool TriangleMesh::is_splittable() const
{
std::vector<unsigned char> visited;
find_unvisited_neighbors(visited);
// Try finding an unvisited facet. If there are none, the mesh is not splittable.
auto it = std::find(visited.begin(), visited.end(), false);
return it != visited.end();
}
/**
* Visit all unvisited neighboring facets that are reachable from the first unvisited facet,
* and return them.
*
* @param facet_visited A reference to a vector of booleans. Contains whether or not a
* facet with the same index has been visited.
* @return A deque with all newly visited facets.
*/
std::deque<uint32_t> TriangleMesh::find_unvisited_neighbors(std::vector<unsigned char> &facet_visited) const
{
// Make sure we're not operating on a broken mesh.
if (!this->repaired)
throw Slic3r::RuntimeError("find_unvisited_neighbors() requires repair()");
// If the visited list is empty, populate it with false for every facet.
if (facet_visited.empty())
facet_visited = std::vector<unsigned char>(this->stl.stats.number_of_facets, false);
// Find the first unvisited facet.
std::queue<uint32_t> facet_queue;
std::deque<uint32_t> facets;
auto facet = std::find(facet_visited.begin(), facet_visited.end(), false);
if (facet != facet_visited.end()) {
uint32_t idx = uint32_t(facet - facet_visited.begin());
facet_queue.push(idx);
facet_visited[idx] = true;
facets.emplace_back(idx);
}
// Traverse all reachable neighbors and mark them as visited.
while (! facet_queue.empty()) {
uint32_t facet_idx = facet_queue.front();
facet_queue.pop();
for (int neighbor_idx : this->stl.neighbors_start[facet_idx].neighbor)
if (neighbor_idx != -1 && ! facet_visited[neighbor_idx]) {
facet_queue.push(uint32_t(neighbor_idx));
facet_visited[neighbor_idx] = true;
facets.emplace_back(uint32_t(neighbor_idx));
}
}
return facets;
}
/**
* Splits a mesh into multiple meshes when possible.
*
* @return A TriangleMeshPtrs with the newly created meshes.
*/
TriangleMeshPtrs TriangleMesh::split() const
{
struct MeshAdder {
TriangleMeshPtrs &meshes;
MeshAdder(TriangleMeshPtrs &ptrs): meshes{ptrs} {}
void operator=(const indexed_triangle_set &its)
{
meshes.emplace_back(new TriangleMesh(its));
}
};
TriangleMeshPtrs meshes;
if (has_shared_vertices()) {
its_split(its, MeshAdder{meshes});
} else {
// Loop while we have remaining facets.
std::vector<unsigned char> facet_visited;
for (;;) {
std::deque<uint32_t> facets = find_unvisited_neighbors(facet_visited);
if (facets.empty())
break;
// Create a new mesh for the part that was just split off.
TriangleMesh* mesh = new TriangleMesh;
meshes.emplace_back(mesh);
mesh->stl.stats.type = inmemory;
mesh->stl.stats.number_of_facets = (uint32_t)facets.size();
mesh->stl.stats.original_num_facets = mesh->stl.stats.number_of_facets;
stl_allocate(&mesh->stl);
// Assign the facets to the new mesh.
bool first = true;
for (auto facet = facets.begin(); facet != facets.end(); ++ facet) {
mesh->stl.facet_start[facet - facets.begin()] = this->stl.facet_start[*facet];
stl_facet_stats(&mesh->stl, this->stl.facet_start[*facet], first);
}
}
}
return meshes;
}
void TriangleMesh::merge(const TriangleMesh &mesh)
{
// reset stats and metadata
int number_of_facets = this->stl.stats.number_of_facets;
this->its.clear();
this->repaired = false;
// update facet count and allocate more memory
this->stl.stats.number_of_facets = number_of_facets + mesh.stl.stats.number_of_facets;
this->stl.stats.original_num_facets = this->stl.stats.number_of_facets;
stl_reallocate(&this->stl);
// copy facets
for (uint32_t i = 0; i < mesh.stl.stats.number_of_facets; ++ i)
this->stl.facet_start[number_of_facets + i] = mesh.stl.facet_start[i];
// update size
stl_get_size(&this->stl);
}
// Calculate projection of the mesh into the XY plane, in scaled coordinates.
//FIXME This could be extremely slow! Use it for tiny meshes only!
ExPolygons TriangleMesh::horizontal_projection() const
{
ClipperLib::Paths paths;
Polygon p;
p.points.assign(3, Point());
auto delta = scaled<float>(0.01);
std::vector<float> deltas { delta, delta, delta };
paths.reserve(this->stl.stats.number_of_facets);
for (const stl_facet &facet : this->stl.facet_start) {
p.points[0] = Point::new_scale(facet.vertex[0](0), facet.vertex[0](1));
p.points[1] = Point::new_scale(facet.vertex[1](0), facet.vertex[1](1));
p.points[2] = Point::new_scale(facet.vertex[2](0), facet.vertex[2](1));
p.make_counter_clockwise();
paths.emplace_back(mittered_offset_path_scaled(p.points, deltas, 3.));
}
// the offset factor was tuned using groovemount.stl
return ClipperPaths_to_Slic3rExPolygons(paths);
}
// 2D convex hull of a 3D mesh projected into the Z=0 plane.
Polygon TriangleMesh::convex_hull()
{
Points pp;
pp.reserve(this->its.vertices.size());
for (size_t i = 0; i < this->its.vertices.size(); ++ i) {
const stl_vertex &v = this->its.vertices[i];
pp.emplace_back(Point::new_scale(v(0), v(1)));
}
return Slic3r::Geometry::convex_hull(pp);
}
BoundingBoxf3 TriangleMesh::bounding_box() const
{
BoundingBoxf3 bb;
bb.defined = true;
bb.min = this->stl.stats.min.cast<double>();
bb.max = this->stl.stats.max.cast<double>();
return bb;
}
BoundingBoxf3 TriangleMesh::transformed_bounding_box(const Transform3d &trafo) const
{
BoundingBoxf3 bbox;
if (this->its.vertices.empty()) {
// Using the STL faces.
for (const stl_facet &facet : this->stl.facet_start)
for (size_t j = 0; j < 3; ++ j)
bbox.merge(trafo * facet.vertex[j].cast<double>());
} else {
// Using the shared vertices should be a bit quicker than using the STL faces.
for (const stl_vertex &v : this->its.vertices)
bbox.merge(trafo * v.cast<double>());
}
return bbox;
}
TriangleMesh TriangleMesh::convex_hull_3d() const
{
// The qhull call:
orgQhull::Qhull qhull;
qhull.disableOutputStream(); // we want qhull to be quiet
std::vector<realT> src_vertices;
try
{
if (this->has_shared_vertices()) {
#if REALfloat
qhull.runQhull("", 3, (int)this->its.vertices.size(), (const realT*)(this->its.vertices.front().data()), "Qt");
#else
src_vertices.reserve(this->its.vertices.size() * 3);
// We will now fill the vector with input points for computation:
for (const stl_vertex &v : this->its.vertices)
for (int i = 0; i < 3; ++ i)
src_vertices.emplace_back(v(i));
qhull.runQhull("", 3, (int)src_vertices.size() / 3, src_vertices.data(), "Qt");
#endif
} else {
src_vertices.reserve(this->stl.facet_start.size() * 9);
// We will now fill the vector with input points for computation:
for (const stl_facet &f : this->stl.facet_start)
for (int i = 0; i < 3; ++ i)
for (int j = 0; j < 3; ++ j)
src_vertices.emplace_back(f.vertex[i](j));
qhull.runQhull("", 3, (int)src_vertices.size() / 3, src_vertices.data(), "Qt");
}
}
catch (...)
{
std::cout << "Unable to create convex hull" << std::endl;
return TriangleMesh();
}
// Let's collect results:
Pointf3s dst_vertices;
std::vector<Vec3i> facets;
auto facet_list = qhull.facetList().toStdVector();
for (const orgQhull::QhullFacet& facet : facet_list)
{ // iterate through facets
orgQhull::QhullVertexSet vertices = facet.vertices();
for (int i = 0; i < 3; ++i)
{ // iterate through facet's vertices
orgQhull::QhullPoint p = vertices[i].point();
const auto* coords = p.coordinates();
dst_vertices.emplace_back(coords[0], coords[1], coords[2]);
}
unsigned int size = (unsigned int)dst_vertices.size();
facets.emplace_back(size - 3, size - 2, size - 1);
}
TriangleMesh output_mesh(dst_vertices, facets);
output_mesh.repair();
return output_mesh;
}
std::vector<ExPolygons> TriangleMesh::slice(const std::vector<double> &z) const
{
// convert doubles to floats
std::vector<float> z_f(z.begin(), z.end());
assert(this->has_shared_vertices());
return slice_mesh_ex(this->its, z_f, 0.0004f);
}
void TriangleMesh::require_shared_vertices()
{
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - start";
assert(stl_validate(&this->stl));
if (! this->repaired)
this->repair();
if (this->its.vertices.empty()) {
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - stl_generate_shared_vertices";
stl_generate_shared_vertices(&this->stl, this->its);
}
assert(stl_validate(&this->stl, this->its));
BOOST_LOG_TRIVIAL(trace) << "TriangleMeshSlicer::require_shared_vertices - end";
}
size_t TriangleMesh::memsize() const
{
size_t memsize = 8 + this->stl.memsize() + this->its.memsize();
return memsize;
}
// Release optional data from the mesh if the object is on the Undo / Redo stack only. Returns the amount of memory released.
size_t TriangleMesh::release_optional()
{
size_t memsize_released = sizeof(stl_neighbors) * this->stl.neighbors_start.size() + this->its.memsize();
// The indexed triangle set may be recalculated using the stl_generate_shared_vertices() function.
this->its.clear();
// The neighbors structure may be recalculated using the stl_check_facets_exact() function.
this->stl.neighbors_start.clear();
return memsize_released;
}
// Restore optional data possibly released by release_optional().
void TriangleMesh::restore_optional()
{
if (! this->stl.facet_start.empty()) {
// Save the old stats before calling stl_check_faces_exact, as it may modify the statistics.
stl_stats stats = this->stl.stats;
if (this->stl.neighbors_start.empty()) {
stl_reallocate(&this->stl);
stl_check_facets_exact(&this->stl);
}
if (this->its.vertices.empty())
stl_generate_shared_vertices(&this->stl, this->its);
// Restore the old statistics.
this->stl.stats = stats;
}
}
// Create a mapping from triangle edge into face.
struct EdgeToFace {
// Index of the 1st vertex of the triangle edge. vertex_low <= vertex_high.
int vertex_low;
// Index of the 2nd vertex of the triangle edge.
int vertex_high;
// Index of a triangular face.
int face;
// Index of edge in the face, starting with 1. Negative indices if the edge was stored reverse in (vertex_low, vertex_high).
int face_edge;
bool operator==(const EdgeToFace &other) const { return vertex_low == other.vertex_low && vertex_high == other.vertex_high; }
bool operator<(const EdgeToFace &other) const { return vertex_low < other.vertex_low || (vertex_low == other.vertex_low && vertex_high < other.vertex_high); }
};
template<typename FaceFilter, typename ThrowOnCancelCallback>
static std::vector<EdgeToFace> create_edge_map(
const indexed_triangle_set &its, FaceFilter face_filter, ThrowOnCancelCallback throw_on_cancel)
{
std::vector<EdgeToFace> edges_map;
edges_map.reserve(its.indices.size() * 3);
for (uint32_t facet_idx = 0; facet_idx < its.indices.size(); ++ facet_idx)
if (face_filter(facet_idx))
for (int i = 0; i < 3; ++ i) {
edges_map.push_back({});
EdgeToFace &e2f = edges_map.back();
e2f.vertex_low = its.indices[facet_idx][i];
e2f.vertex_high = its.indices[facet_idx][(i + 1) % 3];
e2f.face = facet_idx;
// 1 based indexing, to be always strictly positive.
e2f.face_edge = i + 1;
if (e2f.vertex_low > e2f.vertex_high) {
// Sort the vertices
std::swap(e2f.vertex_low, e2f.vertex_high);
// and make the face_edge negative to indicate a flipped edge.
e2f.face_edge = - e2f.face_edge;
}
}
throw_on_cancel();
std::sort(edges_map.begin(), edges_map.end());
return edges_map;
}
// Map from a face edge to a unique edge identifier or -1 if no neighbor exists.
// Two neighbor faces share a unique edge identifier even if they are flipped.
template<typename FaceFilter, typename ThrowOnCancelCallback>
static inline std::vector<Vec3i> its_face_edge_ids_impl(const indexed_triangle_set &its, FaceFilter face_filter, ThrowOnCancelCallback throw_on_cancel)
{
std::vector<Vec3i> out(its.indices.size(), Vec3i(-1, -1, -1));
std::vector<EdgeToFace> edges_map = create_edge_map(its, face_filter, throw_on_cancel);
// Assign a unique common edge id to touching triangle edges.
int num_edges = 0;
for (size_t i = 0; i < edges_map.size(); ++ i) {
EdgeToFace &edge_i = edges_map[i];
if (edge_i.face == -1)
// This edge has been connected to some neighbor already.
continue;
// Unconnected edge. Find its neighbor with the correct orientation.
size_t j;
bool found = false;
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edge_i.face_edge * edges_map[j].face_edge < 0 && edges_map[j].face != -1) {
// Faces touching with opposite oriented edges and none of the edges is connected yet.
found = true;
break;
}
if (! found) {
//FIXME Vojtech: Trying to find an edge with equal orientation. This smells.
// admesh can assign the same edge ID to more than two facets (which is
// still topologically correct), so we have to search for a duplicate of
// this edge too in case it was already seen in this orientation
for (j = i + 1; j < edges_map.size() && edge_i == edges_map[j]; ++ j)
if (edges_map[j].face != -1) {
// Faces touching with equally oriented edges and none of the edges is connected yet.
found = true;
break;
}
}
// Assign an edge index to the 1st face.
out[edge_i.face](std::abs(edge_i.face_edge) - 1) = num_edges;
if (found) {
EdgeToFace &edge_j = edges_map[j];
out[edge_j.face](std::abs(edge_j.face_edge) - 1) = num_edges;
// Mark the edge as connected.
edge_j.face = -1;
}
++ num_edges;
if ((i & 0x0ffff) == 0)
throw_on_cancel();
}
return out;
}
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its)
{
return its_face_edge_ids_impl(its, [](const uint32_t){ return true; }, [](){});
}
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, std::function<void()> throw_on_cancel_callback)
{
return its_face_edge_ids_impl(its, [](const uint32_t){ return true; }, throw_on_cancel_callback);
}
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, const std::vector<bool> &face_mask)
{
return its_face_edge_ids_impl(its, [&face_mask](const uint32_t idx){ return face_mask[idx]; }, [](){});
}
// Having the face neighbors available, assign unique edge IDs to face edges for chaining of polygons over slices.
std::vector<Vec3i> its_face_edge_ids(const indexed_triangle_set &its, std::vector<Vec3i> &face_neighbors, bool assign_unbound_edges, int *num_edges)
{
// out elements are not initialized!
std::vector<Vec3i> out(face_neighbors.size());
int last_edge_id = 0;
for (int i = 0; i < int(face_neighbors.size()); ++ i) {
const stl_triangle_vertex_indices &triangle = its.indices[i];
const Vec3i &neighbors = face_neighbors[i];
for (int j = 0; j < 3; ++ j) {
int n = neighbors[j];
if (n > i) {
const stl_triangle_vertex_indices &triangle2 = its.indices[n];
int edge_id = last_edge_id ++;
Vec2i edge = its_triangle_edge(triangle, j);
// First find an edge with opposite orientation.
std::swap(edge(0), edge(1));
int k = its_triangle_edge_index(triangle2, edge);
//FIXME is the following realistic? Could face_neighbors contain such faces?
// And if it does, do we want to produce the same edge ID for those mutually incorrectly oriented edges?
if (k == -1) {
// Second find an edge with the same orientation (the neighbor triangle may be flipped).
std::swap(edge(0), edge(1));
k = its_triangle_edge_index(triangle2, edge);
}
assert(k >= 0);
out[i](j) = edge_id;
out[n](k) = edge_id;
} else if (n == -1) {
out[i](j) = assign_unbound_edges ? last_edge_id ++ : -1;
} else {
// Triangle shall never be neighbor of itself.
assert(n < i);
// Don't do anything, the neighbor will assign us an edge ID in later iterations.
}
}
}
if (num_edges)
*num_edges = last_edge_id;
return out;
}
// Merge duplicate vertices, return number of vertices removed.
int its_merge_vertices(indexed_triangle_set &its, bool shrink_to_fit)
{
// 1) Sort indices to vertices lexicographically by coordinates AND vertex index.
auto sorted = reserve_vector<int>(its.vertices.size());
for (int i = 0; i < int(its.vertices.size()); ++ i)
sorted.emplace_back(i);
std::sort(sorted.begin(), sorted.end(), [&its](int il, int ir) {
const Vec3f &l = its.vertices[il];
const Vec3f &r = its.vertices[ir];
// Sort lexicographically by coordinates AND vertex index.
return l.x() < r.x() || (l.x() == r.x() && (l.y() < r.y() || (l.y() == r.y() && (l.z() < r.z() || (l.z() == r.z() && il < ir)))));
});
// 2) Map duplicate vertices to the one with the lowest vertex index.
// The vertex to stay will have a map_vertices[...] == -1 index assigned, the other vertices will point to it.
std::vector<int> map_vertices(its.vertices.size(), -1);
for (int i = 0; i < int(sorted.size());) {
const int u = sorted[i];
const Vec3f &p = its.vertices[u];
int j = i;
for (++ j; j < int(sorted.size()); ++ j) {
const int v = sorted[j];
const Vec3f &q = its.vertices[v];
if (p != q)
break;
assert(v > u);
map_vertices[v] = u;
}
i = j;
}
// 3) Shrink its.vertices, update map_vertices with the new vertex indices.
int k = 0;
for (int i = 0; i < int(its.vertices.size()); ++ i) {
if (map_vertices[i] == -1) {
map_vertices[i] = k;
if (k < i)
its.vertices[k] = its.vertices[i];
++ k;
} else {
assert(map_vertices[i] < i);
map_vertices[i] = map_vertices[map_vertices[i]];
}
}
int num_erased = int(its.vertices.size()) - k;
if (num_erased) {
// Shrink the vertices.
its.vertices.erase(its.vertices.begin() + k, its.vertices.end());
// Remap face indices.
for (stl_triangle_vertex_indices &face : its.indices)
for (int i = 0; i < 3; ++ i)
face(i) = map_vertices[face(i)];
// Optionally shrink to fit (reallocate) vertices.
if (shrink_to_fit)
its.vertices.shrink_to_fit();
}
return num_erased;
}
void its_flip_triangles(indexed_triangle_set &its)
{
for (stl_triangle_vertex_indices &face : its.indices)
std::swap(face(1), face(2));
}
int its_remove_degenerate_faces(indexed_triangle_set &its, bool shrink_to_fit)
{
int last = 0;
for (int i = 0; i < int(its.indices.size()); ++ i) {
const stl_triangle_vertex_indices &face = its.indices[i];
if (face(0) != face(1) && face(0) != face(2) && face(1) != face(2)) {
if (last < i)
its.indices[last] = its.indices[i];
++ last;
}
}
int removed = int(its.indices.size()) - last;
if (removed) {
its.indices.erase(its.indices.begin() + last, its.indices.end());
// Optionally shrink the vertices.
if (shrink_to_fit)
its.indices.shrink_to_fit();
}
return removed;
}
int its_compactify_vertices(indexed_triangle_set &its, bool shrink_to_fit)
{
// First used to mark referenced vertices, later used for mapping old vertex index to a new one.
std::vector<int> vertex_map(its.vertices.size(), 0);
// Mark referenced vertices.
for (const stl_triangle_vertex_indices &face : its.indices)
for (int i = 0; i < 3; ++ i)
vertex_map[face(i)] = 1;
// Compactify vertices, update map from old vertex index to a new one.
int last = 0;
for (int i = 0; i < int(vertex_map.size()); ++ i)
if (vertex_map[i]) {
if (last < i)
its.vertices[last] = its.vertices[i];
vertex_map[i] = last ++;
}
int removed = int(its.vertices.size()) - last;
if (removed) {
its.vertices.erase(its.vertices.begin() + last, its.vertices.end());
// Update faces with the new vertex indices.
for (stl_triangle_vertex_indices &face : its.indices)
for (int i = 0; i < 3; ++ i)
face(i) = vertex_map[face(i)];
// Optionally shrink the vertices.
if (shrink_to_fit)
its.vertices.shrink_to_fit();
}
return removed;
}
void its_shrink_to_fit(indexed_triangle_set &its)
{
its.indices.shrink_to_fit();
its.vertices.shrink_to_fit();
}
template<typename TransformVertex>
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const TransformVertex &transform_fn, const float z, Points &all_pts)
{
all_pts.reserve(all_pts.size() + its.indices.size() * 3);
for (const stl_triangle_vertex_indices &tri : its.indices) {
const Vec3f pts[3] = { transform_fn(its.vertices[tri(0)]), transform_fn(its.vertices[tri(1)]), transform_fn(its.vertices[tri(2)]) };
int iprev = 2;
for (int iedge = 0; iedge < 3; ++ iedge) {
const Vec3f &p1 = pts[iprev];
const Vec3f &p2 = pts[iedge];
if ((p1.z() < z && p2.z() > z) || (p2.z() < z && p1.z() > z)) {
// Edge crosses the z plane. Calculate intersection point with the plane.
float t = (z - p1.z()) / (p2.z() - p1.z());
all_pts.emplace_back(scaled<coord_t>(p1.x() + (p2.x() - p1.x()) * t), scaled<coord_t>(p1.y() + (p2.y() - p1.y()) * t));
}
if (p2.z() >= z)
all_pts.emplace_back(scaled<coord_t>(p2.x()), scaled<coord_t>(p2.y()));
iprev = iedge;
}
}
}
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Matrix3f &m, const float z, Points &all_pts)
{
return its_collect_mesh_projection_points_above(its, [m](const Vec3f &p){ return m * p; }, z, all_pts);
}
void its_collect_mesh_projection_points_above(const indexed_triangle_set &its, const Transform3f &t, const float z, Points &all_pts)
{
return its_collect_mesh_projection_points_above(its, [t](const Vec3f &p){ return t * p; }, z, all_pts);
}
template<typename TransformVertex>
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const TransformVertex &transform_fn, const float z)
{
Points all_pts;
its_collect_mesh_projection_points_above(its, transform_fn, z, all_pts);
return Geometry::convex_hull(std::move(all_pts));
}
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Matrix3f &m, const float z)
{
return its_convex_hull_2d_above(its, [m](const Vec3f &p){ return m * p; }, z);
}
Polygon its_convex_hull_2d_above(const indexed_triangle_set &its, const Transform3f &t, const float z)
{
return its_convex_hull_2d_above(its, [t](const Vec3f &p){ return t * p; }, z);
}
// Generate the vertex list for a cube solid of arbitrary size in X/Y/Z.
indexed_triangle_set its_make_cube(double xd, double yd, double zd)
{
auto x = float(xd), y = float(yd), z = float(zd);
indexed_triangle_set mesh;
mesh.vertices = {{x, y, 0}, {x, 0, 0}, {0, 0, 0}, {0, y, 0},
{x, y, z}, {0, y, z}, {0, 0, z}, {x, 0, z}};
mesh.indices = {{0, 1, 2}, {0, 2, 3}, {4, 5, 6}, {4, 6, 7},
{0, 4, 7}, {0, 7, 1}, {1, 7, 6}, {1, 6, 2},
{2, 6, 5}, {2, 5, 3}, {4, 0, 3}, {4, 3, 5}};
return mesh;
}
TriangleMesh make_cube(double x, double y, double z)
{
TriangleMesh mesh(its_make_cube(x, y, z));
mesh.repair();
return mesh;
}
// Generate the mesh for a cylinder and return it, using
// the generated angle to calculate the top mesh triangles.
// Default is 360 sides, angle fa is in radians.
indexed_triangle_set its_make_cylinder(double r, double h, double fa)
{
indexed_triangle_set mesh;
size_t n_steps = (size_t)ceil(2. * PI / fa);
double angle_step = 2. * PI / n_steps;
auto &vertices = mesh.vertices;
auto &facets = mesh.indices;
vertices.reserve(2 * n_steps + 2);
facets.reserve(4 * n_steps);
// 2 special vertices, top and bottom center, rest are relative to this
vertices.emplace_back(Vec3f(0.f, 0.f, 0.f));
vertices.emplace_back(Vec3f(0.f, 0.f, float(h)));
// for each line along the polygon approximating the top/bottom of the
// circle, generate four points and four facets (2 for the wall, 2 for the
// top and bottom.
// Special case: Last line shares 2 vertices with the first line.
Vec2f p = Eigen::Rotation2Df(0.f) * Eigen::Vector2f(0, r);
vertices.emplace_back(Vec3f(p(0), p(1), 0.f));
vertices.emplace_back(Vec3f(p(0), p(1), float(h)));
for (size_t i = 1; i < n_steps; ++i) {
p = Eigen::Rotation2Df(angle_step * i) * Eigen::Vector2f(0, float(r));
vertices.emplace_back(Vec3f(p(0), p(1), 0.f));
vertices.emplace_back(Vec3f(p(0), p(1), float(h)));
int id = (int)vertices.size() - 1;
facets.emplace_back( 0, id - 1, id - 3); // top
facets.emplace_back(id, 1, id - 2); // bottom
facets.emplace_back(id, id - 2, id - 3); // upper-right of side
facets.emplace_back(id, id - 3, id - 1); // bottom-left of side
}
// Connect the last set of vertices with the first.
int id = (int)vertices.size() - 1;
facets.emplace_back( 0, 2, id - 1);
facets.emplace_back( 3, 1, id);
facets.emplace_back(id, 2, 3);
facets.emplace_back(id, id - 1, 2);
return mesh;
}
TriangleMesh make_cylinder(double r, double h, double fa)
{
TriangleMesh mesh{its_make_cylinder(r, h, fa)};
mesh.repair();
return mesh;
}
TriangleMesh make_cone(double r, double h, double fa)
{
Pointf3s vertices;
std::vector<Vec3i> facets;
vertices.reserve(3+size_t(2*PI/fa));
vertices.reserve(3+2*size_t(2*PI/fa));
vertices = { Vec3d::Zero(), Vec3d(0., 0., h) }; // base center and top vertex
size_t i = 0;
for (double angle=0; angle<2*PI; angle+=fa) {
vertices.emplace_back(r*std::cos(angle), r*std::sin(angle), 0.);
if (angle > 0.) {
facets.emplace_back(0, i+2, i+1);
facets.emplace_back(1, i+1, i+2);
}
++i;
}
facets.emplace_back(0, 2, i+1); // close the shape
facets.emplace_back(1, i+1, 2);
TriangleMesh mesh(std::move(vertices), std::move(facets));
mesh.repair();
return mesh;
}
// Generates mesh for a sphere centered about the origin, using the generated angle
// to determine the granularity.
// Default angle is 1 degree.
//FIXME better to discretize an Icosahedron recursively http://www.songho.ca/opengl/gl_sphere.html
indexed_triangle_set its_make_sphere(double radius, double fa)
{
int sectorCount = int(ceil(2. * M_PI / fa));
int stackCount = int(ceil(M_PI / fa));
float sectorStep = float(2. * M_PI / sectorCount);
float stackStep = float(M_PI / stackCount);
indexed_triangle_set mesh;
auto& vertices = mesh.vertices;
vertices.reserve((stackCount - 1) * sectorCount + 2);
for (int i = 0; i <= stackCount; ++ i) {
// from pi/2 to -pi/2
double stackAngle = 0.5 * M_PI - stackStep * i;
double xy = radius * cos(stackAngle);
double z = radius * sin(stackAngle);
if (i == 0 || i == stackCount)
vertices.emplace_back(Vec3f(float(xy), 0.f, float(z)));
else
for (int j = 0; j < sectorCount; ++ j) {
// from 0 to 2pi
double sectorAngle = sectorStep * j;
vertices.emplace_back(Vec3d(xy * std::cos(sectorAngle), xy * std::sin(sectorAngle), z).cast<float>());
}
}
auto& facets = mesh.indices;
facets.reserve(2 * (stackCount - 1) * sectorCount);
for (int i = 0; i < stackCount; ++ i) {
// Beginning of current stack.
int k1 = (i == 0) ? 0 : (1 + (i - 1) * sectorCount);
int k1_first = k1;
// Beginning of next stack.
int k2 = (i == 0) ? 1 : (k1 + sectorCount);
int k2_first = k2;
for (int j = 0; j < sectorCount; ++ j) {
// 2 triangles per sector excluding first and last stacks
int k1_next = k1;
int k2_next = k2;
if (i != 0) {
k1_next = (j + 1 == sectorCount) ? k1_first : (k1 + 1);
facets.emplace_back(k1, k2, k1_next);
}
if (i + 1 != stackCount) {
k2_next = (j + 1 == sectorCount) ? k2_first : (k2 + 1);
facets.emplace_back(k1_next, k2, k2_next);
}
k1 = k1_next;
k2 = k2_next;
}
}
return mesh;
}
TriangleMesh make_sphere(double radius, double fa)
{
TriangleMesh mesh(its_make_sphere(radius, fa));
mesh.repair();
return mesh;
}
void its_merge(indexed_triangle_set &A, const indexed_triangle_set &B)
{
auto N = int(A.vertices.size());
auto N_f = A.indices.size();
A.vertices.insert(A.vertices.end(), B.vertices.begin(), B.vertices.end());
A.indices.insert(A.indices.end(), B.indices.begin(), B.indices.end());
for(size_t n = N_f; n < A.indices.size(); n++)
A.indices[n] += Vec3i{N, N, N};
}
void its_merge(indexed_triangle_set &A, const std::vector<Vec3f> &triangles)
{
const size_t offs = A.vertices.size();
A.vertices.insert(A.vertices.end(), triangles.begin(), triangles.end());
A.indices.reserve(A.indices.size() + A.vertices.size() / 3);
for(int i = int(offs); i < int(A.vertices.size()); i += 3)
A.indices.emplace_back(i, i + 1, i + 2);
}
void its_merge(indexed_triangle_set &A, const Pointf3s &triangles)
{
auto trianglesf = reserve_vector<Vec3f> (triangles.size());
for (auto &t : triangles)
trianglesf.emplace_back(t.cast<float>());
its_merge(A, trianglesf);
}
float its_volume(const indexed_triangle_set &its)
{
if (its.empty()) return 0.;
// Choose a point, any point as the reference.
auto p0 = its.vertices.front();
float volume = 0.f;
for (size_t i = 0; i < its.indices.size(); ++ i) {
// Do dot product to get distance from point to plane.
its_triangle triangle = its_triangle_vertices(its, i);
Vec3f U = triangle[1] - triangle[0];
Vec3f V = triangle[2] - triangle[0];
Vec3f C = U.cross(V);
Vec3f normal = C.normalized();
float area = 0.5 * C.norm();
float height = normal.dot(triangle[0] - p0);
volume += (area * height) / 3.0f;
}
return volume;
}
std::vector<indexed_triangle_set> its_split(const indexed_triangle_set &its)
{
return its_split<>(its);
}
bool its_is_splittable(const indexed_triangle_set &its)
{
return its_is_splittable<>(its);
}
void VertexFaceIndex::create(const indexed_triangle_set &its)
{
m_vertex_to_face_start.assign(its.vertices.size() + 1, 0);
// 1) Calculate vertex incidence by scatter.
for (auto &face : its.indices) {
++ m_vertex_to_face_start[face(0) + 1];
++ m_vertex_to_face_start[face(1) + 1];
++ m_vertex_to_face_start[face(2) + 1];
}
// 2) Prefix sum to calculate offsets to m_vertex_faces_all.
for (size_t i = 2; i < m_vertex_to_face_start.size(); ++ i)
m_vertex_to_face_start[i] += m_vertex_to_face_start[i - 1];
// 3) Scatter indices of faces incident to a vertex into m_vertex_faces_all.
m_vertex_faces_all.assign(m_vertex_to_face_start.back(), 0);
for (size_t face_idx = 0; face_idx < its.indices.size(); ++ face_idx) {
auto &face = its.indices[face_idx];
for (int i = 0; i < 3; ++ i)
m_vertex_faces_all[m_vertex_to_face_start[face(i)] ++] = face_idx;
}
// 4) The previous loop modified m_vertex_to_face_start. Revert the change.
for (auto i = int(m_vertex_to_face_start.size()) - 1; i > 0; -- i)
m_vertex_to_face_start[i] = m_vertex_to_face_start[i - 1];
m_vertex_to_face_start.front() = 0;
}
std::vector<Vec3i> its_face_neighbors(const indexed_triangle_set &its)
{
return create_face_neighbors_index(ex_seq, its);
}
std::vector<Vec3i> its_face_neighbors_par(const indexed_triangle_set &its)
{
return create_face_neighbors_index(ex_tbb, its);
}
} // namespace Slic3r