PrusaSlicer-NonPlainar/src/libslic3r/SLAPrint.cpp

984 lines
40 KiB
C++

#include "SLAPrint.hpp"
#include "SLA/SLASupportTree.hpp"
#include "SLA/SLABasePool.hpp"
#include <tbb/parallel_for.h>
#include <boost/log/trivial.hpp>
//#include <tbb/spin_mutex.h>//#include "tbb/mutex.h"
#include "I18N.hpp"
//! macro used to mark string used at localization,
//! return same string
#define L(s) Slic3r::I18N::translate(s)
namespace Slic3r {
using SlicedModel = SlicedSupports;
using SupportTreePtr = std::unique_ptr<sla::SLASupportTree>;
class SLAPrintObject::SupportData {
public:
sla::EigenMesh3D emesh; // index-triangle representation
sla::PointSet support_points; // all the support points (manual/auto)
SupportTreePtr support_tree_ptr; // the supports
SlicedSupports support_slices; // sliced supports
};
namespace {
const std::array<unsigned, slaposCount> OBJ_STEP_LEVELS =
{
0,
20,
30,
50,
70,
90
};
const std::array<std::string, slaposCount> OBJ_STEP_LABELS =
{
L("Slicing model"), // slaposObjectSlice,
L("Generating islands"), // slaposSupportIslands,
L("Scanning model structure"), // slaposSupportPoints,
L("Generating support tree"), // slaposSupportTree,
L("Generating base pool"), // slaposBasePool,
L("Slicing supports") // slaposSliceSupports,
};
const std::array<unsigned, slapsCount> PRINT_STEP_LEVELS =
{
// This is after processing all the Print objects, so we start from 50%
50, // slapsRasterize
90, // slapsValidate
};
const std::array<std::string, slapsCount> PRINT_STEP_LABELS =
{
L("Rasterizing layers"), // slapsRasterize
L("Validating"), // slapsValidate
};
}
void SLAPrint::clear()
{
tbb::mutex::scoped_lock lock(this->state_mutex());
// The following call should stop background processing if it is running.
this->invalidate_all_steps();
for (SLAPrintObject *object : m_objects) delete object;
m_objects.clear();
}
// Transformation without rotation around Z and without a shift by X and Y.
static Transform3d sla_trafo(const ModelObject &model_object)
{
ModelInstance &model_instance = *model_object.instances.front();
Vec3d offset = model_instance.get_offset();
Vec3d rotation = model_instance.get_rotation();
offset(0) = 0.;
offset(1) = 0.;
rotation(2) = 0.;
return Geometry::assemble_transform(offset, rotation, model_instance.get_scaling_factor(), model_instance.get_mirror());
}
// List of instances, where the ModelInstance transformation is a composite of sla_trafo and the transformation defined by SLAPrintObject::Instance.
static std::vector<SLAPrintObject::Instance> sla_instances(const ModelObject &model_object)
{
std::vector<SLAPrintObject::Instance> instances;
for (ModelInstance *model_instance : model_object.instances)
if (model_instance->is_printable()) {
instances.emplace_back(SLAPrintObject::Instance(
model_instance->id(),
Point::new_scale(model_instance->get_offset(X), model_instance->get_offset(Y)),
float(model_instance->get_rotation(Z))));
}
return instances;
}
SLAPrint::ApplyStatus SLAPrint::apply(const Model &model,
const DynamicPrintConfig &config_in)
{
#ifdef _DEBUG
check_model_ids_validity(model);
#endif /* _DEBUG */
// Make a copy of the config, normalize it.
DynamicPrintConfig config(config_in);
config.normalize();
// Collect changes to print config.
t_config_option_keys printer_diff = m_printer_config.diff(config);
t_config_option_keys material_diff = m_material_config.diff(config);
t_config_option_keys object_diff = m_default_object_config.diff(config);
// Do not use the ApplyStatus as we will use the max function when updating apply_status.
unsigned int apply_status = APPLY_STATUS_UNCHANGED;
auto update_apply_status = [&apply_status](bool invalidated)
{ apply_status = std::max<unsigned int>(apply_status, invalidated ? APPLY_STATUS_INVALIDATED : APPLY_STATUS_CHANGED); };
if (! (printer_diff.empty() && material_diff.empty() && object_diff.empty()))
update_apply_status(false);
// Grab the lock for the Print / PrintObject milestones.
tbb::mutex::scoped_lock lock(this->state_mutex());
// The following call may stop the background processing.
update_apply_status(this->invalidate_state_by_config_options(printer_diff));
update_apply_status(this->invalidate_state_by_config_options(material_diff));
// It is also safe to change m_config now after this->invalidate_state_by_config_options() call.
m_printer_config.apply_only(config, printer_diff, true);
// Handle changes to material config.
m_material_config.apply_only(config, material_diff, true);
// Handle changes to object config defaults
m_default_object_config.apply_only(config, object_diff, true);
struct ModelObjectStatus {
enum Status {
Unknown,
Old,
New,
Moved,
Deleted,
};
ModelObjectStatus(ModelID id, Status status = Unknown) : id(id), status(status) {}
ModelID id;
Status status;
// Search by id.
bool operator<(const ModelObjectStatus &rhs) const { return id < rhs.id; }
};
std::set<ModelObjectStatus> model_object_status;
// 1) Synchronize model objects.
if (model.id() != m_model.id()) {
// Kill everything, initialize from scratch.
// Stop background processing.
this->call_cancell_callback();
update_apply_status(this->invalidate_all_steps());
for (SLAPrintObject *object : m_objects) {
model_object_status.emplace(object->model_object()->id(), ModelObjectStatus::Deleted);
delete object;
}
m_objects.clear();
m_model.assign_copy(model);
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::New);
} else {
if (model_object_list_equal(m_model, model)) {
// The object list did not change.
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
} else if (model_object_list_extended(m_model, model)) {
// Add new objects. Their volumes and configs will be synchronized later.
update_apply_status(this->invalidate_step(slapsRasterize));
for (const ModelObject *model_object : m_model.objects)
model_object_status.emplace(model_object->id(), ModelObjectStatus::Old);
for (size_t i = m_model.objects.size(); i < model.objects.size(); ++ i) {
model_object_status.emplace(model.objects[i]->id(), ModelObjectStatus::New);
m_model.objects.emplace_back(ModelObject::new_copy(*model.objects[i]));
m_model.objects.back()->set_model(&m_model);
}
} else {
// Reorder the objects, add new objects.
// First stop background processing before shuffling or deleting the PrintObjects in the object list.
this->call_cancell_callback();
update_apply_status(this->invalidate_step(slapsRasterize));
// Second create a new list of objects.
std::vector<ModelObject*> model_objects_old(std::move(m_model.objects));
m_model.objects.clear();
m_model.objects.reserve(model.objects.size());
auto by_id_lower = [](const ModelObject *lhs, const ModelObject *rhs){ return lhs->id() < rhs->id(); };
std::sort(model_objects_old.begin(), model_objects_old.end(), by_id_lower);
for (const ModelObject *mobj : model.objects) {
auto it = std::lower_bound(model_objects_old.begin(), model_objects_old.end(), mobj, by_id_lower);
if (it == model_objects_old.end() || (*it)->id() != mobj->id()) {
// New ModelObject added.
m_model.objects.emplace_back(ModelObject::new_copy(*mobj));
m_model.objects.back()->set_model(&m_model);
model_object_status.emplace(mobj->id(), ModelObjectStatus::New);
} else {
// Existing ModelObject re-added (possibly moved in the list).
m_model.objects.emplace_back(*it);
model_object_status.emplace(mobj->id(), ModelObjectStatus::Moved);
}
}
bool deleted_any = false;
for (ModelObject *&model_object : model_objects_old) {
if (model_object_status.find(ModelObjectStatus(model_object->id())) == model_object_status.end()) {
model_object_status.emplace(model_object->id(), ModelObjectStatus::Deleted);
deleted_any = true;
} else
// Do not delete this ModelObject instance.
model_object = nullptr;
}
if (deleted_any) {
// Delete PrintObjects of the deleted ModelObjects.
std::vector<SLAPrintObject*> print_objects_old = std::move(m_objects);
m_objects.clear();
m_objects.reserve(print_objects_old.size());
for (SLAPrintObject *print_object : print_objects_old) {
auto it_status = model_object_status.find(ModelObjectStatus(print_object->model_object()->id()));
assert(it_status != model_object_status.end());
if (it_status->status == ModelObjectStatus::Deleted) {
update_apply_status(print_object->invalidate_all_steps());
delete print_object;
} else
m_objects.emplace_back(print_object);
}
for (ModelObject *model_object : model_objects_old)
delete model_object;
}
}
}
// 2) Map print objects including their transformation matrices.
struct PrintObjectStatus {
enum Status {
Unknown,
Deleted,
Reused,
New
};
PrintObjectStatus(SLAPrintObject *print_object, Status status = Unknown) :
id(print_object->model_object()->id()),
print_object(print_object),
trafo(print_object->trafo()),
status(status) {}
PrintObjectStatus(ModelID id) : id(id), print_object(nullptr), trafo(Transform3d::Identity()), status(Unknown) {}
// ID of the ModelObject & PrintObject
ModelID id;
// Pointer to the old PrintObject
SLAPrintObject *print_object;
// Trafo generated with model_object->world_matrix(true)
Transform3d trafo;
Status status;
// Search by id.
bool operator<(const PrintObjectStatus &rhs) const { return id < rhs.id; }
};
std::multiset<PrintObjectStatus> print_object_status;
for (SLAPrintObject *print_object : m_objects)
print_object_status.emplace(PrintObjectStatus(print_object));
// 3) Synchronize ModelObjects & PrintObjects.
std::vector<SLAPrintObject*> print_objects_new;
print_objects_new.reserve(std::max(m_objects.size(), m_model.objects.size()));
bool new_objects = false;
for (size_t idx_model_object = 0; idx_model_object < model.objects.size(); ++ idx_model_object) {
ModelObject &model_object = *m_model.objects[idx_model_object];
auto it_status = model_object_status.find(ModelObjectStatus(model_object.id()));
assert(it_status != model_object_status.end());
assert(it_status->status != ModelObjectStatus::Deleted);
if (it_status->status == ModelObjectStatus::New)
// PrintObject instances will be added in the next loop.
continue;
// Update the ModelObject instance, possibly invalidate the linked PrintObjects.
assert(it_status->status == ModelObjectStatus::Old || it_status->status == ModelObjectStatus::Moved);
const ModelObject &model_object_new = *model.objects[idx_model_object];
auto it_print_object_status = print_object_status.lower_bound(PrintObjectStatus(model_object.id()));
if (it_print_object_status != print_object_status.end() && it_print_object_status->id != model_object.id())
it_print_object_status = print_object_status.end();
// Check whether a model part volume was added or removed, their transformations or order changed.
bool model_parts_differ = model_volume_list_changed(model_object, model_object_new, ModelVolume::MODEL_PART);
bool sla_trafo_differs = model_object.instances.empty() != model_object_new.instances.empty() ||
(! model_object.instances.empty() && ! sla_trafo(model_object).isApprox(sla_trafo(model_object_new)));
if (model_parts_differ || sla_trafo_differs) {
// The very first step (the slicing step) is invalidated. One may freely remove all associated PrintObjects.
if (it_print_object_status != print_object_status.end()) {
update_apply_status(it_print_object_status->print_object->invalidate_all_steps());
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Deleted;
}
// Copy content of the ModelObject including its ID, do not change the parent.
model_object.assign_copy(model_object_new);
} else {
// Synchronize Object's config.
bool object_config_changed = model_object.config != model_object_new.config;
if (object_config_changed)
model_object.config = model_object_new.config;
if (! object_diff.empty() || object_config_changed) {
SLAPrintObjectConfig new_config = m_default_object_config;
normalize_and_apply_config(new_config, model_object.config);
if (it_print_object_status != print_object_status.end()) {
t_config_option_keys diff = it_print_object_status->print_object->config().diff(new_config);
if (! diff.empty()) {
update_apply_status(it_print_object_status->print_object->invalidate_state_by_config_options(diff));
it_print_object_status->print_object->config_apply_only(new_config, diff, true);
}
}
}
if (model_object.sla_support_points != model_object_new.sla_support_points) {
model_object.sla_support_points = model_object_new.sla_support_points;
if (it_print_object_status != print_object_status.end())
update_apply_status(it_print_object_status->print_object->invalidate_step(slaposSupportPoints));
}
// Copy the ModelObject name, input_file and instances. The instances will compared against PrintObject instances in the next step.
model_object.name = model_object_new.name;
model_object.input_file = model_object_new.input_file;
model_object.clear_instances();
model_object.instances.reserve(model_object_new.instances.size());
for (const ModelInstance *model_instance : model_object_new.instances) {
model_object.instances.emplace_back(new ModelInstance(*model_instance));
model_object.instances.back()->set_model_object(&model_object);
}
}
std::vector<SLAPrintObject::Instance> new_instances = sla_instances(model_object);
if (it_print_object_status != print_object_status.end() && it_print_object_status->status != PrintObjectStatus::Deleted) {
// The SLAPrintObject is already there.
if (new_instances != it_print_object_status->print_object->instances()) {
// Instances changed.
it_print_object_status->print_object->set_instances(new_instances);
update_apply_status(this->invalidate_step(slapsRasterize));
}
print_objects_new.emplace_back(it_print_object_status->print_object);
const_cast<PrintObjectStatus&>(*it_print_object_status).status = PrintObjectStatus::Reused;
} else {
auto print_object = new SLAPrintObject(this, &model_object);
print_object->set_trafo(sla_trafo(model_object));
print_object->set_instances(new_instances);
print_object->config_apply(config, true);
print_objects_new.emplace_back(print_object);
new_objects = true;
}
}
if (m_objects != print_objects_new) {
this->call_cancell_callback();
update_apply_status(this->invalidate_all_steps());
m_objects = print_objects_new;
// Delete the PrintObjects marked as Unknown or Deleted.
bool deleted_objects = false;
for (auto &pos : print_object_status)
if (pos.status == PrintObjectStatus::Unknown || pos.status == PrintObjectStatus::Deleted) {
// update_apply_status(pos.print_object->invalidate_all_steps());
delete pos.print_object;
deleted_objects = true;
}
update_apply_status(new_objects);
}
#ifdef _DEBUG
check_model_ids_equal(m_model, model);
#endif /* _DEBUG */
return static_cast<ApplyStatus>(apply_status);
}
void SLAPrint::process()
{
using namespace sla;
// Assumption: at this point the print objects should be populated only with
// the model objects we have to process and the instances are also filtered
// shortcut to initial layer height
double ilhd = m_material_config.initial_layer_height.getFloat();
auto ilh = float(ilhd);
// The slicing will be performed on an imaginary 1D grid which starts from
// the bottom of the bounding box created around the supported model. So
// the first layer which is usually thicker will be part of the supports
// not the model geometry. Exception is when the model is not in the air
// (elevation is zero) and no pad creation was requested. In this case the
// model geometry starts on the ground level and the initial layer is part
// of it. In any case, the model and the supports have to be sliced in the
// same imaginary grid (the height vector argument to TriangleMeshSlicer).
// Slicing the model object. This method is oversimplified and needs to
// be compared with the fff slicing algorithm for verification
auto slice_model = [this, ilh, ilhd](SLAPrintObject& po) {
double lh = po.m_config.layer_height.getFloat();
TriangleMesh mesh = po.transformed_mesh();
TriangleMeshSlicer slicer(&mesh);
auto bb3d = mesh.bounding_box();
double elevation = po.get_elevation();
float minZ = float(bb3d.min(Z)) - float(elevation);
float maxZ = float(bb3d.max(Z)) ;
auto flh = float(lh);
auto gnd = float(bb3d.min(Z));
std::vector<float> heights;
// The first layer (the one before the initial height) is added only
// if there is no pad and no elevation value
if(minZ >= gnd) heights.emplace_back(minZ);
for(float h = minZ + ilh; h < maxZ; h += flh)
if(h >= gnd) heights.emplace_back(h);
auto& layers = po.m_model_slices;
slicer.slice(heights, &layers, [this](){ throw_if_canceled(); });
};
auto support_points = [](SLAPrintObject& po) {
ModelObject& mo = *po.m_model_object;
if(!mo.sla_support_points.empty()) {
po.m_supportdata.reset(new SLAPrintObject::SupportData());
po.m_supportdata->emesh = sla::to_eigenmesh(po.transformed_mesh());
po.m_supportdata->support_points =
sla::to_point_set(po.transformed_support_points());
}
// for(SLAPrintObject *po : pobjects) {
// TODO: calculate automatic support points
// po->m_supportdata->slice_cache contains the slices at this point
//}
};
// In this step we create the supports
auto support_tree = [this](SLAPrintObject& po) {
if(!po.m_supportdata) return;
auto& emesh = po.m_supportdata->emesh;
auto& pts = po.m_supportdata->support_points; // nowhere filled yet
try {
sla::SupportConfig scfg;
SLAPrintObjectConfig& c = po.m_config;
scfg.head_front_radius_mm = c.support_head_front_radius.getFloat();
scfg.head_back_radius_mm = c.support_head_back_radius.getFloat();
scfg.head_penetration_mm = c.support_head_penetration.getFloat();
scfg.head_width_mm = c.support_head_width.getFloat();
scfg.object_elevation_mm = c.support_object_elevation.getFloat();
scfg.tilt = c.support_critical_angle.getFloat() * PI / 180.0 ;
scfg.max_bridge_length_mm = c.support_max_bridge_length.getFloat();
scfg.pillar_radius_mm = c.support_pillar_radius.getFloat();
sla::Controller ctl;
ctl.statuscb = [this](unsigned st, const std::string& msg) {
unsigned stinit = OBJ_STEP_LEVELS[slaposSupportTree];
double d = (OBJ_STEP_LEVELS[slaposBasePool] - stinit) / 100.0;
set_status(unsigned(stinit + st*d), msg);
};
ctl.stopcondition = [this](){ return canceled(); };
ctl.cancelfn = [this]() { throw_if_canceled(); };
po.m_supportdata->support_tree_ptr.reset(
new SLASupportTree(pts, emesh, scfg, ctl));
} catch(sla::SLASupportsStoppedException&) {
// no need to rethrow
// throw_if_canceled();
}
};
// This step generates the sla base pad
auto base_pool = [](SLAPrintObject& po) {
// this step can only go after the support tree has been created
// and before the supports had been sliced. (or the slicing has to be
// repeated)
if(po.is_step_done(slaposSupportTree) &&
po.m_config.pad_enable.getBool() &&
po.m_supportdata &&
po.m_supportdata->support_tree_ptr)
{
double wt = po.m_config.pad_wall_thickness.getFloat();
double h = po.m_config.pad_wall_height.getFloat();
double md = po.m_config.pad_max_merge_distance.getFloat();
double er = po.m_config.pad_edge_radius.getFloat();
double lh = po.m_config.layer_height.getFloat();
double elevation = po.m_config.support_object_elevation.getFloat();
sla::PoolConfig pcfg(wt, h, md, er);
sla::ExPolygons bp;
double pad_h = sla::get_pad_elevation(pcfg);
if(elevation < pad_h) sla::base_plate(po.transformed_mesh(), bp,
float(pad_h), float(lh));
po.m_supportdata->support_tree_ptr->add_pad(bp, wt, h, md, er);
}
};
// Slicing the support geometries similarly to the model slicing procedure.
// If the pad had been added previously (see step "base_pool" than it will
// be part of the slices)
auto slice_supports = [ilh](SLAPrintObject& po) {
auto& sd = po.m_supportdata;
if(sd && sd->support_tree_ptr) {
auto lh = float(po.m_config.layer_height.getFloat());
sd->support_slices = sd->support_tree_ptr->slice(lh, ilh);
}
};
// Rasterizing the model objects, and their supports
auto rasterize = [this, ilh, ilhd]() {
using Layer = sla::ExPolygons;
using LayerCopies = std::vector<SLAPrintObject::Instance>;
struct LayerRef {
std::reference_wrapper<const Layer> lref;
std::reference_wrapper<const LayerCopies> copies;
LayerRef(const Layer& lyr, const LayerCopies& cp) :
lref(std::cref(lyr)), copies(std::cref(cp)) {}
};
using LevelID = long long;
using LayerRefs = std::vector<LayerRef>;
// layers according to quantized height levels
std::map<LevelID, LayerRefs> levels;
auto sih = LevelID(scale_(ilh));
// For all print objects, go through its initial layers and place them
// into the layers hash
for(SLAPrintObject *o : m_objects) {
auto bb = o->transformed_mesh().bounding_box();
double modelgnd = bb.min(Z);
double elevation = o->get_elevation();
double lh = o->m_config.layer_height.getFloat();
double minZ = modelgnd - elevation;
// scaled values:
auto sminZ = LevelID(scale_(minZ));
auto smaxZ = LevelID(scale_(bb.max(Z)));
auto smodelgnd = LevelID(scale_(modelgnd));
auto slh = LevelID(scale_(lh));
// It is important that the next levels math the levels in
// model_slice method. Only difference is that here it works with
// scaled coordinates
std::vector<LevelID> levelids;
if(sminZ >= smodelgnd) levelids.emplace_back(sminZ);
for(LevelID h = sminZ + sih; h < smaxZ; h += slh)
if(h >= smodelgnd) levelids.emplace_back(h);
SlicedModel & oslices = o->m_model_slices;
// If everything went well this code should not run at all, but
// let's be robust...
assert(levelids.size() == oslices.size());
if(levelids.size() < oslices.size()) { // extend the levels until...
BOOST_LOG_TRIVIAL(warning)
<< "Height level mismatch at rasterization!\n";
LevelID lastlvl = levelids.back();
while(levelids.size() < oslices.size()) {
lastlvl += slh;
levelids.emplace_back(lastlvl);
}
}
for(int i = 0; i < oslices.size(); ++i) {
LevelID h = levelids[i];
auto& lyrs = levels[h]; // this initializes a new record
lyrs.emplace_back(oslices[i], o->m_instances);
}
if(o->m_supportdata) { // deal with the support slices if present
auto& sslices = o->m_supportdata->support_slices;
for(int i = 0; i < sslices.size(); ++i) {
int a = i == 0 ? 0 : 1;
int b = i == 0 ? 0 : i - 1;
LevelID h = sminZ + a * sih + b * slh;
auto& lyrs = levels[h];
lyrs.emplace_back(sslices[i], o->m_instances);
}
}
}
if(canceled()) return;
// collect all the keys
std::vector<long long> keys; keys.reserve(levels.size());
for(auto& e : levels) keys.emplace_back(e.first);
{ // create a raster printer for the current print parameters
// I don't know any better
auto& ocfg = m_objects.front()->m_config;
auto& matcfg = m_material_config;
auto& printcfg = m_printer_config;
double w = printcfg.display_width.getFloat();
double h = printcfg.display_height.getFloat();
unsigned pw = printcfg.display_pixels_x.getInt();
unsigned ph = printcfg.display_pixels_y.getInt();
double lh = ocfg.layer_height.getFloat();
double exp_t = matcfg.exposure_time.getFloat();
double iexp_t = matcfg.initial_exposure_time.getFloat();
m_printer.reset(new SLAPrinter(w, h, pw, ph, lh, exp_t, iexp_t));
}
// Allocate space for all the layers
SLAPrinter& printer = *m_printer;
auto lvlcnt = unsigned(levels.size());
printer.layers(lvlcnt);
// TODO exclusive progress indication for this step would be good
// as it is the longest of all. It would require synchronization
// in the parallel processing.
// procedure to process one height level. This will run in parallel
auto lvlfn = [this, &keys, &levels, &printer](unsigned level_id) {
if(canceled()) return;
LayerRefs& lrange = levels[keys[level_id]];
// Switch to the appropriate layer in the printer
printer.begin_layer(level_id);
for(auto& lyrref : lrange) { // for all layers in the current level
if(canceled()) break;
const Layer& sl = lyrref.lref; // get the layer reference
const LayerCopies& copies = lyrref.copies;
// Draw all the polygons in the slice to the actual layer.
for(auto& cp : copies) {
for(ExPolygon slice : sl) {
slice.translate(cp.shift(X), cp.shift(Y));
slice.rotate(cp.rotation);
printer.draw_polygon(slice, level_id);
}
}
}
// Finish the layer for later saving it.
printer.finish_layer(level_id);
};
// last minute escape
if(canceled()) return;
// Sequential version (for testing)
// for(unsigned l = 0; l < lvlcnt; ++l) process_level(l);
// Print all the layers in parallel
tbb::parallel_for<unsigned, decltype(lvlfn)>(0, lvlcnt, lvlfn);
};
using slaposFn = std::function<void(SLAPrintObject&)>;
using slapsFn = std::function<void(void)>;
// This is the actual order of steps done on each PrintObject
std::array<SLAPrintObjectStep, slaposCount> objectsteps = {
slaposSupportIslands,
slaposSupportPoints,
slaposSupportTree,
slaposBasePool,
slaposObjectSlice,
slaposSliceSupports
};
std::array<slaposFn, slaposCount> pobj_program =
{
slice_model,
[](SLAPrintObject&){}, // slaposSupportIslands now empty
support_points,
support_tree,
base_pool,
slice_supports
};
std::array<slapsFn, slapsCount> print_program =
{
rasterize,
[](){} // validate
};
const unsigned min_objstatus = 0;
const unsigned max_objstatus = PRINT_STEP_LEVELS[slapsRasterize];
const size_t objcount = m_objects.size();
const double ostepd = (max_objstatus - min_objstatus) / (objcount * 100.0);
for(SLAPrintObject * po : m_objects) {
for(size_t s = 0; s < objectsteps.size(); ++s) {
auto currentstep = objectsteps[s];
// if the base pool (which means also the support tree) is done,
// do a refresh when indicating progress
auto flg = currentstep == slaposObjectSlice ?
SlicingStatus::RELOAD_SCENE : SlicingStatus::DEFAULT;
// Cancellation checking. Each step will check for cancellation
// on its own and return earlier gracefully. Just after it returns
// execution gets to this point and throws the canceled signal.
throw_if_canceled();
if(po->m_stepmask[currentstep] && !po->is_step_done(currentstep)) {
po->set_started(currentstep);
unsigned st = OBJ_STEP_LEVELS[currentstep];
st = unsigned(min_objstatus + st * ostepd);
set_status(st, OBJ_STEP_LABELS[currentstep], flg);
pobj_program[currentstep](*po);
po->set_done(currentstep);
}
}
}
std::array<SLAPrintStep, slapsCount> printsteps = {
slapsRasterize, slapsValidate
};
// this would disable the rasterization step
// m_stepmask[slapsRasterize] = false;
for(size_t s = 0; s < print_program.size(); ++s) {
auto currentstep = printsteps[s];
throw_if_canceled();
if(m_stepmask[currentstep] && !is_step_done(currentstep)) {
set_status(PRINT_STEP_LEVELS[currentstep],
PRINT_STEP_LABELS[currentstep]);
set_started(currentstep);
print_program[currentstep]();
set_done(currentstep);
}
}
// If everything vent well
set_status(100, L("Slicing done"));
}
bool SLAPrint::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
// Cache the plenty of parameters, which influence the final rasterization only,
// or they are only notes not influencing the rasterization step.
static std::unordered_set<std::string> steps_rasterize = {
"exposure_time",
"initial_exposure_time",
"material_correction_printing",
"material_correction_curing",
"display_width",
"display_height",
"display_pixels_x",
"display_pixels_y",
"printer_correction"
};
static std::unordered_set<std::string> steps_ignore = {
"bed_shape",
"max_print_height",
"printer_technology",
};
std::vector<SLAPrintStep> steps;
std::vector<SLAPrintObjectStep> osteps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if (steps_rasterize.find(opt_key) != steps_rasterize.end()) {
// These options only affect the final rasterization, or they are just notes without influence on the output,
// so there is nothing to invalidate.
steps.emplace_back(slapsRasterize);
} else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
// These steps have no influence on the output. Just ignore them.
} else if (opt_key == "initial_layer_height") {
steps.emplace_back(slapsRasterize);
osteps.emplace_back(slaposObjectSlice);
} else {
// All values should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintStep step : steps)
invalidated |= this->invalidate_step(step);
sort_remove_duplicates(osteps);
for (SLAPrintObjectStep ostep : osteps)
for (SLAPrintObject *object : m_objects)
invalidated |= object->invalidate_step(ostep);
return invalidated;
}
SLAPrintObject::SLAPrintObject(SLAPrint *print, ModelObject *model_object):
Inherited(print, model_object),
m_stepmask(slaposCount, true),
m_transformed_rmesh( [this](TriangleMesh& obj){
obj = m_model_object->raw_mesh(); obj.transform(m_trafo);
})
{
}
SLAPrintObject::~SLAPrintObject() {}
// Called by SLAPrint::apply_config().
// This method only accepts SLAPrintObjectConfig option keys.
bool SLAPrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
{
if (opt_keys.empty())
return false;
std::vector<SLAPrintObjectStep> steps;
bool invalidated = false;
for (const t_config_option_key &opt_key : opt_keys) {
if ( opt_key == "support_head_front_radius"
|| opt_key == "support_head_penetration"
|| opt_key == "support_head_back_radius"
|| opt_key == "support_head_width"
|| opt_key == "support_pillar_radius"
|| opt_key == "support_base_radius"
|| opt_key == "support_base_height"
|| opt_key == "support_critical_angle"
|| opt_key == "support_max_bridge_length"
|| opt_key == "support_object_elevation") {
steps.emplace_back(slaposSupportTree);
} else if (
opt_key == "pad_enable"
|| opt_key == "pad_wall_thickness"
|| opt_key == "pad_wall_height"
|| opt_key == "pad_max_merge_distance"
|| opt_key == "pad_edge_radius") {
steps.emplace_back(slaposBasePool);
} else {
// All keys should be covered.
assert(false);
}
}
sort_remove_duplicates(steps);
for (SLAPrintObjectStep step : steps)
invalidated |= this->invalidate_step(step);
return invalidated;
}
bool SLAPrintObject::invalidate_step(SLAPrintObjectStep step)
{
bool invalidated = Inherited::invalidate_step(step);
// propagate to dependent steps
if (step == slaposObjectSlice) {
invalidated |= this->invalidate_all_steps();
} else if (step == slaposSupportIslands) {
invalidated |= this->invalidate_steps({ slaposSupportPoints, slaposSupportTree, slaposBasePool, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsRasterize);
} else if (step == slaposSupportPoints) {
invalidated |= this->invalidate_steps({ slaposSupportTree, slaposBasePool, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsRasterize);
} else if (step == slaposSupportTree) {
invalidated |= this->invalidate_steps({ slaposBasePool, slaposSliceSupports });
invalidated |= m_print->invalidate_step(slapsRasterize);
} else if (step == slaposBasePool) {
invalidated |= this->invalidate_step(slaposSliceSupports);
invalidated |= m_print->invalidate_step(slapsRasterize);
} else if (step == slaposSliceSupports) {
invalidated |= m_print->invalidate_step(slapsRasterize);
}
return invalidated;
}
bool SLAPrintObject::invalidate_all_steps()
{
return Inherited::invalidate_all_steps() | m_print->invalidate_all_steps();
}
double SLAPrintObject::get_elevation() const {
double ret = m_config.support_object_elevation.getFloat();
// if the pad is enabled, then half of the pad height is its base plate
if(m_config.pad_enable.getBool()) {
// Normally the elevation for the pad itself would be the thickness of
// its walls but currently it is half of its thickness. Whatever it
// will be in the future, we provide the config to the get_pad_elevation
// method and we will have the correct value
sla::PoolConfig pcfg;
pcfg.min_wall_height_mm = m_config.pad_wall_height.getFloat();
pcfg.min_wall_thickness_mm = m_config.pad_wall_thickness.getFloat();
pcfg.edge_radius_mm = m_config.pad_edge_radius.getFloat();
pcfg.max_merge_distance_mm = m_config.pad_max_merge_distance.getFloat();
ret += sla::get_pad_elevation(pcfg);
}
return ret;
}
namespace { // dummy empty static containers for return values in some methods
const std::vector<ExPolygons> EMPTY_SLICES;
const TriangleMesh EMPTY_MESH;
}
const std::vector<ExPolygons> &SLAPrintObject::get_support_slices() const
{
if(!is_step_done(slaposSliceSupports) || !m_supportdata) return EMPTY_SLICES;
return m_supportdata->support_slices;
}
const std::vector<ExPolygons> &SLAPrintObject::get_model_slices() const
{
if(!is_step_done(slaposObjectSlice)) return EMPTY_SLICES;
return m_model_slices;
}
bool SLAPrintObject::has_mesh(SLAPrintObjectStep step) const
{
switch (step) {
case slaposSupportTree:
return ! this->support_mesh().empty();
case slaposBasePool:
return ! this->pad_mesh().empty();
default:
return false;
}
}
TriangleMesh SLAPrintObject::get_mesh(SLAPrintObjectStep step) const
{
switch (step) {
case slaposSupportTree:
return this->support_mesh();
case slaposBasePool:
return this->pad_mesh();
default:
return TriangleMesh();
}
}
const TriangleMesh& SLAPrintObject::support_mesh() const
{
if(m_supportdata && m_supportdata->support_tree_ptr)
return m_supportdata->support_tree_ptr->merged_mesh();
return EMPTY_MESH;
}
const TriangleMesh& SLAPrintObject::pad_mesh() const
{
if(!m_supportdata || !m_supportdata->support_tree_ptr) return EMPTY_MESH;
return m_supportdata->support_tree_ptr->get_pad();
}
const TriangleMesh &SLAPrintObject::transformed_mesh() const {
// we need to transform the raw mesh...
// currently all the instances share the same x and y rotation and scaling
// so we have to extract those from e.g. the first instance and apply to the
// raw mesh. This is also true for the support points.
// BUT: when the support structure is spawned for each instance than it has
// to omit the X, Y rotation and scaling as those have been already applied
// or apply an inverse transformation on the support structure after it
// has been created.
return m_transformed_rmesh.get();
}
std::vector<Vec3d> SLAPrintObject::transformed_support_points() const
{
assert(m_model_object != nullptr);
auto& spts = m_model_object->sla_support_points;
// this could be cached as well
std::vector<Vec3d> ret; ret.reserve(spts.size());
for(auto& sp : spts) ret.emplace_back( trafo() * Vec3d(sp.cast<double>()));
return ret;
}
} // namespace Slic3r